Терморегулятор для плитки своими руками

Обновлено: 30.04.2024

Терморегулятор нагрева непрерывного действия (далее - «терморегулятор») предназначен для применения в системах регулирования температуры, использующих электрические нагреватели с питанием от однофазной сети переменного тока ~ 220-230В, 50Гц, таких как: дистилляторы, инкубаторы, системы электроотопления, и т.д. Регулирующим элементом терморегулятора является симистор с управляемой фазой отпирания, что обеспечивает плавное и непрерывное (в отличие от регуляторов с релейным выходом) изменение мощности подключенного нагревательного элемента как в автоматическом, так и в ручном режиме.

Схема фазового управления симистором реализована на китайском клоне arduino LGT8F328P-LQFP32 MiniEVB. Можно применить модуль Arduino NANO. Вместо оптопары РС817 можно использовать РС814, тогда диодный мост VD2 можно заменить перемычками. В авторском варианте схема запитана от импульсного маломощного блока питания 12V, 1,25A (MN15-12).

Для кулера симистора мной использован радиатор от УНЧ бобинного магнитофона "Юпитер 203". Разводка платы выполнена для него. Можно использовать другой алюминиевый радиатор с размерами 45*45 мм., сделав в нем соответствующие крепежные отверстия. При управлении нагрузкой до 1 кВт радиатор практически холодный, для бОльших нагрузок применен вентилятор 12V 45*45 или 40*40, закрепленный на радиаторе.

Датчик температуры использован цифровой DS18S20, в герметичной гильзе, длина кабеля 1 м.

При правильной сборке и заливке соответствующей прошивки, схема в наладке не нуждается.

Испытания проводил нагреванием воды в старой кастрюле на электрической плитке:

Корпус использовал фабричный, NM9, плата разведена под него.

Основные технические характеристики терморегулятора:

  • диапазон температур регулируемой среды: 0-120 ºC;
  • сеть питания: однофазная, ~ 220-230В, 50Гц;
  • максимальная мощность подключаемого нагревательного элемента 3 кВт;
  • точность измерения температуры датчиком +/- 0,5ºC;
  • точность поддержания температуры в автоматическом режиме - +/- 0,1ºC.

Описание работы устройства.

Терморегулятор имеет два режима работы - ручной и автоматический.

В ручном режиме оператор может регулировать мощность нагревательного элемента (OP - " output point") вращением ручки энкодера в направлении по часовой стрелке (увеличение) или против часовой стрелки (уменьшение мощности). Диапазон регулирования мощности - 0-100% с шагом в ручном режиме 1%.

В автоматическом режиме оператор может задавать уставку по температуре (SP - "set point ") в градусах Цельсия с помощью энкодера. Установленное задание будет поддерживаться автоматически регулятором, который реализован программно на микроконтроллере. В зависимости от отклонения текущей, измеренной датчиком, температуры среды (PV - " point value") от задания SP регулятор, по специальному алгоритму, увеличивает или уменьшает мощность нагревательного элемента OP для устранения отклонения.

Органы управления и отображения.

Дисплей терморегулятора - жидкокристаллический, с светодиодной подсветкой. Имеет две строки по 16 символов. В рабочих режимах на дисплей выводятся текущие значения измеренной температуры (PV ) и задания по температуре (SP) в градусах Цельсия, а также выходная мощность (OP) в процентах от максимума. В ручном режиме у отметки OP подсвечивается символ "*". В режиме инженерного меню на дисплей выводятся наименования и текущие значения параметров настройки ПИД регулятора с возможностью их изменения.

Энкодер предназначен для изменения параметров путем вращения ручки по часовой стрелке (увеличение) или против часовой стрелки (уменьшение значения). В ручном режиме оператору предоставляется возможность изменять выходную мощность (OP), в автоматическом - задание по температуре (SP). Нажатием на вал энкодера вниз в осевом направлении сохраняется в память микроконтроллера значение SP. В режиме инженерного меню есть возможность выбирать , изменять и сохранять в память параметры настройки ПИД регулятора: Kr, Ti, Td, OP0, OPmax.

Переключатель режимов представляет собой тумблер с двумя положениями «РУЧ» и «АВТ», который переводит регулятор в ручной или автоматический режим соответственно.

Блокатор энкодера представляет собой тумблер с двумя положениями, который в положении «LOCK» блокирует реакцию регулятора на вращение ручки энкодера. Это является средством защиты от случайного изменения параметров.

Кнопка "RES" - сброс микроконтроллера. Ее нажатие инициирует перезагрузку и перезапуск вычислительной системы.

Инженерное меню.

Переход в инженерное меню обеспечивается нажатием и удержанием в нажатом состоянии вала (кнопки) энкодера при перезагрузке программы микроконтроллера до появления надписи «SETUP» в верхней строке дисплея . Вращением ручки выбирается параметр (Kr, Ti, Td, OP0, OPmax), значение которого нужно изменить. Однократное нажатие кнопки энкодера на выбранном параметре переводит его в режим изменения. Далее, вращением ручки по часовой стрелке (увеличение) или против часовой стрелки (уменьшение) выставляется необходимое значение параметра и нажатием на кнопку энкодера сохраняется в память.

Порядок работы.

Для начала работы , подключите термодатчик к регулятору. Обеспечьте надежный контакт корпуса датчика со средой, температура которой регулируется. В ручном режиме возможна работа без подключения датчика.

Подключите вилку нагревательного элемента к розетке терморегулятора.

Включите вилку терморегулятора в розетку сети переменного тока 220 -230 В, 50Гц.

С помощью переключателя режимов выберите желаемый режим работы (ручной или автоматический). С помощью ручки энкодера выставьте необходимое значение OP или SP. При необходимости, включите блокировку энкодера и сохраните текущее значение SP в память.

Рекомендуемый алгоритм работы следующий:

  1. Включите регулятор в ручном режиме.
  2. Регулируя выходную мощность OP, достигните желаемой температуры Вашего процесса.
  3. Переключите режим в «АВТ».
  4. При необходимости, скорректируйте значение SP.
  5. Включите блокатор энкодера.
  6. Нажатием на кнопку энкодера, сохраните текущее значение SP в память микроконтроллера.

Настройка параметров ПИД регулятора

Регулировка мощности нагрева в автоматическом режиме выполняется по следующей формуле (формула обще - принципиальная, не учитывает особенности программной числовой реализации):

Tk - текущая температура среды, измеренная датчиком,

t - текущее время,

k - номер итерации.

По умолчанию параметры имеют следующие значения:

Установка Ti=0 или Td=0 выключает интегральную или дифференциальную составляющую расчета соответственно.

Kr - общий коэффициент передачи регулятора. Его увеличение приводит к уменьшению статической ошибки регулирования, то есть усиливает реакцию регулятора на отклонение температуры от уставки. Kr отвечает за мгновенную реакцию регулятора на изменение регулируемого параметра. Слишком большое значение Kr может привести к неустойчивой работе регулятора, возникновению автоколебаний.

Ti - время интегрирования. Использование интегральной составляющей позволяет сделать статическую ошибку нулевой, то есть повысить точность регулирования. Если Kr определяет мгновенную реакцию регулятора на параметр регулирования, то отношение Kr/Ti - определяет инерционность регулятора. Чем больше значение Ti, тем медленнее регулятор «дотягивает» параметр до значения уставки SP. Для отсутствии колебаний параметра при регулировании инерционность регулятора (Ti) не должна быть меньше инерционности объекта регулирования. Малое значение Ti может привести к неустойчивой работе регулятора, возникновению автоколебаний.

Td - время дифференцирования. Дифференциальная составляющая обеспечивает мгновенную реакцию регулятора на изменение отклонения Ek. Дифференциальное регулирование еще называют «упреждающим». Эта составляющая усиливает отработку регулятором быстрых коротких бросков параметра. Слишком большое значение Td может привести к неустойчивой работе регулятора, возникновению автоколебаний.

OP0 - начальная точка регулятора. Это значение мощности выставляется сразу после включения или перезагрузки.

OPmax – ограничение выходной мощности регулятора в автоматическом режиме, в процентах от максимума.

Все, кто хоть раз готовил на электроплитах простой конструкции, знает одно их очень неприятное свойство — на «троечке» суп выскакивает из кастрюли, на «двоечке» не кипит. В этой ситуации выручит предлагаемая схема, позволяющая плавно регулировать мощность на нагрузке от 0 до практически 100%. Схема регулятора достаточно проста в сборке даже для начинающего радиолюбителя и, главное, не содержит дорогих и дефицитных деталей. Несмотря на простоту, устройство имеет достаточно высокий КПД (до 98%) и позволяет управлять нагрузкой до 2 кВт, что вполне достаточно для большинства нагревательных элементов электроплит.

Регулятор мощности для электроплиты

В качестве управляющих элементов использованы два тиристора VS1, VS2, а поскольку им придется работать с переменным током, один будет управлять положительной полуволной, другой – отрицательной. Именно поэтому тиристоры включены встречно-праллельно. Изменение мощности на нагрузке производится изменением угла открывания тиристоров. За это отвечает узел, собранный на однопереходном транзисторе VT1.

При вращении движка переменного резистора R3 изменяется время зарядки конденсатора С1. Чем быстрее зарядится конденсатор, тем скорее откроется транзистор после начала сетевого периода. Импульсный трансформатор сформирует на своих обмотках II и III импульсы, которые откроют один из тиристоров в зависимости от текущей фазы сетевого напряжения. С этого момента тиристор останется открытым до окончания периода и через нагрузку потечет ток.

Таким образом, изменяя сопротивление резистора R3, мы можем изменять скорость реакции схемы на начало сетевого периода, а значит и среднюю мощность на нагрузке. Питается узел регулировки от собственного низковольтного источника питания, состоящего из выпрямительного моста VD1 и простейшего параметрического стабилизатора, собранного на стабилитронах VD2, VD3. Резистор R1 – токоограничивающий. Сглаживающего конденсатора, как вы заметили, нет – он не нужен.

Несколько слов о деталях. На месте VT1 может работать транзистор КТ117 с буквами А или Б. При необходимости такой транзистор можно собрать самому по схеме, приведенной ниже:

Схема замены однопереходного транзистора КТ117

Аналог однопереходного транзистора

Диодный мост VD1 можно взять типа КЦ402, КЦ405 или вообще собрать мост из четырех диодов типа Д310, Д311, Д226 или Д7. Токоограничивающий резистор R1 должен иметь рассеиваемую мощность не менее 2 Вт. Чтобы установленная мощность не «уплывала» в процессе нагрева элементов схемы, конденсатор С1 лучше использовать с минимальным температурным коэффициентом емкости (ТКЕ). Это могут быть типы К73-17, К73-24 и др.

В качестве импульсного трансформатора можно использовать МИТ-4 или МИТ-10, но, конечно, можно изготовить его и самому. Для этого понадобится ферритовое кольцо типоразмера К20х10х6 (можно и несколько иных размеров) из феррита марки М2000НМ. На него наматываются три обмотки, каждая из которых содержит 40 витков провода ПЭВ-1 0.31. Удобнее мотать сразу три обмотки, сложив провод втрое и сделав намотку равномерно по кольцу. При монтаже их придется сфазировать – подключить начала и концы обмотки согласно схеме, на которой начало каждой из обмоток обозначено точкой. Тиристоры нужно установить каждый на свой радиатор с поверхностью охлаждения не менее 200 см 2 каждый.

Налаживание конструкции сводится к установке максимальной мощности подбором номинала резистора R2. Это удобно делать, подключив в качестве нагрузки лампу накаливания 100-200 Вт. При полностью выведенном в нижнее положение движке резистора R3 (минимальное сопротивление) подбирают R2 таким образом, чтобы лампа светилась в полный накал, но при малейшем увеличении R3 накал начинал уменьшаться.

В заключение замечу, что этот регулятор можно использовать и для регулировки яркости лампы, мощности печи и даже в качестве регулятора температуры жала паяльника. В любом случае нагрузка должна быть активной и не должна превышать 2 кВт.

А.Н. Евсеев «Электронные устройства для дома», 1997 г.

Внимание! Конструкция имеет бестрансформаторное питание, поэтому во время работы на всех ее элементах присутствует опасное для жизни напряжение. Перед любой перепайкой или изменением схемы обязательно отключайте конструкцию от сети!
.

Предположим, у вас есть электроплитка, а мощность ее не регулируется. Вот и горит спираль в полный накал тогда, когда достаточно и четверти номинальной мощности, бессмысленно расходуя драгоценные киловатт-часы. Выход есть - сделать к электроплитке регулятор мощности. Схема первого варианта регулятора представлена на рисунке. Он позволяет регулировать мощность в нагрузке, рассчитанной на включение в сеть напряжением 220 В, от 5. 10 до 97. 99% номинальной мощности. Коэффициент полезного действия регулятора не менее 98%.

Регулирующие элементы устройства - тринисторы VS1 и VS2 -включены последовательно с нагрузкой. Изменение мощности, потребляемой нагрузкой, достигается изменением угла открывания тринисторов.

Узел, обеспечивающий изменение угла открывания тринисторов, выполнен на однопереходном транзисторе VT1. Конденсатор С1, соединенный с эмиттером транзистора, заряжается через резисторы R2 и R3. Как только напряжение на обкладках конденсатора достигнет определенного значения, однопереходный транзистор откроется, через обмотку I трансформатора Т1 пройдет короткий импульс тока. Импульсы с обмотки II или III трансформатора откроют тринистор VS1 или VS2 - в зависимости от фазы сетевого напряжения, и с этого момента до конца полупериода через нагрузку будет протекать ток. Изменяя сопротивление резистора R3, можно регулировать скорость зарядки конденсатора С1 и, следовательно, угол открывания тринисторов и среднюю мощность в нагрузке.

Узел регулирования угла открывания тринисторов питается от двухполупериодного выпрямителя, выполненного по мостовой схеме (VD1). Напряжение на однопереходном транзисторе ограничено стабилитронами VD2, VD3. Конденсатор фильтра здесь отсутствует - в нем нет необходимости.

Однопереходный транзистор КТ117 можно применять с буквами А и Б. Можно использовать также аналог однопереходного транзистора, выполненный на двух биполярных транзисторах разной структуры (см. рис. 50). Мостовой выпрямитель VD1 может быть типов КЦ402, КЦ405 с любыми буквами. Можно также применить четыре диода типов Д226, Д310, Д311, Д7 с любыми буквами, включив их по схеме выпрямительного моста. При замене тринисторов VS1, VS2 на другие типы следует помнить, что они должны быть рассчитаны на подачу как прямого, так и обратного напряжения не менее 400 В. Трансформатор Т1 - типа МИТ-4 или МИТ-10. Самодельный трансформатор можно выполнить на ферритовом кольцевом магнитопроводе М2000НМ, типоразмер К20х10хб. Все обмотки выполнены проводом ПЭВ-1 0,31 и содержат по 40 витков. Намотка ведется одновременно в три провода, причем витки равномерно распределяются по телу кольца магнитопровода. Одноименные выводы обмоток на схеме обозначены точками.

Тринисторы VS1 и VS2 устанавливают на радиаторы с поверхностью охлаждения не менее 200 см^2 каждый. При этом максимальная мощность нагрузки может составлять 2 кВт.

Настройка регулятора мощности заключается в подборе сопротивления резистора R2 по максимальной мощности в нагрузке. Резистор R3 при этом временно замыкают проволочной перемычкой. Момент отдачи в нагрузку максимальной мощности лучше всего контролировать по осциллографу. В случае применения самодельного трансформатора Т1 следует подобрать нужную полярность подключения выводов обмоток, которая должна соответствовать обозначенной на схеме.

Регулятор мощности можно использовать также совместно с маломощными электропечами, лампами накаливания и другими активными нагрузками. Описанному тринисторному регулятору мощности присущи недостатки. Во-первых, с изменением температуры в корпусе регулятора (а она будет в процессе работы увеличиваться из-за нагрева тиристоров) будет изменяться емкость конденсатора С1. Это приведет к изменению угла открывания тринисторов, а также к изменению мощности в нагрузке. Чтобы в какой-то степени устранить этот недостаток, необходимо применять конденсатор С1 с небольшими значениями ТКЕ (температурного коэффициента емкости), например К73-17, К73-24.

Во-вторых, тринисторный стабилизатор наводит высокий уровень помех в питающей сети. Эти помехи возникают в моменты скачкообразного включения тринистора. Коммутационные помехи не только распространяются через сеть, вызывая неустойчивую работу различных приборов (электронных часов, вычислительных машин и пр.), но и мешают нормальной работе некоторых устройств, гальванически не связанных с сетью (так, в радиоприемнике, находящемся недалеко от тринисторных регуляторов, слышен треск помех). Поэтому уменьшение коммутационных помех в тринисторных регуляторах мощности является важной задачей.:

Наиболее доступным способом снижения помех является такой способ регулирования, при котором переключение тринистора происходит в моменты перехода сетевого напряжения через нуль. При этом мощность в нагрузке можно регулировать числом полных полупериодов, в течение которых через нагрузку протекает ток. Недостатком такого способа регулирования по сравнению с традиционными являются большие колебания мгновенных значений мощности в нагрузке в течение периода регулирования, который значительно больше периода синусоидального напряжения и может достигать нескольких секунд. Однако для таких инерционных потребителей энергии, как электрическая печь, утюг, электроплитка, мощный электромотор, этот недостаток не является определяющим.

Многим радиолюбителям известен так называемый "триггерный эффект" на пороге срабатывания термо-, фотореле, автоматического зарядного устройства и т.п. Устройство может сработать нормально десятки раз, но иногда бывает такой неприятный момент, когда исполнительное реле включится, сразу же выключится, опять включится и т.д. Такое явление может проявляться довольно длительное время - "подгорают" контакты реле, да и ресурс времени работы реле не безграничен. Если в схеме применены тиристоры, то при частом включении-выключении они могут греться и выходить из строя, а также давать помехи в питающую сеть. На рис.1 показана схема терморегулятора на реле, в котором такое вредное явление, как "триггерный эффект", отсутствует.

Терморегулятор на реле

Предположим, что данный терморегулятор используют для регулировки температуры воздуха в инкубаторе. Если температура в инкубаторе ниже +38°С (выставляют переменным резистором R4), сопротивление терморезистора R3 сравнительно большое и компаратор на DA1 находится в режиме положительного насыщения, транзисторы VT1 и VT2 открыты, реле К1 притянуто, и происходит нагревание воздуха в инкубаторе. При достижении в инкубаторе температуры +38°С сопротивление терморезистора R3 становится меньше и компаратор перебрасывается в состояние отрицательного насыщения (на выходе потенциал общего провода), закрываются транзисторы VT1 и VT2, реле К1 отпускает. В связи с тем, что последовательно с резистором R1 включен резистор R2, который шунтируется нормально замкнутыми контактами реле К1, реле включается при одной температуре, а выключается при другой, т.е. поддерживается температура в инкубаторе в пределах, например, +37,5. 38°С. Необходимая разность температур обеспечивается подбором резистора R2. Таким образом, такое вредное явление, как "триггерный эффект", в данной схеме терморегулятора отсутствует. Напряжение срабатывания реле К1 должно быть не ниже 10 В, контакты реле должны выдерживать коммутируемый переменный ток и быть рассчитаны на напряжение не менее 250 В. Печатная плата терморегулятора показана на рис.2.

Печатная плата терморегулятора

На рис.3 показана схема терморегулятора с тиристором в силовой части, которая также свободна от явления "триггерного эффекта".

Терморегулятор с тиристором

Предположим, что данный терморегулятор также используют для инкубатора, необходимая температура воздуха в нем должна быть в пределах +38. 39°С (данный диапазон температур выставляют переменным резистором R4). На ОУ микросхемы DA1 выполнен двухпороговый компаратор. Если температура в инкубаторе ниже +38°С, сопротивление терморезистора R3 сравнительно большое, и оба компаратора находятся в состоянии положительного насыщения (уровень лог."1" на их выходах). На логических элементах DD1.2, DD1.3 построен RS-триггер. Если температура воздуха в инкубаторе ниже +38°С, на входе S RS-триггера присутствует лог."0" (после инвертора DD1.1), на входе R - лог."1", триггер находится в "единичном" состоянии (лог."0" на его инверсном выходе 4 DD1.3). При этом транзистор VT1 закрыт, на управляющий электрод тиристора VS1 подается положительный потенциал относительно его катода, тиристор открыт, нагревательный элемент Rн включен. При достижении температуры воздуха в инкубаторе +38°С сопротивление терморезистора R3 уменьшается, компаратор на DA1.1 перебрасывается из состояния положительного насыщения в состояние отрицательного насыщения, на его выходе устанавливается лог."0", на входе S триггера - лог."1", но триггер остается в "единичном" состоянии, нагревательный элемент RH включен. Когда температура воздуха в инкубаторе достигнет значения +39°С, лог."0" появится и на выходе компаратора DA1.2, который по входу R RS-триггера установит его в "нулевое" состояние. При этом на выводе 4 DD1.3 появится лог."1", которая откроет транзистор VT1, на управляющем электроде тиристора VS1 установится низкий потенциал относительно его катода, тиристор закроется, и нагреватель отключится от питающей сети. Когда температура воздуха в инкубаторе станет ниже +39°С, но выше +38°С, в состояние положительного насыщения установится компаратор DA1.2, но лог."1" на входе R триггера не изменит его нулевого состояния, и нагреватель по-прежнему будет отключен. И только при понижении температуры воздуха в инкубаторе ниже +38°С, в состояние положительного насыщения установится компаратор DА 1.1, на вход S триггера поступит лог."0", который включит в работу нагреватель Rн. Таким образом, температура в инкубаторе поддерживается в пределах +38. +39°С (необходимую разность температур достигают подбором сопротивления резистора R2), и явление "триггерного эффекта" в данной схеме терморегулятора отсутствует. Печатная плата терморегулятора показана на рис.4.

Печатная плата терморегулятора

При налаживании и эксплуатации устройства необходимо соблюдать осторожность и не касаться деталей, так как в схеме присутствует потенциал сети. Целесообразно для более точной и плавной регулировки температуры подобрать переменный резистор R4 (также и в схеме рис.1). Диоды VD1-VD4 можно исключить. В этом случае на нагревателе Rн будет только одна полуволна сетевого напряжения, т.е. при мощности 500 Вт на нагревателе будет выделяться 250 Вт, и значительно возрастет надежность и долговечность самого нагревателя. Напряжение на вторичной обмотке трансформатора Т1 должно быть в пределах 13. 16 В.

Изображение

Проблема экономии электроэнергии обрела в последнее время большую актуальность для большинства из нас, бытовых потребителей тока. Но как уменьшить так дорогие расходные киловатты, при использовании электроплиток с дисковыми или спиральными нагревателями, не залезая тайно в щиток.

Выход есть, и весьма простой — это применение вместо биметаллического регулятора мощности электронного симисторного. Попалась мне как-то плата регулятора оборотов от импортного пылесоса. Повертел в руках, как папа Карло полено, внимательно изучил, разобрался, подпаял провода, нагрузил лампой, подключил в сеть, кручу регулятор — работает!

Тут как раз у меня ситуация вышла, старую стационарную совдеповскую электроплиту с четырьмя массивными чугунными блинами за ненадобностью сдал на металл и купил себе двухкомфорочную «спиралку».

Недельная эксплуатация новой плитки показала, что готовить на ней некоторые блюда, такие как гороховое пюре или манную кашу, требующие небольшого нагрева или быстрого перехода от большого нагрева к малому, очень неудобно. Кстати, горох нужно засыпать в кипящую воду, тогда он не будет пениться.

Регулятор на биметаллической пластине, по которой протекает ток, нагревая её, имеет определённое время задержки срабатывания, так называемый гистерезис, который определяется физической структурой пластины и механической конструкцией.

Электронный регулятор лишён всех этих недостатков, поэтому в данном случае очень даже предпочтительней. К тому же он не имеет контактов, которые иногда слипаются, искрят, подгорают, издают клацающие звуки.

Чтобы оставить себе импортную заводскую плату регулятора в качестве эталонного образца, мне пришлось изготовить аналогичную, нарисовав и вытравив печатную плату, а также прикупив все необходимые детали, что обошлось совсем недорого.

Изображение

Вид платы регулятора со стороны деталей показан на рисунке выше. Принципиальную схему я даже не составлял, поскольку это заняло бы много времени, но главное, что необходимости в самой схеме не было, поскольку и так всё ясно и понятно.

Для изготовления печатной платы мной был использован старый добрый фольгированный гетинакс, но можно даже с бóльшим успехом использовать стеклотекстолит, которого у каждого радиолюбителя после закрытия многих заводов осталось не один квадратный метр.

Рисунок печатной платы со стороны паек приведён ниже. Силовые дорожки сделаны более широкими, для надёжности и лучшей токопроводимости они залужены толстым слоем припоя. Размер платы составляет 5,8 мм на 6,5 мм. После монтажа плату необходимо промыть растворителем 647, а после проверки покрыть спирто-канифольным лаком и хорошо высушить.

Изображение

Расположение деталей на печатной плате, типы и номиналы всех деталей регулятора показано на следующем рисунке. Резистор R8 типа Fuse мощностью 2 Вт служит для ограничения тока через светодиод, подключаемый к клеммам D+ и D–. Электролитические конденсаторы C1 и C2 на рабочую температуру 105 градусов. Динистор D7 типа DB3 можно использовать от любой перегоревшей энергосберегающей лампы. Если для индикации включения используется неоновая лампочка, вместо диода D6 ставится перемычка.

Изображение

Плату регулятора располагают в поддоне электроплитки и крепят за металлический фланец симистора, который изолирован от анодного вывода, винтом М3 непосредственно к дюралевому уголку, служащему также теплоотводом.

Изображение

Переменный резистор с выключателем номиналом 470 кОм подключается к клеммам R по схеме реостата и крепится гайкой к фланцу от демонтированного и разобранного биметаллического регулятора. Выводы двух пар его выключателя запараллелены. Все силовые провода должны иметь термостойкую изоляцию, можно использовать уже имеющиеся.

Схема регулятора наладки не требует, и правильно собранная начинает сразу работать. При использовании указанных деталей, напряжение на нагревательном элементе можно плавно изменять от 30 Вольт до полного сетевого, что позволяет готовить любые блюда без опаски подгорания или сбегания.

Мощность нагревательного элемента должна быть не более полтора киловатта, что определяется типом симистора и условиями его охлаждения. По сравнению с биметаллическим регулятором электронный регулятор позволяет сэкономить потребляемую электроэнергию как минимум в полтора раза.

Будете готовить на своей обновлённой электроплитке, не забудьте вспомнить обо мне добрым словом, а когда сядете за стол — поднимите рюмочку за здравие. Успехов вам, экономии, и приятного аппетита.

________________________________________________
Юрко СТРЕЛКОВ-СЕРГА (UT5NC)

Читайте также: