Ткп устройство свайных фундаментов

Обновлено: 28.03.2024

Сведения о своде правил

1 ИСПОЛНИТЕЛИ - Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова - институт АО "НИЦ "Строительство" (НИИОСП им.Н.М.Герсеванова)

2 ВНЕСЕН Техническим комитетом по стандартизации (ТК 465) "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики

Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минрегион России) в сети Интернет

ВНЕСЕНЫ правки на основании информации об опечатках, опубликованной в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 6, 2011 г.

Правки внесены изготовителем базы данных

Изменения N 1, 2, 3 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2017 год; М.: Стандартинформ, 2019

Введение

Настоящий свод правил устанавливает требования к проектированию фундаментов из разных типов свай в различных инженерно-геологических условиях и при любых видах строительства.

Разработан НИИОСП им.Н.М.Герсеванова - институтом ОАО "НИЦ "Строительство": д-ра техн. наук Б.В.Бахолдин, В.П.Петрухин и канд. техн. наук И.В.Колыбин - руководители темы; д-ра техн. наук: А.А.Григорян, Е.А.Сорочан, Л.Р.Ставницер; кандидаты техн. наук: А.Г.Алексеев, В.А.Барвашов, С.Г.Безволев, Г.И.Бондаренко, В.Г.Буданов, A.M.Дзагов, О.И.Игнатова, В.Е.Конаш, В.В.Михеев, Д.Е.Разводовский, В.Г.Федоровский, О.А.Шулятьев, П.И.Ястребов, инженеры Л.П.Чащихина, Е.А.Парфенов, при участии инженера Н.П.Пивника.

Изменение N 2 разработано институтом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (руководители темы - д-р техн. наук Б.В.Бахолдин, канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский; исполнители - д-р техн. наук Н.З.Готман, д-р техн. наук Л.Р.Ставницер, канд. техн. наук А.Г.Алексеев, канд. техн. наук А.М.Дзагов, канд. техн. наук В.А.Ковалев, канд. техн. наук А.В.Скориков, канд. техн. наук В.Г.Федоровский, канд. техн. наук О.А.Шулятьев, канд.техн. наук П.И.Ястребов) при участии д-ра техн. наук В.В.Знаменского, д-ра техн. наук В.А.Ильичева.

Изменение N 3 к своду правил подготовлено АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (руководители темы - д-р техн. наук Б.В.Бахолдин, канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский, д-р техн. наук Н.З.Готман, канд. техн. наук А.Г.Алексеев, канд. техн. наук А.М.Дзагов, канд. техн. наук В.В.Сёмкин, канд. техн. наук А.В.Скориков, канд. техн. наук В.Г.Федоровский, канд. техн. наук А.В.Шапошников, канд. техн. наук П.И.Ястребов, при участии д-ра техн. наук В.В.Знаменского, д-ра техн. наук В.А.Ильичева).

1 Область применения

Настоящий свод правил распространяется на проектирование свайных фундаментов вновь строящихся и реконструируемых зданий и сооружений (далее - сооружений).

Свод правил не распространяется на проектирование свайных фундаментов сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов машин с динамическими нагрузками, а также опор морских нефтепромысловых и других сооружений, возводимых на континентальном шельфе.

2 Нормативные ссылки

ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями

ГОСТ 8732-78 Трубы стальные бесшовные горячедеформированные. Сортамент

ГОСТ 8734-75 Трубы стальные бесшовные холоднодеформированные. Сортамент

ГОСТ 9463-2016 Лесоматериалы круглые хвойных пород. Технические условия

ГОСТ 10704-91 Трубы стальные электросварные прямошовные. Сортамент

ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава

ГОСТ 19804-2012 Сваи железобетонные заводского изготовления. Общие технические условия

ГОСТ 19804.6-83 Сваи полые круглого сечения и сваи-оболочки железобетонные составные с ненапрягаемой арматурой. Конструкция и размеры

ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-2012 Грунты. Методы полевого определения характеристик прочности и деформируемости

ГОСТ 20295-85 Трубы стальные сварные для магистральных газонефтепроводов. Технические условия

ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния

СП 14.13330.2018 "СНиП II-7-81* Строительство в сейсмических районах"

СП 20.13330.2016 "СНиП 2.01.07-85* Нагрузки и воздействия" (с изменением N 1)

СП 21.13330.2012 "СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах" (с изменением N 1)

СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений"

СП 25.13330.2012 "СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах" (с изменением N 1)

СП 26.13330.2012 "СНиП 2.02.05-87 Фундаменты машин с динамическими нагрузками" (с изменением N 1)

СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии" (с изменением N 1)

СП 38.13330.2018 "СНиП 2.06.04-82* Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)"

СП 40.13330.2012 "СНиП 2.06.06-85 Плотины бетонные и железобетонные"

СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения"

СП 58.13330.2012 "СНиП 33-01-2003 Гидротехнические сооружения. Основные положения" (с изменением N 1)

СП 63.13330.2012 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменениями N 1, 2, 3)

СП 64.13330.2017 "СНиП II-25-80 Деревянные конструкции" (с изменением N 1)

СП 71.13330.2017 "СНиП 3.04.01-87 Изоляционные и отделочные покрытия"

СП 126.13330.2017 "СНиП 3.01.03-84 Геодезические работы в строительстве"

СП 131.13330.2012 "СНиП 23-01-99* Строительная климатология" (с изменениями N 1, 2)

Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде технических регламентов и стандартов.

3 Термины и определения

Термины с соответствующими определениями, используемые в настоящем СП, приведены в приложении А.

Наименования грунтов оснований зданий и сооружений приняты в соответствии с ГОСТ 25100.

4 Общие положения

4.1 Основное назначение свай - это прорезка залегающих с поверхности слабых слоев грунта и передача действующей нагрузки на нижележащие слои грунта, обладающие более высокими механическими показателями. Свайные фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия их эксплуатации;

ТКП 45-5.01-254-2012 Основания и фундаменты зданий и сооружений. Основные положения. Строительные нормы проектирования

Разработан научно-проектно-производственным республиканским унитарным предприятием «Стройтехнорм» (РУП «Стройтехнорм»), техническим комитетом по стандартизации в области архитектуры и строительства «Основания и фундаменты, инженерные изыскания» (ТКС 02).
Внесен главным управлением научно- технической политики и лицензирования Министерства архитектуры и строительства Республики Беларусь.
Утвержден и введен в действие приказом Министерства архитектуры и строительства
Республики Беларусь от 5 января 2012 г . № 4.
Введен впервые (с отменой СНБ 5.01.01-99).
Настоящий технический кодекс распространяется на проектирование оснований и конструкций фундаментов для вновь строящихся и реконструируемых (модернизация) зданий и сооружений высотой до 75 м различного назначения и устанавливает основные обязательные геотехнические и экологические требования к ним, порядок и методы расчета , требования к конструированию и мониторингу.
Настоящий технический кодекс не распространяется на проектирование: оснований и фундаментов гидротехнических; атомных, химических, нефтехимических сооружений , мелиоративных,
транспортных систем (за исключением промышленных и гражданских объектов, входящих в их состав); тоннелей, магистральных трубопроводов, труб под насыпями, а также дорожных и аэродромных покрытий, подземных сооружений и опор мостов, оснований и фундаментов на грунтах II типа по просадочности и на оползневых территориях. Проектирование оснований и фундаментов, на которые не распространяется настоящий технический кодекс, следует производить по соответствующим действующим ТНПА.
Положения настоящего технического кодекса являются приоритетными по отношению к СНБ, СНиП, пособиям к СНБ 5.01.01, имеющим статус технического нормативного акта на нормы и стандарты, принятые до введения его в переходный период до их замены. Приведение их в соответствие с требованиями настоящего технического кодекса осуществляется при пересмотре указанных документов в установленном порядке.
Настоящий технический кодекс не ограничивает возможность разработки и применения фундаментов новых типов и технологических приемов их изготовления или совершенствования уже существующих решений, а также уточнения расчетных схем и методов проектирования с использованием теорий, не регламентируемых настоящим техническим кодексом, если они гарантируют выполнение требований по 4.1.1 и 4.1.7.
Требования настоящего технического кодекса обязательны для субъектов технического нормирования и стандартизации, развивающих положения настоящего технического кодекса. Они являются минимальными для проектирования оснований и фундаментов и, при соответствующем обосновании, в установленном порядке могут быть повышены (ужесточены) или снижены.

ТКП 45-5.01-256-2012 Основания и фундаменты зданий и сооружений. Сваи забивные

ТКП 45-5.01-256-2012. Основания и фундаменты зданий и сооружений. Сваи забивные. Правила проектирования и у стройства.

ТКП 45-5.01-256-2012. Основания и фундаменты зданий и сооружений. Сваи забивные Правила проектирования и устройства

Министерство архитектуры и строительства Республики БеларусьМинск 2013Утвержден и введен в действие приказом Министерства архитектуры и строительства Республики Беларусь от 5 января 2012 г. № 4.Дата введения 2012-07-01

Настоящий технический кодекс установившейся практики (далее — технический кодекс) устанавливает правила проектирования и устройства свайных фундаментов из забивных свай различных видов (далее - свайные фундаменты) вновь строящихся и реконструируемых зданий и сооружений в различных областях строительства.Настоящий технический кодекс не распространяется на проектирование свайных фундаментов зданий и сооружений, возводимых на лессовых просадочных грунтах II типа, набухающих грунтах (согласно СТБ 943), на оползневых и подрабатываемых территориях, а также свайных фундаментов машин с динамическими нагрузками.Требования настоящего технического кодекса в части проектирования свайных фундаментов опор мостовых сооружений, водопропускных труб и тоннелей, а также свайных опор под трубопроводы тепловых сетей являются рекомендуемыми. Остальные требования настоящего технического кодекса являются обязательными для всех субъектов хозяйствования, осуществляющих проектирование и устройство свайных фундаментов.

Объём документа: 141 стр.Размер файла PDF: 1,78 Мб.

В последнее время студенты часто стали спрашивать этот ТКП для защиты курсовой по механике грунтов. А как оказалось найти его в интренете практически невозможно. Но специально для наших пользователей мы раздобыли этот документ по сваям и предлагаем скачать его с нашего сайта по прямой ссылке. Будем Вам благодарны если поделитесь ссылкой на данную страницу в ваших соцсетях

Расчет прочности ленточного фундамента на свайном основании

Принимаем размер уширения фундамента над сваей 0,5х0,6(h) м. Для армирования вдоль тела фундамента снизу и сверху используем 4 Ø 10 ммS500 с шагом 150 мм, в качестве поперечной арматуры используем четырехсрезные хомуты Ø 6 ммS240 с шагом 200 мм. Для армирования тела сваи применяются сварные каркасы с продольной арматурой Ø 10 ммS500.

Реконструкция фундаментов

По заданию на расстоянии 3 метров от существующего здания необходимо возвести новое. Глубина заложения новых фундаментов от уровня земли – 5 метра.

Допустимая разность заложения соседних фундаментов определяется по формуле (см. также схемы на листе 2 графической части проекта):


где L1 – расстояние между фундаментами в свету, м;

 и с – расчетные значения угла внутреннего трения и удельного сцепления грунта соответственно;

Р – среднее давление под подошвой расположенного выше фундамента от расчетных нагрузок:





– условие не выполняется!

Поэтому необходимо устройство разделительной стенки, в качестве которой будем использовать шпунтовый ряд. Шпунтовый ряд представляет из себя несколько вбитых в землю вплотную друг к другу профильных металлических шпунтовых свай, образующих таким образом шпунтовую стенку в грунте.

Жесткость и глубина заделки разделительной стенки определяется расчетом или конструктивными мероприятиями (устройство анкеров, подкосов, распорок c упором в предварительно возведенные конструкции нового здания и т.п.). Они должны обеспечить ограничение горизонтальных смещений в основании существующего здания.

Литература

Методические указания к курсовому проектированию по дисциплине «Механика грунтов, основания и фундаменты», С.Н. Банников и др. Минск 2011.

ТКП 45-5.01-67-2007 «Фундаменты плитные. Правила проектирования».

ТКП 45-5.01-254-2012 «Основания и фундаменты зданий и сооружений. Основные положения».

ТКП 45-5.01-235-2011 «Основания и фундаменты зданий и сооружений. Геотехническая реконструкция».

П19-04 к СНБ 5.01.01-99 – «Проектирование и устройство набивных свай с уплотненным основанием».

Основания и фундаменты. Берлинов М.В., Москва, «Высшая школа», 1991.











Пояснительная записка


СНиП 2.02.03-85. Свайные фундаменты

СНиП 2.02.03-85. Свайные фундаменты

СНиП 2.02.03-85. Свайные фундаменты

Утверждены постановлением Государственного комитета СССР по делам строительства от 20 декабря 1985 г. № 243

Госстрой СССР. —М.: ЦИТП Госстроя СССР, 1986. — 48 с

Взамен СНиП II-17-77

Срок введения в действие 1 января 1987 г

Общие положения:1.1. Выбор конструкции фундамента (свайного, на естественном или искусственном основании), а также вида свай и типа свайного фундамента (например, свайных кустов, лент, полей) следует производить исходя из конкретных условий строительной площадки, характеризуемых материалами инженерных изысканий, расчетных нагрузок, действующих на фундамент, на основе результатов технико-экономического сравнения возможных вариантов проектных решений фундаментов (с оценкой по приведенным затратам), выполненного с учетом требований по экономному расходованию основных строительных материалов и обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов.1.2. Свайные фундаменты следует проектировать на основе результатов инженерно-геодезических, инженерно-геологических, инженерно-гидрометеорологических изысканий строительной площадки, а также на основе данных, характеризующих назначение, конструктивные и технологические особенности проектируемых зданий и сооружений и условия их эксплуатации, нагрузки, действующие на фундаменты, с учетом местных условий строительства. Проектирование свайных фундаментов без соответствующего и достаточного инженерно-геологического обоснования не допускается.1.3. Результаты инженерных изысканий должны содержать данные, необходимые для выбора-типа фундамента, в том числе свайного, для определения вида свай и их габаритов (размеров поперечного сечения и длины сваи, расчетной нагрузки, допускаемой на сваю) с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических и гидрогеологических условий площадки строительства, а также вида и объема инженерных мероприятий по ее освоению.В материалах изысканий должны быть приведены данные полевых и лабораторных исследований грунтов, а в необходимых случаях, устанавливаемых проектной организацией, проектирующей свайные фундаменты, — результаты испытаний натурных свай статической и динамической нагрузками.Должны быть также приведены геологические разрезы с данными о напластованиях грунтов, расчетных значениях их физико-механических характеристик, используемых в расчетах по двум группам предельных состояний, с указанием положения установленного и прогнозируемого уровней подземных вод, а при наличии результатов зондирования — графики зондирования.Примечание. Испытания свай, производимые в процессе строительства в соответствии с требованиями СНиП 3.02.01-83, являются только контрольными для установления качества свайных фундаментов и соответствия их проекту.1.4. В проектах свайных фундаментов должно предусматриваться проведение натурных измерений деформаций оснований и фундаментов в случаях применения новых или недостаточно изученных конструкций зданий и сооружений или их фундаментов, возведения ответственных зданий и сооружений в сложных инженерно-геологических условиях, а также при наличии в задании на проектирование специальных требований по измерению деформаций.1.5. Свайные фундаменты, предназначенные для эксплуатации в условиях агрессивной среды, следует проектировать с учетом требований СНиП 2.03.11-85, а деревянные конструкции свайных фундаментов — также с учетом требований по защите их от гниения, разрушения и поражения древоточцами.

Земляные сооружения основания и фундаменты ткп

Если вы мечтаете о собственном жилище, то имеет смысл начать строительство. Вашему вниманию предлагаются многочисленные проекты и эскизы, позволяющие получить самые изысканные решения. Однако, не стоит забывать об устойчивости конструкции, следует заложить земляные сооружения основания и фундаменты ткп. Такой дом будет стоять долго, вы сможете много десятилетий наслаждаться комфортом проживания. Замечательная конструкция подарит радость и великолепие.

Современные горожане очень устают от шума, царящего в мегаполисе. Если вам по душе тишина и комфорт, то имеет смысл переселиться в зеленую зону. За городом всегда царит тишина и покой, много деревьев, пение птиц ласкает слух. Потребуется только построить дом, который соответствует вашим представлениям о счастье. Для надежности конструкции потребуется как построить фундамент для дома своими руками видео, поэтому следует позаботиться о качественных материалах.

Долговечные решения земляные сооружения основания и фундаменты ткп, купить бетон на фундамент в московской области, расчёт фундамента для дома нагрузка на почву, свайно винтовой фундамент москва, детская схема по фундаменту, хочу залить фундамент для дома, расчетное сопротивление грунта под подошвой фундамента, армирование монолитной фундаментной плиты снип, фундамент работы цена, расчет фундамента на винтовых сваях онлайн калькулятор, ленточный фундамент под забор под ключ калькулятор.

С наступлением лета активно начинается строительство загородных домов, коттеджей и дач. Если у вас имеется собственный участок, то имеет смысл позаботиться о возведении комфортного здания. Начало строительства всегда начинается с исследования территории, закладывается этапы проектирования фундамента. К данному этапу следует отнестись ответственно, чтобы ваше строение обеспечивало надежность и устойчивость. Рекомендуется обратиться к профессионалам, которые соблюдают определенную технологию укладки.

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

ПРОЕКТИРОВАНИЕ И УСТРОЙСТВО СВАЙНЫХ ФУНДАМЕНТОВ

Design and construction of pile foundations

1 РАЗРАБОТАН Государственным федеральным унитарным предприятием "Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова" (НИИОСП) Госстроя России

ВНЕСЕН Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России

2 ОДОБРЕН для применения постановлением Госстроя России N 96 от 21 июня 2003 г.

3 ВВЕДЕН ВПЕРВЫЕ

ВНЕСЕНА поправка*, опубликованная в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 5, 2005 г.

* См. ярлык "Примечания".

Поправка внесена изготовителем базы данных.

Свод правил по проектированию и устройству свайных фундаментов разработан в развитие обязательных положений и требований СНиП 2.02.03-85 и СНиП 3.02.01-87.

Свод правил устанавливает требования к проектированию и устройству различных типов свай в различных инженерно-геологических условиях и для различных видов строительства.

Разработан ГУП НИИОСП им.Герсеванова (д-р техн. наук В.А.Ильичев - руководитель темы; доктора техн. наук: Б.В.Бахолдин, В.П.Петрухин, Е.А.Сорочан, Л.Р.Ставницер; кандидаты техн. наук: Ю.А.Багдасаров, A.M.Дзагов, Х.А.Джантимиров, В.Г.Буданов, О.И.Игнатова, В.Е.Конаш, Л.Г.Мариупольский, В.В.Михеев, Ю.Г.Трофименков, В.Г.Федоровский, П.И.Ястребов).

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий Свод правил (СП) распространяется на свайные фундаменты вновь строящихся и реконструируемых зданий и сооружений.

СП не распространяется на проектирование и устройство свайных фундаментов зданий и сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов машин с динамическими нагрузками, а также опор морских нефтепромысловых и других сооружений, возводимых на континентальном шельфе при глубине погружения опор более 35 м.

Свайные фундаменты зданий и сооружений, возводимых в районах с наличием или возможностью развития опасных геологических процессов (карстов, оползней и т.п.), следует проектировать с учетом дополнительных требований соответствующих нормативных документов, утвержденных или согласованных Госстроем России.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем Своде правил приведены ссылки на следующие нормативные документы:

СНиП II-7-81* Строительство в сейсмических районах

СНиП II-23-81* Стальные конструкции

СНиП II-25-80 Деревянные конструкции

СНиП 2.01.07-85* Нагрузки и воздействия

СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах

СНиП 2.02.01-83* Основания зданий и сооружений

СНиП 2.02.03-85 Свайные фундаменты

СНиП 2.03.11-85 Защита строительных конструкций от коррозии

СНиП 2.05.03-84* Мосты и трубы

СНиП 2.06.06-85 Плотины бетонные и железобетонные

СНиП 3.01.01-85* Организация строительного производства

СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты

СНиП 3.03.01-87 Несущие и ограждающие конструкции

СНиП 3.04.01-87 Изоляционные и отделочные покрытия

СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения

СНиП 23-01-99* Строительная климатология

СНиП 33-01-2003 Гидротехнические сооружения. Основные положения

СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения

СП 11-102-97 Инженерно-экологические изыскания для строительства

СП 11-104-97 Инженерно-геодезические изыскания для строительства

СП 11-105-97 Инженерно-геологические изыскания для строительства

ГОСТ 5686-94 Грунты. Методы полевых испытаний сваями

ГОСТ 7473-94 Смеси бетонные. Технические условия

ГОСТ 9463-88 Лесоматериалы круглые хвойных пород. Технические условия

ГОСТ 10181-2000 Смеси бетонные. Методы испытаний

ГОСТ 18105-86* Бетоны. Правила контроля прочности

ГОСТ 19804-91 Сваи железобетонные. Технические условия

ГОСТ 19804.2-79* Сваи забивные железобетонные цельные сплошные квадратного сечения с поперечным армированием ствола с напрягаемой арматурой. Конструкция и размеры

ГОСТ 19804.3-80* Сваи забивные железобетонные квадратного сечения с круглой полостью. Конструкция и размеры

ГОСТ 19804.4-78* Сваи забивные железобетонные квадратного сечения без поперечного армирования ствола. Конструкция и размеры

ГОСТ 19804.5-83 Сваи полые круглого сечения и сваи-оболочки железобетонные цельные с ненапрягаемой арматурой. Конструкция и размеры

ГОСТ 19804.6-83 Сваи полые круглого сечения и сваи-оболочки железобетонные составные с ненапрягаемой арматурой. Конструкция и размеры

ГОСТ 19912-2001 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-99 Грунты. Методы полевого определения характеристик прочности и деформируемости

ГОСТ 20522-96 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 27751-88 Надежность строительных конструкций и оснований. Основные положения по расчету

Термины с соответствующими определениями, используемые в настоящем Своде правил, приведены в приложении А.

Наименования грунтов оснований зданий и сооружений приняты в соответствии с ГОСТ 25100.

4 ОБЩИЕ ПОЛОЖЕНИЯ

4.1 Свайные фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия его эксплуатации;

г) действующих на фундаменты нагрузок;

д) условий существующей застройки и влияния на нее нового строительства;

е) экологических требований;

ж) технико-экономического сравнения возможных вариантов проектных решений для принятия варианта, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов.

4.2 При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации.

При разработке проектов производства работ и организации строительства должны выполняться требования по обеспечению надежности конструкций на всех стадиях их возведения.

4.3 При проектировании следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических, гидрогеологических и экологических условиях. Для этого должны быть выявлены данные о производственных возможностях строительной организации, ее парке оборудования, ожидаемых климатических условиях на весь период строительства и т.п.

Данные о климатических условиях района строительства должны приниматься в соответствии со СНиП 23-01.

4.4 Работы по проектированию свайных фундаментов следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (4.1). Порядок разработки проектной документации изложен в приложении Б.

4.5 При проектировании следует учитывать уровень ответственности сооружения в соответствии с ГОСТ 27751: I - повышенный, II - нормальный, III - пониженный.

4.6 Инженерные изыскания для строительства, работы по проектированию свайных фундаментов и их устройству должны выполняться организациями, имеющими лицензии на эти виды работ.

4.7 Свайные фундаменты следует проектировать на основе результатов инженерных изысканий, выполненных в соответствии с требованиями СНиП 11-02, СП 11-102, СП 11-104, СП 11-105 и раздела 5 настоящего СП.

Выполненные инженерные изыскания должны обеспечить не только изучение инженерно-геологических условий нового строительства, но и получение необходимых данных для проверки влияния устройства свайных фундаментов на существующие здания и сооружения и окружающую среду, а также для проектирования, в случае необходимости, усиления оснований и фундаментов существующих сооружений.

Проектирование свайных фундаментов без соответствующего и достаточного инженерно-геологического обоснования не допускается.

4.8 При использовании для строительства вблизи существующих зданий и сооружений забивных или вибропогружаемых свай, а также свай с камуфлетной пятой, образуемой взрывом, необходимо производить оценку влияния динамических воздействий на конструкции существующих зданий или сооружений, а также на находящиеся в них чувствительные к колебаниям машины, приборы и оборудование, и в необходимых случаях предусматривать измерения параметров колебаний грунта, сооружений, а также подземных коммуникаций при опытном погружении и изготовлении свай.

4.9 В проектах свайных фундаментов необходимо предусматривать проведение натурных измерений (мониторинг). Состав, объем и методы мониторинга устанавливают в зависимости от уровня ответственности сооружения и сложности инженерно-геологических условий (раздел 16).


ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА (ТТК)

УСТРОЙСТВО ФУНДАМЕНТОВ ИЗ БУРОНАБИВНЫХ СВАЙ В УСЛОВИЯХ СУЩЕСТВУЮЩЕЙ ЗАСТРОЙКИ И РЕКОНСТРУКЦИИ

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Типовая технологическая карта разработана на устройство фундаментов из буронабивных свай в условиях существующей застройки и реконструкции.

Предназначена для использования строительно-монтажными организациями при разработке проектно-сметной документации и проектов производства работ.

При возведении зданий на свайных фундаментах в стесненных условиях городской застройки серьезную проблему представляют динамические нагрузки, воздействующие на расположенные поблизости здания. Решение этой проблемы возможно с использованием технологии устройства буронабивных свай.

Область применения буронабивных свай во всех грунтах, кроме скальных и крупнообломочных, в т.ч. обводненных, структурно-неустойчивых без применения инвентарных обсадных труб или тиксотропных растворов в стесненных городских условиях с приближением к существующим зданиям до 1 м. При этом при проведении инженерно-геологических изысканий должно быть обращено особое внимание на обследование мест возведения фундаментов с целью выявления в грунте различного рода препятствий (скальных прослоек, валунов размером более 25 см и т.п.).

Работы могут производиться по устройству буронабивных свай диаметром 400-1200 мм и глубиной заложения до 25 м в различных грунтовых условиях для сооружения свайных фундаментов вблизи существующих зданий с применением импортного оборудования фирмы "Касагранда С-40" (Италия).

Технология устройства набивных свай

Набивные сваи устраивают на месте их будущего положения путем заполнения скважины (полости) бетонной смесью или песком. В настоящее время применяют большое количество вариантов решения таких свай. Их основные преимущества:

возможность изготовления любой длины;

отсутствие значительных динамических воздействий при устройстве свай;

применимость в стесненных условиях;

применимость при усилении существующих фундаментов.

Набивные сваи изготовляют бетонными, железобетонными и грунтовыми, причем имеется возможность устройства свай с уширенной пятой. Способ устройства свай прост - в предварительно пробуренные скважины подается для заполнения бетонная смесь или грунты, в основном песчаные.

Применяют следующие разновидности набивных свай - сваи А.Э.Страуса, буронабивные, пневмонабивные, вибротрамбованные, частотрамбованные вибронабивные, песчаные и грунтобетонные. Длина свай достигает 20. 30 м при диаметре 50. 150 см. Сваи, изготовляемые с применением установок фирм Като, Беното, Либхер могут иметь диаметр до 3,5 м, глубину до 60 м, несущую способность до 500 т.

Особенности технологии свайных работ в условиях реконструкции

Специфика производства свайных работ. При реконструкции и техническом перевооружении предприятий нередко возникает необходимость усиления фундаментов или повышения их несущей способности. В этих условиях применяют различные способы подведения дополнительных свай, метод "стена в грунте", модифицированный метод опускного колодца.

Подведение дополнительных свай. При данном способе обычно применяют буронабивные и вдавливаемые многосекционные сваи, погружаемые по углам фундамента и воспринимающие нагрузку через устраиваемую по его периметру железобетонную обойму - ростверк. Однако более эффективным решением является устройство свай из укрепленного грунта или набивных свай непосредственно под подошвой существующего фундамента с использованием "струйной технологии". Эта технология устройства свай включает следующие основные процессы:

бурение до грунтового основания скважин диаметром 100. 150 мм через нижнюю ступень фундамента по его углам, а при необходимости и между углами;

опускание через пробуренное отверстие в фундаменте струйного монитора и последующая проходка скважины небольшого диаметра в грунте на проектную глубину посредством разрушения грунта высоконапорной струей от монитора;

расширение скважины до проектного сечения путем постепенного подъема монитора, через сопло которого поступает размывающая струя воды или укрепляющий грунт раствор, в результате чего образуется свая из укрепленного грунта.

Возможна установка в скважину арматурного каркаса, выходящего в существующий фундамент, последующее заполнение скважины бетонной смесью при недостаточной несущей способности грунтовых свай.

При подведении грунтовых свай под фундаменты по струйной технологии возможны три ее варианта: одно-, двух- и трехкомпонентная, отличающиеся числом составляющих, составом оборудования и несущей способностью получаемых грунтовых свай.

Однокомпонентная технология предусматривает размыв грунта одной или двумя противоположно направленными струями укрепляющего раствора. Раствор можно приготовить заранее (цементно-песчаный или цементно-глинистый), или получить необходимый состав путем раздельной подачи к соплам его составляющих. Смешение будет происходить непосредственно при выходе из сопла (жидкое стекло и отвердитель, цементно-песчаный раствор и химические добавки-ускорители твердения и др.). При однокомпонентной струйной технологии грунт размывается в радиусе 200. 350 мм от сопла, диаметр столба грунтовой сваи составляет 0,5. 0,7 м.

Двухкомпонентная струйная технология осуществляется одновременной подачей струи укрепляющего раствора и концентричной ей кольцевой струи воздуха. Размыв грунта растворно-воздушной струей происходит в радиусе 1,0. 1,5 м, а диаметр грунтовой сваи достигает 2. 3 м. В трехкомпонентной технологии дополнительно в грунт подаются добавки, ускоряющие процесс формирования сваи.

При струйной технологии можно получать сваи различного сечения: винтовые, корневидные, с поперечными дисками-диафрагмами и др. За счет развитой боковой поверхности несущая способность свай выше в 1,5. 1,8 раза, чем у свай круглого поперечного сечения.

Винтовые сваи устраивают путем подъема монитора, имеющего одно или несколько боковых сопл, расположенных одно над другим с одновременным разворотом вокруг его вертикальной оси. Число винтовых лопастей на таких сваях соответствует числу сопл на мониторе шаг винтовых лопастей определяется скоростью подъема монитора.

Вдавливание многосекционных свай. Многосекционные сваи обычно состоят из трех и более сборных коротких элементов-секций. Эти секции последовательно стыкуют по мере вдавливания их в грунт домкратами или другими механизмами до положения, при котором обеспечивается проектная несущая способность. Домкрат устанавливают под подошву существующего фундамента, под специальную балку или инвентарное упорное устройство, анкеруемое за неподвижные конструкции и соседние здания. Для устройства многосекционных свай используют стальные трубы диаметром 245. 400 мм с башмаком или заваренным нижним концом. Секции свай длиной около 1 м по мере вдавливания стыкуются сваркой. После вдавливания полость сваи заполняют бетонной смесью. Применяют железобетонные секции свай сечением 30х30 и длиной 60, 90 и 120 см со штыревым стыком секций.

Достоинства многосекционных свай в том, что вдавливание производится в режиме статического испытания свай, отсутствуют динамические воздействия при погружении свай, обеспечивается высокая надежность усиления конструкций и постоянный контроль несущей способности сваи в процессе погружения.

Модифицированный метод опускного колодца. Этот метод позволяет повысить несущую способность массива грунта под существующим фундаментом за счет заключения грунта в железобетонную оболочку, где грунт может воспринимать большие давления, так как находится в замкнутом объеме опускного колодца и подвергается трехосному напряженному состоянию. Модифицированный метод опускного колодца отличается от традиционного тем, что грунт разрабатывается снаружи, а не внутри опускного колодца. После выемки грунта до уровня нижней ступени фундамента устраивают оболочку колодца (сборную или монолитную), опускают ее с разработкой грунта по наружному контуру, и далее стенки оболочки наращивают. Работы выполняют последовательно до погружения оболочки на проектную отметку.

Буронабивные сваи. Характерной особенностью устройства буронабивных свай является предварительное бурение скважин до заданий глубины.

Самими первыми в нашей стране, на основе которых применяются существующие разновидности буронабивных свай, являются сваи А.Э.Страуса, которые были предложены в 1899 г. Изготовление свай включает следующие операции:

опускание в скважину обсадной трубы;

извлечение из скважины осыпавшегося грунта;

заполнение скважины бетоном отдельными порциями;

трамбование бетона этими порциями;

постепенное извлечение обсадной трубы.

В пробуренную до проектной отметки (5. 12 м) скважину осторожно опускают трубу диаметром 25. 40 см и далее загружают бетонной смесью. После заполнения скважины на глубину около 1 м бетонную смесь трамбуют и медленно поднимают вверх обсадную трубу до тех вор, пока высота смеси в трубе не уменьшится до 0,3. 0,4 м. Снова загружается бетонная смесь и процесс повторяется. Учитывая, что диаметр скважины больше диаметра обсадной трубы и поверхность пробуренного грунта оказывается неровной, шероховатой, при наполнении бетонной смесью обсадной трубы, ее подъеме и уплотнении смеси, бетон заполнит весь свободный объем, включая и зазор между стенками скважины и обсадной трубой. Часть бетона и цементного молока проникнет в грунт, повысив его прочность.

Недостатки способа - невозможность контролировать плотность и монолитность бетона по всей высоте сваи, возможность размыва несхватившейся бетонной смеси грунтовыми водами.

Армирование свай производят только в верхней части, где на глубину 1,5. 2,0 м в свежеуложенный бетон устанавливают металлические стержни для их последующей связи с ростверком.

В зависимости от грунтовых условий буронабивные сваи устраивают одним из следующих способов - сухим способом (без крепления стенок скважин), с применением глинистого раствора (для предотвращения обрушения стенок скважины) и с креплением скважины обсадной трубой.

Сухой способ применим в устойчивых грунтах (просадочные и глинистые твердой полутвердой и тугопластичной консистенции), которые могут держать стенки скважины (рис.1). Скважина необходимого диаметра разбуривается методом вращательного бурения в грунте на заданную глубину. После приемки скважины в установленном порядке при необходимости в ней монтируют арматурный каркас и бетонируют методом вертикально перемещающейся трубы.

Рис.1. Технологическая схема устройства буронабивных свай сухим способом:

а - бурение скважины; б - разбуривание уширенной полости; в - установка арматурного каркаса; г - установка бетонолитной трубы с вибробункером; д - бетонирование скважины методом вертикально перемещаемой трубы (ВПТ); е - подъем бетонолитной трубы; 1 - буровая установка; 2 - привод; 3 - шнековый рабочий орган, 4 - скважина; 5 - расширитель, 6 - уширенная полость; 7 - арматурный каркас; 8 - стреловой кран; 9 - кондуктор-патрубок; 10 - вибробункер; 11 - бетонолитная труба; 12 - бадья с бетонной смесью; 13 - уширенная пята сваи

Используемые в строительстве бетонолитные трубы, как правило, состоят из отдельных секций и имеют стыки, позволяющие быстро и надежно соединить трубы. Секции бетонолитных труб длиной 2,4. 6 м в стыках скрепляют болтами или замковыми соединениями, у первой секции крепится приемный бункер, через который бетонная смесь подается в трубу. В скважину опускается бетонолитная труба до самого низа, в приемную воронку подается бетонная смесь из автобетоносмесителя или с помощью специального загрузочного бункера, на этой же воронке закреплены вибраторы, которые уплотняют укладываемую бетонную смесь. По мере укладки смеси бетонолитная труба извлекается из скважины. По окончании бетонирования скважины голову сваи формуют в специальном инвентарном кондукторе, в зимнее время дополнительно надежно защищают. Сухим способом по рассмотренной технологии изготовляют буронабивные сваи диаметром от 400 до 1200 мм, длина свай достигает 30 м.

Применение глинистого раствора. Устройство буронабивных свай в слабых водонасыщенных грунтах требует повышенных трудозатрат, что обусловлено необходимостью крепления стенок скважины для предохранения их от обрушения (рис.2). В таких неустойчивых грунтах для предотвращения обрушения стенок скважин применяют насыщенный глинистый раствор бентонитовых глин плотностью 1,15. 1,3 г/см, который оказывает гидростатическое давление на стенки, хорошо временно скрепляет отдельные грунты, особенно обводненные и неустойчивые, при этом хорошо удерживает стенки скважин от обрушения. Этому же способствует образование на стенках скважины глинистой корки вследствие проникновения раствора в грунт.

Рис.2. Технологическая схема устройства буронабивных свай под глинистым раствором:

а - бурение скважины; б - устройство расширенной полости; в - установка арматурного каркаса; г - установка вибробункера с бетонолитной трубой; д - бетонирование скважины методом ВПТ; 1 - скважина, 2 - буровая установка; 3 - насос; 4 - глиносмеситель; 5 - приямок для глинистого раствора; 6 - расширитель; 7 - штанга; 8 - стреловой кран; 9 - арматурный каркас; 10 - бетонолитная труба; 11 - вибробункер

Скважины бурят вращательным способом. Глинистый раствор готовят на месте выполнения работ и по мере бурения подают в скважину по пустотелой буровой штанге под давлением. По мере бурения находящийся под гидростатическим давлением раствор от места забуривания, встречая сопротивление грунта, начинает подниматься вверх вдоль стенок скважины, вынося разрушенные бурами грунты, и выходя на поверхность, попадает в отстойник-зумпф, откуда снова насосом подается в скважину для дальнейшей циркуляции.

Глинистый раствор, находящийся в скважине под давлением, цементирует грунт стенок, тем самым, препятствуя проникновению воды, что позволяет исключить применение обсадных труб. После завершения проходки скважины в нее при необходимости устанавливается арматурный каркас, бетонная смесь из вибробункера по бетонолитной трубе попадает на дно скважины, поднимаясь вверх, бетонная смесь вытесняет глинистый раствор. По мере заполнения скважины бетонной смесью производят подъем бетоновода.

В настоящее время проходит успешное испытание специальный полимерный концентрат на основе полиакриламида, который в процессе гидратации образует коллоидный буровой раствор, создающий защитную пленку на стенках скважины, что в сочетании с избыточным гидростатическим давлением предотвращает их осыпание. Бурение в сложных геологических условиях без применения обсадных труб показало целостность буронабивной сваи по всей глубине после закачивания в нее бетона и отсутствие каких-либо наплывов или впадин бетона на боковой поверхности сваи. Использование коллоидного раствора позволяет существенно увеличить производительность буровых работ, снизить их себестоимость и трудоемкость, резко сократить потребность в обсадных трубах без снижения качества работ.

Крепление скважин обсадными трубами. Устройство свай этим методом возможно в любых гидрогеологических условиях; обсадные трубы могут быть оставлены в скважине или извлечены из нее в процессе изготовления сваи (рис.3). Обсадные трубы соединяют между собой при помощи замков специальной конструкции (если это инвентарные трубы) или на сварке. Пробуривают скважины вращательным или ударным способом. Погружение обсадных труб в грунт в процессе бурения скважины осуществляют гидродомкратами.

Рис.3. Технологическая схема устройства буронабивных свай с применением обсадных труб:

а - установка кондуктора и забуривание скважины; б - погружение обсадной трубы; в - проходка скважины; г - наращивание следующего звена обсадной трубы; д - зачистка забоя скважины; е - установка арматурного каркаса; ж - заполнение скважины бетонной смесью и извлечение обсадной трубы; 1 - рабочий орган для бурения скважины; 2 - скважина; 3 - кондуктор; 4 - буровая установка; 5 - обсадная труба; 6 - арматурный каркас; 7 - бетонолитная труба; 8 - вибробункер

После зачистки забоя и установки арматурного каркаса скважину бетонируют методом вертикально перемещаемой трубы. По мере заполнения скважины бетонной смесью могут производить извлечение и инвентарной обсадной трубы. Специальная система домкратов, смонтированных на установке, сообщает трубе возвратно-поступательное движение, за счет чего бетонная смесь дополнительно уплотняется. По завершении бетонирования скважины осуществляют формирование головы сваи. Находят применение установки по изготовлению набивных свай с использованием обсадных труб с извлечением грунта из трубы виброгрейфером (рис.4).

Рис.4. Технологическая схема изготовления набивных свай с выемкой грунта под защитой обсадных труб:

а - погружение обсадной трубы виброустановкой; б - извлечение грунта из обсадной трубы виброгрейфером; в - бетонирование сваи; г - извлечение обсадной трубы виброустановкой; 1 - обсадная труба; 2 - виброустановка; 3 - виброгрейфер; 4 - арматурный каркас; 5 - бадья с бетонной смесью

Буронабивные сваи с уширенной пятой. Диаметр таких свай 0,6. 2,0 м, длина 14. 50 м. Существуют три способа устройства уширений свай. Первый способ - распирание грунта усиленным трамбованием бетонной смеси в нижней части скважины, когда невозможно оценить качество работ, форму (какой стала пята уширения), насколько бетон перемешался с грунтом и какова его несущая способность.

При втором способе скважину пробуривают станком, имеющим на буровой колонке специальное устройство в виде раскрывающегося ножа. Для образования уширения скважины диаметром до 3 м (рис.5), нож раскрывается гидравлическим механизмом, управляемым с поверхности земли. При вращении штанги ножи срезают грунт, который попадает в бадью, расположенную над расширителем. За несколько операций срезания ножами грунта и извлечения его на поверхность в грунте образуется уширенная полость. В скважину подают глинистый раствор из бентонитовых глин, который непрерывно циркулирует и обеспечивает устойчивость стенок скважины. При устройстве уширений разбуривание полости осуществляют одновременно с подачей в скважину свежего глинистого раствора до полной замены раствора, загрязненного грунтом. После завершения бурения скважины на проектную глубину буровую колонку с уширителем извлекают, в скважину устанавливают арматурный каркас. Бетонирование ведут методом вертикально перемещающейся трубы, когда одновременно в трубу подают бетонную смесь и поднимают ее. Бетонная смесь, соприкасаясь с вязким глинистым раствором, не снижает своей прочности, цементное вяжущее из смеси не вымывается. Бетонная смесь выжимает глинистый раствор вверх по трубе и через зазор между трубой и скважиной. Нижний конец бетонолитной трубы должен быть постоянно заглублен в бетонную смесь на глубину порядка 2 м; бетонирование осуществляют непрерывно, чтобы не возникали прослойки глинистого раствора в бетоне.

Читайте также: