Теплый пол с датчиком движения

Обновлено: 24.04.2024

Функция управления отоплением объединяет управление следующими системами:

  • Радиаторное отопление (пассивные или с вентилятором)
  • Водяной тёплый пол
  • Электрические конвекторы
  • Электрический тёплый пол
  • Кондиционеры
  • Вентиляция

ПЛК — это программируемый логический контроллер, который может быть центром системы Умный Дом для квартиры или загородного дома. Примеры ПЛК: EasyHomePLC, Beckhoff, Овен, Wirenboard и много других.

Преимущества системы управления климатом с ПЛК

  • Не нужно управлять каждым устройством по отдельности: задаём желаемую температуру, а система её поддерживает, согласовывая работу всех систем
  • Управление всеми системами обогрева/охлаждения с одного пульта — смартфона или планшета
  • Работа климата по сценариям и по расписанию, возможность перевести весь дом или этаж в экономичный режим или в ночной режим
  • Удалённое управление и контроль температуры через интернет,
  • Управление климатом раздельно по каждой зоне. Например, в одной комнате любят, чтобы пол был потеплее, а воздух попрохладнее, а во второй — чтобы и пол и воздух были тёплыми.

Теперь о том, как это делается.

В каждой зоне (замкнутом помещении) ставятся датчики температуры воздуха и пола. Для работы в составе системы управления климатом с ПЛК используются датчики температуры воздуха (опционально ещё и влажности) с выносным сенсором температуры пола с выходным сигналом 0-10 вольт постоянного тока. Такой сигнал заходит на аналоговых вход контроллера. Если датчик работает с температурным диапазоном от 0 до +50 градусов, то выход 0 вольт соответствует 0 градусов, а 10 вольт соответствует +50 градусам, характеристика линейна. Есть датчики с диапазоном -50..+50 градусов для улицы или 0..+125 для сауны.

Подготовка для установки датчика воздуха с выносным сенсором пола выглядит так:

datchik

В одной рамке с выключателями (то есть, на высоте 900-1200мм) делается дополнительный подрозетник. В подрозетник из щита автоматики ведётся кабель FTP 5 категории (экранированная витая пара). По кабелю будет передано питание 12-24 вольта от блока питания на датчик (2 жилы) и сигнал от 0 до 10 вольт от датчика на контроллер на аналоговый вход. Поскольку ток потребления датчика очень мал, длина кабеля может составлять несколько сотен метров. Аналоговый сигнал может быть искажён наводками, поэтому кабель датчика, как и любой слаботочный кабель, следует монтировать на удалении от силовых трасс.

Выносной сенсор температуры пола подключается к плате датчика температуры воздуха и питается от неё. Сенсор пола опускается в пол в медной трубке или гладкой ПНД трубе диаметром 10-12мм. Гладкие внутренние стенки нужны для того, чтобы в случае необходимости датчик можно было заменить. На плате датчика температуры воздуха может быть также и сенсор влажности воздуха.

Датчики в своих проектах я использую эти. Компактные, устанавливаются в подрозетник с заглушкой, питание 12 вольт, на выходе от 0 до 10 вольт. Есть исполнения для улицы (-50..+50 градусов) и для сауны (0..+125 градусов), есть исполнения с датчиком освещённости или влажности воздуха.

Управление радиатором и водяным тёплым полом

Управление контурами водяного тёплого пола или радиаторами осуществляется за счёт термоприводов, устанавливаемых на коллектор или сам радиатор. Вот коллектор с установленными приводами контуров:

kollektor

На каждом контуре мы видим привод. Привод может перекрывать подачу воды в контур, что приведёт к его медленному остыванию. Когда температура в помещении опустится ниже желаемой (заданной пользователем с приложения), привод откроет подачу воды в контур. За счёт этого температура воздуха или пола в помещении всегда будет соответствовать желаемой.

Если помещение отапливается одновременно и водяным тёплым полом и радиаторами, необходимо предусмотреть интеллектуальный алгоритм работы приводов, обеспечивающий желаемую температуру воздуха и максимально приближённую к желаемой температуру пола.

Привод может быть установлен и прямо на радиатор, у него стандартное посадочное место М30х1,5 (30мм -диаметр посадочного места, 1,5мм — шаг резьбы). Вот привод на радиаторе:

raidator

Лучше, конечно, всегда ставить привод на коллекторе, так как меньше кабеля и не портит вид, но не всегда такая возможность есть. Например, при двухтрубной системе отопления нужно ставить приводы на каждый радиатор, иначе не получится управлять отоплением позонно.

От каждого термопривода тянем кабель МКШ или КВВГ 2х0,75 на выход контроллера. У модуля дискретных выходов контроллера Beckhoff на выходе во включенном состоянии появляется напряжение 24 вольта, ток до 0.5А, то есть, привод может быть подключен напрямую на выход контроллера без промежуточного реле.

Приводы могут быть дискретные (открыто-закрыто) или аналоговые (можно открыть в любое положение). Дискретные приводы подключаются к дискретному выходу контроллера, в этом случае надо выбирать приводы с напряжением питания 24 вольта если дискретный выход даёт 24 вольта, либо 220 — если выход даёт 220, это зависит от контроллера. Привод может быть нормально-закрытым или нормально-открытым, первые ставятся на коллектор тёплого пола (чтобы при отключении контроллера пол не перегревался), вторые — на радиаторное отопление (чтобы при отключении радиаторы не остывали). Либо нормально-открытые приводы и на воздух, и на пол, если только постоянный нагрев пола ничему не навредит.

Аналоговые приводы помимо питания 24 вольта требуют сигнал управления 0-10 вольт, в зависимости от которого они открываются. Управление 0-10 вольт имеет важно преимущество — уменьшение колебания температуры воздуха. Но имеют и ряд недостатков:

  • аналоговый привод в несколько раз дороже дискретного
  • аналоговый выход контроллера всегда дороже дискретного
  • нужен алгоритм ПИД-регулирования, заложенный в контроллер, и его отладка после введения системы в эксплуатацию

В большинстве случаев использование аналоговых приводов не оправдано. При работе с водяными тёплыми полами их использование вообще не имеет смысла, так как тёплый пол очень инертный (очень медленно нагревается и остывает), отклонение его температуры от желаемой не так заметно.

Управление электрическим тёплым полом

Вот схемы управления тёплым полом в классическом варианте и через ПЛК:

Управление электрическим тёплым полом

Классическое управление — через термостат в комнате. Термостат может быть простой или программируемый (с возможностью задавать время включения и выключения). При управлении с ПЛК термостатов нет, регулирует температуру программа контроллера, а программу задаёт пользователь с планшета-смартфона.

Управление кондиционером

Есть два варианта управления кондиционерами: попроще и посложнее. Попроще — это управление инфракрасными командами через ИК-передатчик, работающий через RS-485. Например, много модели выпускают Icpdas и Wirenboard. Передатчик кладётся на внутренний блок кондиционера (его не видно), команды от него отражаются от стены и попадают на приёмник кондиционера.

После обучения необходимые команды передатчик отправляет на кондиционер. Плюс этого решения — невысокая стоимость и универсальность, подойдёт для любого кондиционера с инфракрасным приёмником. Минус решения — отсутствие обратной связи, то есть, если кондиционер выключен (на него не подаётся питание) или находится в состоянии аварии, то ПЛК не будет знать его состояние, не сможет знать установку температуры кондиционера. Таким образом управлять можно не только кондиционером, но и аудио-видео техникой, имеющей ИК-пульты.

От передатчика в щит тянем кабель FTP, по которому передаётся питание передатчика (обычно 12 или 24 вольта) и две жилы на RS485. Либо звездой (от щита на каждый блок отдельный кабель), либо шлейфом (от щита последовательно обходим все блоки кабелем). Я обычно предпочитаю звездой, так надёжнее. И удобнее вести кабель вместе с кабелями питания блоков от щита.

Более дорогое и качественное решение вопроса — использовать шлюз внутренней шины кондиционера на протокол RS485 ModBus. От каждого внутреннего блока кондиционера тянем управляющий кабель FTP для RS485. Но в этом случае обычно нужны ещё блоки-переходники с кондиционера на шину. Например, для кондиционеров Mitsubishi используется блок Intesis Box ME-AC-MBS-1, нужен для каждого внутреннего блока, стоит от 400 долларов. Есть аналогичные блоки на Daikin и другие кондиционеры. Иногда (обычно при использовании промышленных кондиционеров), можно поставить один модуль ModBus на все кондиционеры, например, есть блок на 48 блоков Mitsubishi Heavy, стоит от 4 тысяч долларов.

При связи контроллера с программным обеспечением EasyHome с кондиционером система кондиционирования включается в алгоритм терморегулирования, то есть, в зависимости заданной пользователем температуры и текущей температуры в помещении контроллер сам определяет режим работы кондиционера (обогрев или охлаждение), управляет мощностью. При полном управлении по ModBus будет также работать считывание ошибок кондиционеров.

На оба варианта управления кабель монтируется одинаково: витая пара до каждого внутреннего блока, ведь в обоих случаях управление по RS-485 либо кондиционерами, либо ИК-передатчиками.

Для систем Умного Дома, которые не поддерживают работу с ModBus, возможен только вариант управления через ИК-передатчики. Например, все беспроводные системы (включая Z-Wave, Fibaro).

При каждом проектировании встаёт вопрос о том, как мы будем управлять тёплым полом. Как для квартиры, так и для загородного дома есть несколько вариантов управления тёплым полом, выбор которого остаётся за заказчиком, потому что он влияет и на стоимость решения, и на функциональность всей системы.

Электрический тёплый пол — это либо греющий мат, либо инфракрасная плёнка, либо греющий кабель.

Греющий мат кладётся в плиточный клей, он очень тонкий и легко монтируется.

Инфракрасная плёнка кладётся под ламинат или паркет, то есть, её очень легко постелить под напольное покрытие даже в готовом ремонте.

Греющий кабель укладывается в стяжку толщиной не менее 30мм, он в среднем вдвое дешевле греющего мата, но несколько сложнее в монтаже.

Принципиальное отличие управления электрическим тёплым полом от управления водяным в том, что нам надо контролировать температуру пола. Если электрический пол будет греть постоянно, то поверхность пола перегреется и, во-первых, по нему станет некомфортно ходить, во-вторых, может повредиться напольное покрытие (если это не плитка, а доска).

Вот два способа управления тёплым полом, в классической электрике без умного дома и полноценно через умный дом:

Управление электрическим тёплым полом

Если умного дома у нас нет, то мы ставим обычный термостат с собственным выносным датчиком температуры пола. На термостате выставляется желаемая температура. Стоимость термостатов начинается от 1,5 тысяч рублей за простые механические модели (с крутилкой), и уходит за 10 тысяч рублей за модели известных брендов с сенсорным экраном, функциями программирования расписания и собственным приложением для смартфона.

В случае контроля температуры пола с умного дома мы подключаем греющий мат кабелем к реле в электрощите, также подключаем датчик температуры пола кабелем (обычно FTP) к контроллеру в электрощите. При этом мы можем регулировать температуру пола с контроллера и полноценно управлять полом. Управление электрическим тёплым полом. Минус — не будет локального управления, то есть, возможности со стены регулировать температуру пола.

Подключить датчик температуры пола к системе умный дом не так просто. В системах на оборудовании Wirenboard, Z-Wave, Larnitech и ещё многих используются датчики температуры стандарта 1-wire. Это дешёвый сенсор DS18S20 в гильзе, опускаемый в пол.

Способы управления тёплым полом в Умном Доме

Внимание! Датчики температуры пола для умного дома не такие же, как датчики обычных термостатов! Несколько раз встречал ситуацию, в которой строители заранее заложили в пол простую термопару от обычного термостата, потому что считают, что датчики температуры пола все одинаковые.

Теоретически можно вести кабель такого датчика прямо от контроллера, обычно пишут про максимальную длину до 30 метров. Но так уж исторически сложилось, что я категорически не доверяю датчикам 1-wire, и во всех проектах рисую где-то у пола монтажную коробку, закрытую заглушкой, в которой размещается переходник с шины на 1-wire, таким образом длина кабеля датчика температуры составляет не более 60см, и всегда можно заменить и датчик, и модуль-переходник. Вот так это выглядит у Wirenboard:

Способы управления тёплым полом в Умном Доме

В подрозетнике размещаем модуль WB-M1W2, к нему подключается сенсор 1-wire, уходящий в пол.

У Larnitech это модуль BW-SW06, размещённый также в подрозетнике у пола, а к нему подключается датчик.

Способы управления тёплым полом в Умном Доме

В системе на контроллере EasyHomePLC датчик используется не 1-wire, а аналоговый (но не термопара, как в обычных термостатах), в подрозетнике у пола либо за выключателем размещается переходник.

Важно помнить о том, что в системах на Wirenboard и Larnitech датчики подключаются на шину (modbus и CAN), то есть, шлейфом, а в EasyHomePLC от контроллера отдельный кабель идёт на каждый датчик.

А что делать, если мы хотим иметь возможность управлять температурой пола не только с приложения, но и со стены? Нужно ставить какую-то настенную панель либо термостат с modbus.

Для систем на EasyHome есть настенные панельки EasyHomeTPD, с которых можно управлять чем угодно, в том числе и температурой.

Для систем на Wirenboard и Larnitech можно найти термостаты с Modbus. Они подключаются как обычный термостат тёплого пола, но к нему ещё идёт витая пара от контроллера.

Вот пример такого термостата для Larnitech, Siemens RDF302.

Способы управления тёплым полом в Умном Доме

Стоит 139 евро, что несколько дороже среднего термостата тёплого пола, зато он уже сам управляет полом через встроенное реле и позволяет управлять температурой как с собственных кнопок, так и с приложения Larnitech. Но не всегда вписывается в дизайн.

В случае с Larnitech надо не забыть о том, что такой термостат потребует модуль RS485 в щите, один на все термостаты, это 197-240 евро.

Либо ставим любую настенную панель управления на базе iPad или Android планшета, с неё можно будет управлять всем, не только температурой пола.

Если говорить о KNX, то там тоже большой выбор настенных термостатов, подключаемых на шину KNX. Отличаются более красивым дизайном и более высокой ценой, в среднем от 300-400 евро за хороший бренд.

Способы управления тёплым полом в Умном Доме

Итак, у нас получилось три способа управления тёплым полом с системы Умный Дом.

  • Ставим классический обычный термостат тёплого пола. С умного дома мы только включаем и выключаем нагрев пола, температуру поддерживает сам термостат. Регулировки температуры с приложения нет, только с термостата. Самый недорогой вариант. Позволяет выбрать термостат под дизайн прочих розеток-выключателей и под бюджет.
  • Не ставим обычный термостат тёплого пола, но заводим датчик температуры пола в контроллер и питание пола в контроллер. Позволяет управлять температурой пола с приложения, но нет локального управления с термостата на стене. Требует размещения на стене обслуживаемого подрозетника с заглушкой в незаметном месте для обслуживания датчика температуры. А лучше ещё одного для подключения греющего мата к кабелю питания от электрощита.
  • Ставим термостат тёплого пола, но не простой, а управляемый с контроллера, обычно через modbus. Получаем и управление с термостата, и с контроллера. Такой термостат дороже и может не подходить по дизайну, но решение неплохое.
  • Ставим датчик температуры пола без термостата (способ №2), управляем температурой со стационарной настенной панели на базе iPad, Android или чего-то ещё.

Стоит задать себе вопрос: как часто приходится регулировать температуру тёплого пола? Не включать-выключать, а именно регулировать? Мне кажется, один раз в жизни, при первом включении пола. Так что стремление иметь возможность управления температурой пола с контроллера умного дома не всегда оправдано. Но если площадь пола велика, то тёплый пол будет здорово нагревать воздух в помещении, и контроль температуры пола с умного дома может быть полезен для того, чтобы контроллер мог снизить температуру пола при перегреве воздуха.

А что можно сказать про водяной тёплый пол?

Для управления водяным тёплым полом надо поставить приводы на коллектор полов, они будут регулировать подачу горячей воды в пол. Точнее, в большинстве случаев регулировка не используется, а вода просто ибо открывается, либо перекрывается. Тёплый пол слишком инертный, чтобы имело смысл регулировать подаваемый в него поток воды.

коллектор с сеовоприводами

Но есть важное отличие от электрического тёплого пола. В водяные полы подаётся вода невысокой температуры (не выше 30-35 градусов), то есть, поверхность пола не нагреется выше 28 градусов никогда. При наладке работы системы отопления дома полы регулируются таким образом, чтобы во всех помещениях пол всегда был одной температуры, одинаково приятно тёплый.

Таким образом, зачастую вообще нет необходимости управлять тёплыми полами в загородном доме, температура воздуха регулируется радиаторами. Но если мы подключим к умному дому тёплые полы, то система сможет отключать подачу воды в них в том случае, если желаемая температура ниже текущей несмотря на уже отключенные радиаторы, за счёт этого будет экономиться газ.

То есть, вы уехали из дома на пару дней, в приложении выставили желаемую температуру воздуха в доме +15 градусов, система умный дом отключает радиаторы и тёплые полы, когда температура воздуха опустится до +15 градусов, тёплые полы снова включатся, не давая дому замёрзнуть и экономя газ.

Разумеется, при желании можно поставить и датчики температуры поверхности пола, как это было описано выше, любым способом, тогда мы сможем точно задавать температуру пола. Вопрос того, насколько управляемой мы хотим сделать систему отопления.

Картинка из брошюры застройщика

Картинка из брошюры застройщика

Причина, почему таких статей мало в общем-то понятна: правила фактически раскрывают всю частную жизнь владельца и его семьи. Посмотрим удастся ли соблюсти конфиденциальность в этой статье.

А ещё в этой статье не будет сложных правил - все они достаточно простые, но в то же время закрывающие практически все сферы автоматизации. Специально для этой статьи сделаны лакшери фоточки однокомнатной квартиры 46 квадратных метров.

Текущая планировка квартиры, расположенной в городе Перми

Текущая планировка квартиры, расположенной в городе Перми

Исходные данные автоматизации: однокомнатная квартира 46 квадратных метров, в ней живут два человека: муж и жена. Детей нет. Домашних животных нет. Семья часто работает из дома удаленно и много времени проводит в квартире. Используется Home Assistant.

Mobile Dashboard - Home Assistant

Mobile Dashboard - Home Assistant

Правила по освещению

Были сделаны несколько триггеров, по которым включается освещение, чтобы совсем не думать про освещение, но в то же время, чтобы иметь его именно в тот момент, когда необходимо. Триггеры включают в себя:

1. Активацию по движению. Были автоматизированы все проходные зоны, такие как прихожая, кухня, санузел.

Автоматизация сделана при помощи ZigBee датчика движения Xiaomi Mi Motion Sensor.

Вид на прихожую и дверь в ванную, за зеркалом виден электрический щиток

Вид на прихожую и дверь в ванную, за зеркалом виден электрический щиток

2. Активацию по открытию двери. Включение света в санузле при помощи накладного ZigBee датчика Xiaomi Mi Window and Door Sensor. Датчик просто наклеен на дверь и работает. Изначально задумывались о фрезеровке дверного проёма, но потом поняли, что это лишние затраты, потому что текущее положение и так не бросается в глаза.

Внутри ванной

Внутри ванной

3. А вот тут необычный пункт - зависит насколько удобно вы устроились на рабочем месте в кресле. Этот пункт включает в себя китайский датчик давления под пятой точкой человека, который подаёт сигнал на включения света за рабочим столом. Настройка этой пары уже описана в статье Делаем «умное» Zigbee кресло за 15 долларов. Работает в паре с датчиком движения рабочей зоны ZigBee датчика движения Xiaomi Mi Motion Sensor.

Скриншот автоматизации Рабочий стол и кран за окном - неподалёку возводится вторая очередь ЖК

4. При отключении от Wi-Fi сети обоих телефонов хозяев квартиры и отсутствии движения на всех датчиках, свет погаснет автоматически во всей квартире через 10 минут. Здесь больной вопрос - ведь телефоны Apple не пингуются всё время, а у жены именно iOS. Решилось тем что, у роутера Huawei, которые ставит Ростелеком, есть интеграция с Home Assistant, благодаря которой можно узнать находится ли конкретное устройство прямо сейчас в локальной сети. При этом дополнительно проверяется заряд батареи устройств через приложение Home Assistant, чтобы избежать того момента, когда оба устройства разряжены.

5. Плавное пробуждение как у светового будильника от Philips. В зимнее время с утра заводится будильник через приложении Home Assistant и за полчаса до этого времени прикроватные бра (с установленными Lonsonho Tuya Smart Zigbee в подрозетниках, которые не требуют нейтрали) постепенно начинают увеличивать яркость свечения, таким образом создавая комфортные условия для пробуждения. А в летнее время года шторы защищают от излишнего света после 23 часов вечера и к утру, к времени установленного будильника они открываются, пропуская солнечный свет в комнату.

Спальня Lonsonho Tuya Smart Zigbee в квадратном подрозетнике

Правила по вентиляции и климату

Поскольку квартира в новостройке, щелей в окнах нет, движения воздуха нет и очень сильно выручает бризер. Это приточный очиститель воздуха, для установки которого потребовалось просверлить отверстие в стене диаметром 10 см.

Бризер Xiaomi Mijia Fan A1

Сейчас бризер работает днем и ночью в автоматическом режиме.

Автоматический режим всегда справляется со своими обязанностями по притоку свежего воздуха и одновременно штатный ночной режим исключает шумную работу, когда все спят.

Бризер, установленный на стене спальни

Бризер, установленный на стене спальни

А ещё при температуре воздуха на улице ниже +5°С градусов бризер сам включает подогрев воздуха.

Изначально бризер тоже был интегрирован в Home Assistant и управлялся по правилам, но со временем поняли, что автоматические правила работают не хуже и не надо тратить время на дополнительные настройки.

Отверстие выхода бризера на балкон квартиры

Отверстие выхода бризера на балкон квартиры

Управляющие головки на радиаторы Netatmo Smart Radiator Valves

В квартире поддерживается комфортная для хозяев температура воздуха:

дневная температура: 24°C;

вечерняя температура: 26°C;

ночная температура: 21°C;

утренняя температура: 26°C.

Температура выбрана именно такой для комфортного сна и пробуждения: чтобы днем не мерзнуть, а ночью не было жарко.

Настроены через родное приложение Netatmo:

Netatmo Смарт-головка на батарее

Кондиционер Midea MSAG1-09N8C2-I/MSAG1-09N8C2-O + WiFi модуль

Во время бодрствования при повышении комнатной температуры, снимаемой датчиком кондиционера выше 26°C включается кондиционер на 25°C и работает 30 минут в своём автоматическом режиме. Площадь квартиры небольшая и это позволяет за полчаса охладить весь воздух до комфортной температуры. Также поэтому нет необходимости в его постоянной работы. Во время сна при температуре выше 26°C включается кондиционер на минимальной скорости обдува на 25°C.

Управляющий модуль на кондиционере

Управляющий модуль на кондиционере

Теплый пол Moes BHT-002-GBLW

Тёплый пол сделан в ванной, прихожей, кухне и подоконной лавке. В ночное время в непроходных зонах теплый пол выключается. Если бы не удаленная работа из дома, то теплый пол во всех зонах бы еще выключался на время отсутствия.

Контроллер теплого пола у окна

Контроллер теплого пола у окна

Правила по безопасности

В безопасности только один пункт и он связан с входной дверью. В дверь врезан умный замок Xiaomi Aqara N100. Этот замок может запускать домой по отпечатку пальца и в его память добавлены отпечатки всех членов семьи. Это особенно удобно, когда обе руки заняты например пакетами с покупками.Также замок позволяет пускать в квартиру родственников, когда хозяев нет дома - без передачи ключей, просто сообщив код доступа в квартиру.

С его установкой была интересная история - дверь уже была установлена и первоначально устанавливать замок вызвали просто первого попавшегося мастера, телефон которого нашли на авито. После демонтажа обычного замка мастер буквально испарился с места установки и доделывал уже другой мастер, но на следующий день.

Родное приложение Xiaomi Aqara N100 Дверь со стороны коридора

Уборка

В уборке тоже только один пункт - пылесос. Робот пылесос Xiaomi Mi Robot Vacuum Cleaner выезжает на уборку при условии что никого нет дома, и что сегодня уборка еще не проводилась.

Пылесос выглядывает из под ниши в шкафу

Пылесос выглядывает из под ниши в шкафу

Управление

Помимо автоматизаций в квартире очень часто используется управление голосом через колонку Яндекс.Алиса Мини. Благодаря планировке квартиры хватает одной колонки, потому что из любой точки квартиры Алиса слышит голосовую команду, без повышения голоса.

Общее пространство квартиры

Общее пространство квартиры

Что больше всего нравится жене

Кажется, что темы автоматизации интересны только мужской аудитории. Ведь у женщин немного другой взгляд на вещи. В этой квартире хозяйка чаще всего использует голосовые команды для управления светом, кондиционером, пылесосом и шторами. Остальные устройства уже работают по заранее прописанным правилам автоматизации и нет необходимости дополнительно вмешиваться в их работу.

Гостевая зона квартиры

Гостевая зона квартиры

Стоимость

Общая стоимость оборудования вышла примерно на 100 000 рублей, настройкой владелец занимался сам, поэтому 0 рублей, но потратил на это примерно 3 недели.

Итоги

Семья из двух человек живёт в квартире 46 кв. метров уже год и постепенно дорабатывает правила для того, чтобы они были удобнее. Во-первых отнимали меньше времени на управление всем зоопарком устройств и поддерживали необходимые уровни освещенности, вентиляции, безопасности и удобства по возможности автоматически.

За помощь в подготовке статьи, фотографии и код хочу поблагодарить Евгения и Екатерину, город Пермь, которые раскрыли все правила своей квартиры в этой статье.

Мой обычный вечер — это посиделки за компьютером. Холодными вечерами частенько появлялось желание сделать моё место отдыха комфортнее. Точнее, периодически было просто холодно ногам. Идеи были различные, вплоть до покупки USB тапочек с подогревом. Однако, все они казались мне нелепыми и отметались. И вот однажды, просматривая YouTube канал одного из любителей Arduino, я наткнулся на видео, где рассказывалось про инфракрасную плёнку. Увидев эту плёнку, я сразу понял: «Вот то, что мне надо!»




Disclaimer

Я занимаюсь проектами подобного рода уже несколько лет, делаю для себя. Делаю, чтобы делать: сам процесс для меня гораздо интереснее, чем конечное решение. Именно поэтому описание процесса и экспериментов приведены ниже со столь детальными подробностями. Использование элементов иногда не совсем оправдано с финансовой точки зрения — это я понимаю. Периодически я что-то меняю (в подходе, в элементах), но точно не собираюсь переходить на готовые решения, так как это будет просто неинтересно.

Почему «почти умный»? Я бы не назвал измерение температуры и управление реле с таймером «умным». Как задел на будущее — есть идея усовершенствовать алгоритм управления, добавив функции обучения. Вот тогда этот проект можно будет назвать как-то иначе.

  • интересно получить конструктивную критику/идеи
  • познакомить сообщество с инфракрасной плёнкой

Покупка

Решив, что перед действиями следует подготовиться, я отправился в поисковики с целью найти больше информации и отзывов. Комментарии рознились. Кто-то называл плёнку идеальным отопительным элементом и говорил, что успешно обогревает целые дома, кто-то жаловался на полную бесполезность и уверял, что это всё «развод». Я решил экспериментировать, так как люблю новые штуки.

  • Ширина плёнки (50, 80, 100см)
  • Длина (от 2-ух метров) (где-то была информация, что при ширине 50см максимально допустимо использовать до 6 метров плёнки в одном отрезке на одно подключение (источника данных нет))
  • Наличие в комплекте термостата
  • Наличие в комплекте поставки креплений (типа крокодил) для подключения питания к плёнке (судя по комментариям — важный момент, поскольку некоторые типы китайских креплений со временем ослабевают и контакт ухудшается вплоть до полного исчезновения)

Для эксперимента мне требовался лишь небольшой кусок «волшебной» плёнки, поэтому главным критерием для покупки была цена и минимальность комплектации (без термостата и креплений).


Проверив цены, я остановился на одном предложении на AliExpress. Продавец предлагал 2 метра плёнки шириной 50 сантиметров за 8€, без термостата и креплений, однако за доставку просил ещё столько же. Это получался самый приемлемый вариант. Я сделал заказ и стал ждать посылки. Примерно через 3 недели кусок плёнки уже лежал у меня дома.

Первый тест


После того как плёнка оказалась у меня, я поставил себе первую задачу: проверить работает ли это вообще. Для сборки первого прототипа я использовал три доски ламината, оставшиеся после недавнего ремонта.

Процесс сборки элементарен:


  1. Отрезал плёнку нужной длины (мне хватило примерно 100см. теоретически можно резать почти в любом месте)
  2. Подключил клеммы (Здесь интересный момент, что плёнка ламинирована полностью с обоих сторон. Даже если контактная полоса выглядит как большой медный контакт с одной стороны плёнки (смотри фото после получения посылки) – прямого доступа к контакту всё равно нет. Если использовать свои клеммы, то сначала нужно проковырять ламинированный слой)


Включил, замерил потребление. Мощность, потребляемая моим куском плёнки, составила 105 Ватт. Если кто-то решит использовать подобную плёнку, может рассчитывать потребление как 200-210 Ватт на квадратный метр. Никаких «пусковых токов» я не наблюдал, потребление стабильно, пока есть питание и со временем не уменьшается. Конечно, не забываем, что использование термостата введёт свой коэффициент в конечные расчёты потребления.

Я встал на пол и стал ждать эффекта. Во время теста периодически переходил на обычный пол, чтобы не упустить изменения, если температура будет подниматься плавно. По прошествии нескольких минут я ощутил приятную теплоту, идущую от пола. Минут через 15 пол уже жарил так, что находиться на нём было некомфортно. Эксперимент можно было считать удачным, так как было ясно видно, что плёнка может дать необходимый уровень теплоотдачи, чтобы обеспечить мои потребности.

Реализация «умной» части

За время ожидания посылки у меня в голове сложилась довольно чёткая картина того, как будет работать мой тёплый пол. Так как это уже не первый мой проект — я решил по максимуму использовать уже существующие наработки. По сути, к управлению температурой пола я решил применить тот же алгоритм и схемы, что и для автоматического управления светом.

  1. Мы включаем свет, если уровень освещения ниже заданного
  2. Мы включаем реле на определённый промежуток времени
  3. Мы включаем реле, только если есть информация от датчика движения
  1. Мы включаем подогрев, если уровень температуры ниже заданного
  2. Мы включаем реле на определённый промежуток времени
  3. Мы включаем реле, только если есть информация от датчика движения


Своего рода блок-схема всего решения. Прошу не судить схему строго – нарисовал её специально для публикации, чтобы был понятен способ подключения и не заморачивался с подбором правильных иконок.

Реле питания пола

Для управления питанием используется связка из двух плат.

  • Места крепления в мою стойку автоматики (4 креста по бокам)
  • Содержит JK-триггер для запоминания последней команды
  • Мост питания L298D, чтобы передавать повышенный ток на катушку реле
  • Реле 5В или 12В в зависимости от версии
  • Несколько светодиодов для отображения состояния
  • Почему две платы? Реализация скопирована из уже существующего управления светом, где мне так удобнее. Если бы делал с нуля – скорее всего плата была бы одна.
  • Зачем триггер? Действительно, для данного решения мне кажется он излишен. Просто в одной из предыдущих версий системы управляющий контроллер не был подключен к мосту L298D постоянно, а подключался мультиплексором. Поэтому существовала необходимость помнить установленное состояние.
  • Почему L298D, если можно использовать оптическую развязку? Опять же наследие и пачка давно купленных по 3€ L298D.
Датчики температуры и движения


Делать отдельную плату для датчиков движения и температуры я не стал. Датчик движения поставлялся с удобными контактами и крепить его на дополнительную плату было бы нелогично. Подключение датчика температуры задача тоже не сложная — требуется только одно дополнительное сопротивление. В итоге, можно сказать «на скрутке», я собрал часть с датчиками.

Датчик температуры засунут внутрь оплётки CAT5 кабеля, так как имел очень тонкие контакты и на ощупь казался очень хрупким.

Корпус

Предполагалось, что все управляющие элементы будут валяться под столом на полу. Из этого следовало, что будет не лишним сделать нечто похожее на корпус, чтобы систему нельзя было легко повредить, случайно задев ногой. Для корпуса была использована коробочка, предназначенная для хранения мелких вещей.

Корпус в сборе

Сбоку прорезаны отверстия для датчиков

Конечный вариант.

Вот так всё выглядит после установки. Примерная зона срабатывания датчика движения обведена. Рисовал по ощущениям – когда срабатывает, а когда нет.

Снимок экрана с окном управляющей программы на компьютере
(Как упоминалось, управляющая логика была скопирована с системы управления светом, поэтому на форме можно заметить надписи «Light» вместо «Temperature»)

Заключение

Как во время тестирования, так и во время работы данного решения в собранном виде обнаружились некоторые проблемы и нюансы. Большинство из них связано с электрическими и физическими характеристиками применённой схемы и их описание выходит за рамки данной публикации. Возможно позднее я опишу нюансы более детально в отдельном посте. Инфракрасная плёнка показала себя как интересный материал, и я вполне могу рекомендовать её для применения. Возможно ли применить её как единственный источник отопления в помещении и какое будет при этом потребление электроэнергии – я не знаю.

В общем, с момента «запуска» проекта прошло уже несколько месяцев. Мой «почти умный» тёплый пол работает отлично и выполняет своё предназначение на 100%, хотя иногда и приходится подстраивать желаемую температуру.

Умный дом

Для начала пару слов об объекте, который предстоит оснастить системами автоматизации. Это небольшой многоквартирный дом, каждая квартира которого оснащается независимыми системами кондиционирования, вентиляции, отопления и теплого пола.

В качестве основных требований заказчик отметил: единый интерфейс для управления всеми системами умного дома, ограниченный бюджет и минимальное количество дополнительной проводки. После небольшого исследования рынка систем автоматизации мы остановились на решении от Fibaro, так как основные преимущества этого решения практически идеально повторяют наши условия.

В этой статье мы опишем процесс создания подобия HVAC системы для квартиры на базе протокола Z-Wave. Надеемся получить кучу замечаний от сообщества, чтобы довести наше решение до съедобного состояния. Если ожидаемый результат будет достигнут, то мы с удовольствием продолжим этот цикл другими публикациями, в которых будем делиться своим опытом использования Z-Wave устройств.

Итак, опишем исходные данные и условия функционирования нашей системы.

В первую очередь мы задались вопросом, что будет управлять всеми системами. В качестве головного устройства мы остановились на контроллере Home Center 2. Изначально планировалось создать сеть из пяти контроллеров и организовать систему таким образом, чтобы один контроллер управлял всеми квартирами на одном этаже здания. Но вскоре выяснилось, что таким образом построить систему не получится, так как у HC2 есть ограничение на количество подключенных z-wave устройств, а объединение контроллеров в одну сеть дает только расширение зоны действия z-wave сети, но не увеличивает предельно допустимое количество подключенных устройств. Одновременно к одному контроллеру можно подключить не больше 230 устройств. Соответственно, к пяти контроллерам, объединенным в единую сеть, по-прежнему можно подключить лишь 230 устройств. Поэтому нам пришлось увеличить количество контроллеров в проекте в два раза и отказаться от объединения их в единую сеть. Теперь один HC2 будет работать на 4-5 квартир, что дает нам возможность использовать от 46 до 57 z-wave устройств в каждой квартире.

После того, как мы определились с главным контроллером, встал вопрос, какие данные необходимо собирать, и как это делать. Для управления климатом необходимо знать текущее положение дел в квартире, а именно: температуру внутри и снаружи помещения, влажность, уровень CO2, положение окон и дверей, наличие жильцов дома. Поскольку бюджет проекта ограничен, мы отказались от мониторинга влажности и уровня CO2.

Для мониторинга температуры внутри помещения многие z-wave устройства содержат встроенные датчики температуры, дополняющие основной функционал устройства. И, конечно же, существуют датчики температуры в отдельном исполнении. Согласно нашему проекту, в каждой квартире будет примерно 35 устройств, которые так или иначе будут показывать значение температуры. Это три датчика протечки FIB_FGFS-101, три IR преобразователя REM_ZXT120, термостат RS 014G0160, датчики движения, и по три датчика температуры DS 18B20 на каждый контур теплого пола и контур системы отопления. Мониторинг температуры контура теплого пола необходим в первую очередь для того, чтобы не допустить перегрева паркета, т.к. максимально допустимая температура паркета не превышает 27 градусов.

Контроль температуры для защиты паркета от перегрева

Контроль температуры для защиты паркета от перегрева

Поскольку все эти значения температуры могут достаточно серьезно отличаться друг от друга, в зависимости от того, где устройство установлено – для определения температуры в помещении мы будем высчитывать среднее значение по всем показателям из данного помещения.

Для определения температуры снаружи помещения существуют два варианта. В HC2 есть функция получения прогноза погоды для города, который задается при первоначальной настройке контроллера. Однако такой метод определения температуры не отличается приемлемой точностью, поэтому мы для этих целей будем использовать несколько датчиков DS 18B20, установленных на внешнем фасаде здания. При этом следует учесть, что датчики нужно располагать не напрямую на фасаде и избегать попадания на них прямых солнечных лучей.

В любом умном доме одной из главных целей его создания является снижение затрат на обогрев и охлаждение помещений, поэтому очень важным становится понимание текущего положения окон и дверей. Для того чтобы отключать отопление и кондиционирование, если открыто окно или дверь, мы будем использовать обычные магнитно-контактные датчики, а для их интеграции в сеть z-wave они будут подключены к универсальным бинарным датчикам FIB_FGBS-001.

Подключение датчиков температуры DS18B20

Подключение датчиков температуры DS18B20

Для определения наличия жильцов дома мы создали виртуальное устройство, которое представляет собой кнопку. При нажатии на эту кнопку пользователь сообщает системе, что дома никого нет.

Виртуальное устройство - кнопки включения режимов дом/работа

Виртуальное устройство — кнопки включения режимов дом/работа

Когда в систему поступает сигнал, что дома никого нет, контроллер отключает все системы HVAC и переходит в режим энергосбережения до тех пор, пока пользователь не соберется домой. Находясь в режиме энергосбережения, система продолжает контролировать температуру, и не допустит переохлаждения помещений и снижения температуры ниже отметки в 18 градусов.

Еще один немаловажный элемент управления климатом в жилом помещении это уставка температуры. В нашем решении пользователи смогут изменять ее двумя способами. С помощью настенного термостата или при помощи специально созданного виртуального устройства используя смартфон или планшет.

Разобравшись с мониторингом текущего состояния микроклимата в квартире, мы перешли к изучению непосредственно тех устройств, которыми нам предстояло управлять.

Каждая квартира будет оборудована 3 кондиционерами производства Mitsubishi Еlectric. Управление ими планируется осуществлять при помощи IR преобразователей REM_ZXT120. Эти устройства имеют предустановленные настройки для управления наиболее распространенными моделями кондиционеров от ведущих производителей, а так возможность обучения IR командам с пульта дистанционного управления.

Помимо кондиционеров каждая квартира будет оснащена независимой системой приточно-вытяжной вентиляции, и управление ей будет организовано с использованием двухканальных реле FIB_FGS-222.

Также во всех квартирах будут установлены семь контуров теплого пола и один контур центрального отопления. Каждый контур оснащается трехпозиционным клапаном с сервоприводом. Управляется при помощи RGBW модуля FIB_FGRGB-101.

После подбора и изучения всего необходимого оборудования нашей следующей задачей стала разработка наиболее эффективного и самодостаточного алгоритма управления климатом.

Блок-схема с алгоритмом управления климатом в квартире


На блок-схеме приведен алгоритм, который представляет собой основную логику работы всей системы управления HVAC.

Получившийся алгоритм реализован в виде одного главного скрипта и нескольких вспомогательных. В НС2 эти скрипты называются сценами и пишутся на lua.
Для того чтобы не сильно загружать контроллер, сцены запускаются только при срабатывании так называемых триггеров.

Для основной сцены в качестве триггеров выступают следующие события:

  • один из показателей температуры изменится более чем на один градус
  • пользователь изменил уставку температуры
  • пользователь включил/выключил режим на работе
  • окно или дверь (на лоджию или входная) были открыты/закрыты

Как видно из кода основной сцены, в своей работе она использует глобальные переменные:

  • Workmode //режим на работе
  • TempSet //температура уставки
  • WinStatus //открыты ли окна и двери на лоджию (нужны для ограничения работы кондиционеров)
  • CHeating //включено ли центральное отопление

Так как для комфорта очень важно чтобы воздух в квартире был свежий, мы решили, что будет правильно сделать систему принудительного проветривания помещений через приточно-вытяжную вентиляцию. Если в течение последних трех часов вентиляция не работала, то автоматически запустится сценарий проветривания помещения длительностью 15 минут. Принудительное проветривание не осуществляется если включен режим «на работе».


Вот так мы планируем решать поставленную задачу. На повестке дня стоит еще много вопросов, предстоит решить много проблем и преодолеть множество трудностей. Это наша проба пера, просим вас отнестись с добротой и пониманием.

Читайте также: