Термоактивная греющая опалубка это

Обновлено: 07.05.2024

Термоактивной (греющей) опалубкой называются многослойные щиты, которые оснащены нагревательными элементами и утеплены. Теплота через палубу щита передается в поверхностный слой бетона, а затем распространяется по всей его толщине. Обогрев бетона таким способом не зависит от температуры наружного воздуха. Греющую опалубку применяют при возведении тонкостенных и среднемассивных конструкций, а также при замоноли.чи—Н”- стыков и швов при температуре наружного воздуха до

Конструкции греющей опалубки многообразны. Основное требование, предъявляемое к ним,— равномерность распределения температуры по опалубке щита.

В качестве нагревательных элементов применяют трубчатые электронагреватели (ТЭНы), греющие провода и кабели, гибкие тканевые ленты, а также нагреватели, изготовленные из нихро-мовой проволоки, композиции полимерных материалов с графитом (углеродные ленточные нагреватели) и токопроводящими элементами и др.

Трубчатые электронагреватели состоят из трубок (стальных, медных, латунных) диаметром 9… 18 мм, внутри которых находится нихромовая спираль. Пространство между спиралью и стенками трубки заполнено кристаллическим оксидом магния. Температура разогрева ТЭНов 300…600 °С, поэтому они не должны контактировать с поверхностью опалубки, прилегающей к бетону, а располагаться от нее на расстоянии 15…20 мм.

Проволочные нагревательные элементы выполняют из нихро-мовой проволоки диаметром 0Д..З мм, которую наматывают на каркас из изоляционного материала и изолируют асбестом. Такие нагреватели менее надежны, так как подвержены деформациям при погрузочно-разгрузочных работах, поэтому требуют бережного отношения.

В качестве нагревательных кабелей применяют кабели типа КСОП или КВМС. Они состоят из константановой проволоки диаметром 0,7…0,8 мм, помещенной в термостойкую изоляцию. Поверхность изоляции защищена от механических повреждений металлическим защитным чулком.

Размещают нагреватели на щите опалубки в зависимости от режимов обогрева и мощности: греющие провода и кабели устанавливают вплотную к палубе, ТЭНы — на небольшом расстоянии от нее.

В фанерной греющей опалубке нагревательные кабели и провода запрессовывают в защитные покрытия, состоящие из пакета тонких полимерных пленок.

Углеродные ленточные нагреватели наклеивают специальными клеями на палубу щита. Для обеспечения прочного контакта с коммутирующими проводами концы лент подвергают меднению.

ТЭНы крепят к внутренней стороне палубы щитов с помощью специальных фиксаторов и прижимных планок, а греющие провода (кабели) — с помощью листовых пластин асбеста. Утеплитель предохраняется от повреждений защитным кожухом. Для соединения щитов опалубки между собой в защитном кожухе оставляют выемки в соответствии с положением крепежных отверстий.

Для подключения щитов используют вилочные разъемы 8.

Перед установкой термоактивной щитовой опалубки проверяют осмотром целостность изоляции и электрической разводки. Опалубку устанавливают в блок бетонирования отдельными щитами вручную или укрупненными панелями с помощью кранов. Крепят щиты и панели так же, как и в летних условиях. После крепления щиты и панели подсоединяют к электрической сети. Установки для питания термоактивной опалубки и управления режимом прогрева бетона состоят из понижающего трансформатора, системы разводки, щита управления и помещения для дежурного электрика или оператора. Установка обеспечивает питание 100… 150 м2 опалубки.


Рис. 1. Термоактивная опалубка с трубчатыми греющими элементами (а) и с нагревательными кабелями (б): 1 — каркас щита, 2— нагреватель, 3—прижимная планка, 4 — утеплитель (минераловатные маты толщиной 40 мм), 5 — защитный кожух (фанера толщиной 3…4 мм), 6—шпилька крепления кожуха, 7 — вырез для установки соединительных устройств, 8 — вилочный разъем, 9 — листовая пластина асбеста

Подключают опалубку к специальным клеммным коробкам, которые располагаются над поверхностью опалубки не ниже 0,5 м. При обогреве элементов каркаса (колонн, ригелей, балок) клеммные коробки подвешивают на раздвижные струбцины, устанавливаемые на расстоянии 50…70 см от прогреваемого элемента.

Перед бетонированием прогревают арматуру и ранее уложенный бетон. Для этого на непродолжительное время включают термоактивную опалубку, предварительно укрыв сверху блок бетонирования брезентом или полиэтиленовой пленкой.

Минимальная температура укладываемой бетонной смеси 5°С. Укладывают ее обычными методами, при этом следят за тем, чтобы не повредить электрокабель и не увлажнить утеплитель. При скорости ветра более 12 м/с опалубочные формы укрывают брезентом или полимерной пленкой.

Соблюдение технологического режима прогрева позволяет получить бетон требуемых физико-механических характеристик. Контролируемыми параметрами прогрева являются скорость разогрева бетона, температура на палубе щитов и продолжительность обогрева.

Транспортируют и хранят щиты в вертикальном положении в кассетах или штабелях. При хранении в штабелях устанавливают деревянные прокладки, чтобы не повредить электрические разъемы.

Зимой для обогрева монолитного бетона покрытий и оснований дорог, подготовки под полы, стыков между сборными конструкциями применяют термоактивные гибкие покрытия (ТАГП) — легкое, гибкое устройство с углеродными ленточными нагревателями и проводами, которые обеспечивают нагрев до 50 °С. Изготовляют покрытие путем горячего прессования пакета, состоящего из слоя листовой невулканизированной резины, армирующих стеклотканевых прокладок, углеродных тканевых электронагревателей или проводов и утеплителя. Термоактивные гибкие покрытия можно изготовлять различных размеров, что позволяет их использовать как нагреватели термоактивной опалубки.

Сборно-разборная швейная конструкция состоит из стеклотканевой прокладки с отверстиями по периметру, углеродных ленточных электронагревателей, прикрепляемых к стеклохолсту через отверстия, утеплителя и защитного чехла. Собирают ее с помощью специальных фиксаторов. В цельноклееной конструкции углеродные ленточные электронагреватели приклеены к листовой резине, а сверху укладывают теплоизоляционную прокладку, которую покрывают защитным чехлом.

Конструкция с источником теплоты в виде нагревательных проводов также многослойная: лист резины, лист алюминиевой фольги, слой утеплителя, защитный слой.

Коммутационную разводку выполняют из гибких медных проводов, сечение которых в 2…3 раза превышает сечение греющего элемента. Такая разводка сохраняет прочность и долговечность при многократных перегибах.

Для теплоизоляции используют штапельное стекловолокно с экранирующим слоем из фольги. Покрытие должно обладать хорошей гидроизоляцией, так как ее поверхность находится в контакте с жидкой фазой бетона. В качестве гидроизоляции используют прорезиненную ткань. Рабочий слой резины, как правило, армируют стекловолокном. Детали из хлопчатобумажной ткани пропитывают огнезащитными составами.


Рис. 2. Конструкция термоактивных гибких покрытий (ТАГИ): а — сборно-разборная швейная, б — цельноклееная, в — с греющим проводом; 1 — прижимные планки, 2, 10 — вилочные разъемы токопривода и датчика, 3 — защитный чехол, 4 — утеплитель, 5 — стеклохолст, 6 — отверстия для крепления утеплителя, 7— углеродные ленточные электронагреватели, 8 — стекло-тканевая прокладка, 9—отверстие для крепления пакета утеплителя, 11—термоконтактор, 12 — отверстия для крепления покрытия, 13 — листовая резина, 14 — нагревательный провод, 15 — алюминиевая фольга, 16 — коммутационные выводы

Для крепления покрытий между собой предусмотрены отверстия 9 для пропуска тесьмы или зажимов. Покрытия можно располагать на вертикальных, горизонтальных и наклонных конструкциях. Электропитание ТАГП осуществляется от понижающих трансформаторов напряжением 36… 120 В. Как и щиты термоопалубки, ТАГП снабжено датчиками температуры с выводом показателей на пульт управления. Это позволяет оперативно контролировать режим прогрева.

Термоактивное гибкое покрытие удобно в эксплуатации, компактно и надежно в работе. По окончании производства работ его сворачивают в рулон и укладывают в специальный двухсекционный шкаф. В одной секции расположен трансформатор с щитом управления, а в другой — отсеки для хранения покрытия. Применяют специальные передвижные пункты, оснащенные трансформаторами, отсеками для хранения кабельной разводки и комплекта ТАГП.

Перед началом работ проверяют состояние и работоспособность греющей оснастки и автоматики температурного регулирования. Общая схема укладки покрытия на бетонируемую конструкцию, его коммутация и режимы прогрева должны быть приведены в проекте производства работ. Для соблюдения технологического режима прогрева бетона следует не реже чем через 1 ч измерять температуру бетона и не менее одного раза измерять температуру наружного воздуха.

Движение людей по обогреваемым конструкциям допускается при наборе прочности бетоном не менее 1,5 МПа.

Термоактивные щиты для прогрева бетона

Термоактивные щиты для опалубки применяются при бетонировании при отрицательных температурах. Данные щиты являются частью опалубки и прилегают непосредственно к монолиту. За счет этого достигается эффективный прогрев и набор требуемой твердости бетона за срок до 16 часов. Такую опалубку еще называют греющей.

Конструкция термоактивных щитов

Излучающий в инфракарсном диапазоне элемент запрессован между двумя слоями ламинированной влагостойкой фанеры. Рабочая сторона больше не содержит слоев, а с противоположной ей стороны находится теплоизолятор. Совместно с этой конструкцией может использоваться терморегулятор, обеспечивающий поддержание постоянной температуры прогрева железобетона.

Конструкция термоактивного щита опалубки

Установка греющей опалубки

Термоактивные щиты ставятся в обычную опалубку вместо листов фанеры, прилегающих к бетону. При их установке важно, чтобы греющая сторона щитов была обращена к бетону и их контакту ничего не мешало. Всю конструкцию накрывают полиэтиленовой пленкой для минимизирования испарительных процессов. При особо низких температурах конструкцию можно дополнительно накрыть слоем утеплителя. После этого систему подключают к элетропитанию и начинается прогрев.

Устройство термоактивной (греющей) опалубки

Технические характеристики термоактивных щитов

Параметр Значение
Напряжение сети 220 В
Частота сети 50 Гц
Потребляемая мощность 300-500 Вт/м 2
Размеры в рабочем состоянии 1,2 на 2,4 м
Вес 12,5 кг
Класс водонепроницаемости IPX7
Ресурс работы До 3 лет
Гарантия 1 год

Купить термоактивные щиты можно по цене от 3800 руб/м 2 или от 10900 рублей за единицу щита стандартного размера. Также можно заказать щиты нестандартных размеров под заказ.

Греющая опалубка - это конструкция состоящая из двух листов влагостойкой фанеры и впрессованной между ними греющей инфракрасной плёнки. Греющая (термоактивная) опалубка используется как правило в холодное время года на строительных объектах для подогрева бетона и «замолачивания» стыков ЖБК. Выбрана инфракрасная плёнка специально из-за способности лучистой энергии проникать через неметаллические предметы и прогревать бетон на глубину до 600 мм. Размеры греющей опалубки делаются под уже имеющиеся используемые на предприятии опалубки.

Конструкция греющей опалубки

Конструкция термоактивного щита

Монтаж греющей опалубки

Замена оригинальных палуб на греющую опалубку может быть произведена на производственной базе предприятий путем замещения штатной фанеры.

Преимущество греющей опалубки в том, что она создаёт равномерный тепловой поток, а это благоприятно сказывается на условиях твердения бетона. Нет зон локального перегрева, неравномерного напряжения бетона и как следствие — исключаются растрескивания.

Основные технические характеристики

Температура нагрева 70 °С
Напряжение питания 220 В
Мощность 300 — 700 Вт/м²
Термозащита биметаллические выключатели с автовозвратом
Коммутация по согласованию с потребителем

Размеры по согласованию с заказчиком.

Технология греющей опалубки запатентована. Гарантия 1 год.

Статьи

Прогрев бетона термоматами ТЭМ позволяет быстро наладить производство в непосредственной близости к строительному объекту.

Технология прогрева бетона термоматами позволяет сократить твердение бетона с 28 дней до 14-18 часов.

Все способы прогрева грунта для проведения земельных работ в холодное время года предоставлены в данной статье.

Технология ускорения твердения бетона термоматами самая передовая технология!

Пропарка бетона термоматами - это современный способ ускорения твердения железно-бетонных изделий без применения пара.

Сегодня встают вопросы как сделать изделия быстрее, снизить себестоимость или как изготовить нестандартные ЖБИ.

Все знают, что строительные нормы запрещают выполнять бетонирование при отрицательном температурном режиме. В процессе замерзания воды в структуре будущей конструкции деформируется материал, понижается показатель его прочности. Важным условием считается обеспечение оптимальных условий застывающему бетонному раствору. Для этого используют электрическую энергию или пар, обогревают бетон с помощью инфракрасного излучения. Вариантов много, и все же – что представляет собой греющая опалубка?

Что представляет собой греющая опалубка

Что это

Каждый щит «теплой» опалубочной системы имеет вмонтированный с тыльной части нагревательный элемент, закрытый утеплительным слоем. Используется такая опалубочная конструкция при бетонировании в зимний сезон либо для ускоренного застывания бетонной конструкции летом, чтобы сократить сроки работ.

Принцип передачи тепловой энергии основан на контактном способе от прогреваемой поверхности щита к бетонному раствору.

Конструкция

Опалубка с подогревом состоит из палубы, изготовленной из металлического или фанерного материалов. С тыльной стороны располагаются нагревательные устройства.

При изготовлении современных опалубочных конструкций для нагрева используются провода и кабели, покрытия, проводящие ток, сетчатые либо углеродные нагревательные элементы ленточного типа. Самым эффективным вариантом считается нагревательный кабель, представленный константановой проволокой в термоустойчивой оболочке, защищенной от возможных повреждений чехлом из металлического материала.

Применяют и нагреватели из графитопластика, представленные графитовой тканью, по всему контуру имеющей окантовку из электродов, к которым подведена коммутационная проводка. Такой нагреватель помещается в изоляционный слой из стеклопластика или полипропилена, при этом общая толщина полотна не превышает двух миллиметров.

Изготавливаются щиты по разным размерам, отличаются приемлемой стоимостью. Располагают их как с наружной, так и со внутренней стороны палубочного слоя, но самое грамотное решение – разместить их среди опалубочных щитов с шагом в пять – шесть миллиметров от внутренней стороны. Такой способ повышает их эксплуатационный период до 50 – 60 тысяч часов.

Температурный режим рабочей поверхности варьируется в пределах семидесяти – восьмидесяти градусов. Чтобы бетонная конструкция набрала до семидесяти процентов марочной прочности, установку достаточно эксплуатировать в течение одних – двух суток (зависит от температуры окружающего воздуха). При этом режим прогревания должен быть рваным.

Сетчатые нагревательные элементы с обеих сторон укрыты тонкими листами из асбестоцементного материала, с тыльной стороны в качестве дополнения устраивается теплоизоляционный слой.

В греющую опалубку легко можно своими руками переоснастить инвентарную конструкцию, щиты которой изготовлены из металла либо фанеры.

Сетчатые нагревательные элементы

Технические характеристики

Основными параметрами, характеризующими работу греющей опалубки, считаются:

  • температурный режим нагревания – 70 градусов;
  • напряжение питающей сети – 220 В;
  • показатель мощности – от 300 до 700 Вт на квадратный метр;
  • термозащищенность – выключатели из биметаллического материала с возможностью автоматического возврата;
  • глубина прогревания – 0.5 – 0.6 м;
  • коммутация – согласовывается с пользователем.

Размеры опалубочной конструкции могут изготавливаться по индивидуальным заявкам покупателей. Гарантийный срок эксплуатации – один год.

Монтаж

Оригинальные палубы заменяются греющими опалубками. Чтобы осуществить их подключение, разработаны специальные приспособления – мобильные шкафы и крупногабаритные установки, предназначающиеся под высокую электромощность и подсоединение опалубок с большой поверхностью.

Установка оснащается инвентарным кабелем, температурными датчиками и приборами для контроля показателей. С помощью инвентарной разводки подключают отдельные опалубочные щиты либо их группы

Под нагрев крупноразмерных опалубочной систем устанавливаются специальные пульты, оснащенные катками для передвижки их по основанию.

Достоинства и недостатки

Основным преимуществом такой опалубочной конструкции считается высокий показатель эффективности. Работать с ней можно при отрицательном температурном режиме, достигающим двадцати пяти градусов ниже ноля, когда другие способы уже не помогают. Этим объясняется частое использование греющих опалубочных систем в северных регионах, где температура воздуха зачастую опускается достаточно низко. Такая система исполняет одновременно две функции, существенно экономя время. Практикой доказано, что с помощью греющей опалубочной конструкции достигается высокий КПД. Это особенно важно, если предстоят большие объемы бетонирования, потому что на данную операцию требуется много электрической энергии. Показатель рентабельности в несколько раз выше, чем обогрве кабелем либо электродами. Особенно актуальна оперативность монтажа, выполняемого в холодное время года. В течение нескольких часов отдельные щиты составляются в большую конструкцию, и можно переходить к заливке бетонной смеси. Прогрев конструкции проводится равномерно. После демонтажа опалубку можно использовать на новом рабочем месте.

После демонтажа опалубку можно использовать на новом рабочем месте

К сожалению, есть и некоторые моменты негативного характера. Дело в том, что конструкция стоит достаточно дорого, и на первоначальном строительном этапе появляются значительные расходы, что не особенно выгодно при больших объемах бетонирования монолита. Кроме того, на объектах с нестандартными проектными решениями греющую опалубку применять достаточно сложно.

Многие строители в качестве недостатка отмечают увеличение расхода электрической энергии, необходимой для обогрева монолитного бетона.


В статье рассмотрены основные технологии обогрева бетона в зимний период.

Ключевые слова: бетон, прогрев, дополнительное оборудование, греющая опалубка, конструкция, температура.

Термоактивная опалубка

Термоактивную опалубку используют при бетонировании в холодное время для получения требуемых прочностных характеристик, а также в теплое — для уменьшения времени застывания. Для этого стандартные элементы опалубки оборудуют электрическими нагревательными элементами (термоаткивными вкладышами) со стороны соприкосновения с бетоном и утеплителем с противоположной стороны. Такой модификации могут быть подвергнут любой тип опалубки (металлические, деревянные), использующийся в строительстве. Конструкция термоактивного щита представлена на рисунке 1:


Рис.1. Конструкция термоактивного щита

При использовании греющей опалубки передача тепла осуществляется контактным способом. В качестве нагревательных элементов могут быть использованы:

 кабели или провода;

 токопроводящие покрытия (пленки);

 трубчатые электронагреватели (ТЭНы).

Термоактивные щиты - термоактивная (греющая) опалубка

Рис.2. Греющая опалубка

Технические характеристики греющей опалубки

Для получения 70 % прочности бетона достаточно эксплуатации установки в течение 24. 56 ч (в зависимости от температуры наружного воздуха) при рваном режиме прогрева.

Преимущества греющей опалубки

 эффективность при температурах до -30°C;

 возможность использования при замоноличивании стыков и швов;

Недостатки греющей опалубки

 применимость лишь к типовым элементам;

Есть еще такой момент, который сложно отнести к плюсам или минусам технологии. Он заключается в том, что для поддержания высокого темпа строительства необходимо большое количества термощитов и элементов опалубки. Если все элементы уже заняты в работе, то продолжать работу можно будет только после набора монолитом минимальной расчетной прочности.

Бетонирование втепляках (шатрах)

В холодные дни при появлении вероятности падения температуры в отрицательную зону на строительных площадках применяют различные способы обогрева бетонного раствора. Одной из самых старых технологий является прогрев бетона в тепляках или шатрах.


Рис.3. Выдерживание бетона в тепляке

Суть ее заключается в том, чтобы вокруг заливаемой конструкции создать термоизолированное пространство и нагреть его до требуемой температуры при помощи обогревателей или тепловых пушек. Пушки можно использовать с прямым нагревом. Шатер делается из брезента, древесины или других полимерных материалов с требуемыми характеристиками.

Тепляком, как правило, укрывают лишь отдельную часть всей конструкции, которая заливается в настоящий момент. Потом шатер перемещают к следующей части. Но если возможности позволяют, то накрыть можно сразу всю конструкцию.

Обычно данный метод применяется при бетонировании с использованием скользящей опалубки. Тепляк в этом случае перемещается вместе с опалубкой.

Преимущества бетонирования в тепляках

 простота технологического процесса;

 доступность материалов и техники;

 низкая стоимость оборудования.

Недостатки бетонирования в тепляках

 трудность контроля режима прогрева.

Требуемое оборудование

 Воздухонагреватель строительный (электрический, газовый)

Противоморозные добавки вбетон

Полное и качественное затвердевание бетона возможно лишь в определенном диапазоне температур. Критичным является падение температуры ниже 0°С. При таких температурах вода, входящая в состав любого раствора начинает кристаллизоваться, иными словами — замерзать. Из-за этого бетон становится рыхлым и уже не сможет приобрести расчетную прочность. Именно поэтому для возможности вести бетонирование при отрицательных температурах применяют противоморозные добавки (ПМД). Они выполняют сразу несколько функций. Во-первых, понижают температуру замерзания свободной жидкости, а во-вторых ускоряют процессы твердения.

Также достаточно востребованы в зимнее время добавки-пластификаторы, придающие бетону большую пластичность и подвижность, ведь при снижении температуры бетонный раствор постепенно теряет эти свойства.

В среднем допускаемый размер присадок может составлять до 6 % от всего объема цемента в растворе. Некоторые морозостойкие добавки эффективны при температуре воздуха до -25°С.

ПМД обеспечили себе широкое применение в современном строительстве как самостоятельно, так и совместно с технологиями прогрева. На сегодняшний день в мире существует несколько сотен добавок.

Как правило, любые добавки в бетон добавляют в момент его замешивания. В этом случае возможно добиться равномерного распределение реактивов по всему объему раствору. Также допускается домешивание добавок непосредственно на объекте перед заливкой. В этом случае должны быть соблюдены соответствующие предписания.


Рис. 4. Добавление в бетон противоморозной добавки

Типы противоморозных добавок

Одними из самых популярных противоморозных бетонных добавок на отечественном рынке являются:

 нитрит натрия NaNO2;

 нитрит кальция Ca(NO2)2;

 карбонат калия или поташ K2CO3;

 хлористый натрий NaCl;

 формиат натрия или натрий муравьинокислый HCOONa.

Также существует множество продуктов на их основе.

В таблице 2 представлены самые распространенные противоморозные добавки и температура замерзания их 30 %-ного раствора в бетоне: показатели предельно допустимых температур для различных добавок в бетон.

Противоморозные добавки итемпература замерзания

Температура замерзания, °С

хлорид натрия (ХН)

нитрит-нитрат кальция (ННК)

нитрит натрия (НН)

нитрат кальция (НК)

нитрат кальция + мочевина (НКМ)

Преимущества противоморозных добавок

Недостатки противоморозных добавок

 увеличение времени обретения расчетной прочности бетоном;

 понижение коррозийной стойкости арматуры (для хлоридных добавок).

Прогрев бетона трансформатором

Прогрев бетона трансформатором хорошо зарекомендовал себя при бетонировании в зимнее время. Этот способ относится к категории электропрогрева, из чего становится понятно, что тепло вырабатывается при помощи электрического тока.

Совместно с трансформаторами можно использовать либо провода, либо электроды. В первом случае провода погружаются в опалубку и крепятся к арматуре, затем в нее заливается раствор. Во втором случае в уже замоноличенную конструкцию вставляются или размещаются на поверхности электроды. Затем в обоих случаях провода или электроды подключают к сети 200/380 В через трансформатор и производят обогрев.

Трансформатор для прогрева бетона. выбираем лучший - Лед совет

Рис.5. Прогрев бетона трансформатором

Трансформатор нужен для уменьшения слишком высокого напряжения. С одной стороны, оно опасно для жизни, с другой потребует слишком большую нагрузку (в виде очень длинных проводов, например). Да и риск возникновения локального перегрева слишком высок. Поэтому для осуществления правильного с технологической точки зрения процесса прогрева необходимо понизить это напряжение. Именно для этого и применяются специальные понижающие трансформаторы.

Расчет мощности трансформатора и длины провода

Для расчета необходимой мощности принимают следующие значения: для прогрева одного кубометра бетона требуется примерно 1,3 кВт мощности. Если температура воздуха слишком низкая, то значение увеличивается, если высокая — уменьшается. Длина ПНСВ провода на 1 м 3 раствора составляет примерно 30–50 м. Хотя в каждом случае необходимо проводить индивидуальные расчеты, руководствуясь тем фактом, чтобы в каждом отрезке провода сила тока была в районе 15А для схемы «звезда» и 18А для «треугольника» (для ПНСВ–1.2).

Провод пнсв: особенности и характеристики

Рис.6. Монтаж ПНСВ-провода

Как правило, для бетонирования в холодных условиях используют трехфазные трансформаторы. Соответственно и нагружать эти фазы надо равномерно. При этом очень важно соблюдать одинаковую и верно рассчитанную длину петель провода во избежание перекоса фаз и выгорания кабеля.

Процесс прогрева трансформатором

Когда все расчеты, укладка и подключения завершены, можно приступать непосредственно к прогреву, включив питание. Некоторые трансформаторы имеют несколько ступеней напряжения, переключая которые можно менять температуру нагрева провода. Начинать необходимо с минимального напряжения. При существенном падении тока в петлях можно повышать ступени. При достижении оптимальной температуры продолжать ее поддержание до набора бетоном заданной прочности.

При использовании в качестве греющего элемента электродов, которыми служит обыкновенная арматура, их подключают в шахматном порядке к трем фазам для равномерной нагрузки. В этом случае фазы не замыкаются, а проводником тока служит сам раствор.

Инфракрасный прогрев бетона

При падении температуры окружающей среды ниже нуля для обеспечения требуемых стандартами условий затвердевания бетона применяется его прогревание. Одним из способов сохранить в бетоне необходимую температуру является воздействие на него инфракрасным излучением, которое преобразуется в тепловую энергию.

Технология инфракрасного прогрева

В непосредственной близости от залитой опалубки (1–3 метра) размещают промышленные инфракрасные обогреватели, направленные на поверхность раствора или опалубку. Отрегулировав их мощность, можно добиться поддержание необходимой температуры в бетоне. В этом случае вода, не будет кристаллизоваться и затвердевшая стена или плита будет иметь необходимую прочность. В противном случае их структура будет нарушена, что может повлечь за собой разрушение конструкции.

Источником излучения служат ТЭНы мощностью до нескольких сотен кВт. При прохождении тока их поверхность излучает энергию в инфракрасном диапазоне, которая и осуществляет нагрев плотной среды (бетона).

Покрыв опалубку черным цветом, можно улучшить ее поглощающие возможности и, как следствие, эффективность нагрева. Для исключения чрезмерного испарения влаги из бетона, его поверхность покрывают полиэтиленом. Мощность излучения подбирают таким образом, чтобы температура на поверхности не поднималась выше 80–93°C.


Рис.7. Инфракрасная установка

Состав инфракрасной установки

 отражатель (сферический, параболические или трапецеидальный);

 держатель или подвес.

Прогрев инфракрасным излучением нельзя использовать в тех случаях, когда толщина бетона превышает 50–70 см. Если надо прогреть большую глубину, то в дополнение к инфракрасному прогреву необходимо использовать другие технологии.

Преимущества инфракрасного прогрева

 Работа от сетей 220–380 В;

 Не требуется дополнительное оборудование в виде трансформатора, проводов, электродов и т. д.;

Недостатки инфракрасного прогрева

 Небольшая глубина прогрева;

 Потребность в значительном пространстве для размещения установок;

 Небольшая площадь воздействия одного излучателя.

Прогрев бетона проводом

Электрический прогрев проводом является универсальной технологией термоизоляции бетона в зимнее время, подходящей для стен, перекрытий, колон и фундамента. Для этого используется различные типы проводов с диаметром жилы от 1,2 до 3 мм.

Такой провод укладывается непосредственно внутрь заливаемой (бетонируемой) конструкции, и после заливки бетона по нему пускается электрический ток определенных параметров для нагрева смеси изнутри. Кабель не подлежит демонтажу и остается внутри конструкции навсегда.

Типы используемых проводов

Для прогрева бетона используются следующие типы проводов:

 ПНСВ (одножильный провод нагревательный со стальной жилой, с изоляцией из виниловой оболочки);

 ПТПЖ (двухжильный провод токопроводящий с параллельными оцинкованными стальными жилами. Эти провода предназначены для монтажа сетей проводного вещания (радио, телефон));

 BET (двухжильный — финский кабель заранее определенной длины для работы от бытовой сети без трансформатора).


Рис.8. Конструкция нагревательного провода

Как правило, греющие провода нарезают на отрезки определенной длины и подключают через понижающий трансформатор, но есть и кабели, которое изначально имеют определенную длину и работают от сети 220В.

При этом очень важно сделать правильные расчеты и регулировать со временем подаваемое напряжение (силу тока), чтобы избежать перегрева или даже перегорания проводов. При соблюдении всех технических предписаний монолитная конструкция набирает до 70 % прочности в течение нескольких дней. Для прогрева одного кубометра бетона необходимо примерно 50–60 метров ПНСВ или 20–25 метров BET провода.

Схемы укладки греющего провода

Схемы укладки греющего провода в независимости от его типа для колонны, стены и перекрытия показаны на картинке ниже. При этом расстояние между петлями подбирается в зависимости от характеристик используемого провода, а также температуры окружающей среды.

Преимущества прогрева проводом

Недостатки прогрева проводом

 Невозможность повторного использования провода;

 Потребность в дополнительном оборудовании;

Дополнительное оборудование

 понижающий трансформатор для прогрева;

 провода холодных концов;

 средства тепловой защиты.

Прогрев бетона термоматами

Низкие температуры негативно сказываются на застывании бетона, замедляя его гидратацию и делая будущую конструкцию хрупкой. Для того чтобы иметь возможность вести строительные работы и в зимнее время, применяют различные технологии прогрева бетона.

Термоматы обеспечивают контактный периферический прогрев. Они состоят из теплоизлучающей ИК пленки и теплоотражающим слоем с одной стороны. Другой стороной термоэлектроматы (ТЭМ) располагают на залитом бетоне, предварительно укрыв его полиэтиленовой пленкой для предотвращения чрезмерного испарения влаги. Затем возможно дополнительное укрывание конструкции.

В ТЭМ встроены термодатчики, позволяющие поддерживать необходимый температурный режим.


Рис.9. Прогрев бетона термоматами

Технология прогрева термоматами

Забетонированную подогретым раствором конструкцию накрывают полиэтиленом, а сверху на него кладут термоматы или термоактивные кассеты с интервалом не более 10 см. Необходимо максимально плотно покрыть всю поверхность формы. Затем систему подключают к электропитанию и, практически мгновенно, начинается прогрев, так как система малоинерционная. Для достижения большей эффективности и сокращения энергозатрат термоматы можно накрыть теплоизоляционными материалами.

Время прогрева напрямую зависит от марки и толщины бетона, и составляет от 10 часов до нескольких суток. Запрещается сгибать маты не по специальным линиям сгиба, отмеченным на изделии.

Температурный график прогрева плиты термоматами

Пример прогрева плиты 110х330х25 см из бетона класса B15. Результат 36-часового прогрева можно видеть на графике:

График температуры бетонной плиты при прогреве термоматами

Рис.10. Температурный график прогрева плиты термоматами

Как видно, в течение 22 часа в плите установилась средняя температура в 39°C при колебаниях окружающего воздуха от -5 до -12°C. За суммарное время прогрева в 36 часов бетон достиг прочности в 70 %. Расход энергии составил 43 кВт.

Преимущества прогрева термоматами

 не требуется дополнительное оборудование;

 можно использовать для согревания грунта, труб, кладки и прочих конструкций;

 автоматическое поддержание нужной температуры;

 небольшие энергозатраты (потребление на 20–25 % меньше чем при прогреве проводами);

 защита от перегрева.

Недостатки прогрева термоматами

 небольшая глубина прогрева;

 максимальная температура всего 70°C;

 низкая применимость для вертикальных и сложных конструкций.

Электродный прогрев бетона

Прогрев бетона электродами помогает сохранить необходимые параметры твердения раствора при заливке в холодное время. Этот способ подразумевает вживление в бетон или расположение на его поверхности электродов, которые затем подключают к трансформатору. В результате между ними образуется электрическое поле, согревающее бетон. Подбирая и регулируя выходные параметры трансформатора, можно добиться необходимой температуры прогрева бетона.

Важно помнить, что электрическое сопротивление бетона меняется по мере его твердения, причем проиходит это далеко не линейно.


Рис.11. Электродный прогрев бетона

Изменение удельного сопротивления впроцессе электропрогрева бетонов различных марок

Читайте также: