Способы производства цементного клинкера

Обновлено: 01.05.2024

Цементный клинкер представляет собой продукт, который производят в процессе обжига до состояния плавления или спекания сырьевой смеси определенного состава. Клинкер является промежуточным продуктом в процессе производства цемента.

цементный клинкер

В специальных печах, при очень высокой температуре (выше 1000 градусов) нагревают смесь известняков и разных глин, в итоге получая спекшийся гранулированный материал. Химически это смесь алюмината и алюмоферрита кальция с силикатами. Для приготовления цемента клинкер измельчают, добавляют в него гипс и другие вещества.

Стоимость клинкера находится в достаточно широких пределах и напрямую зависит от сорта. Применяется в самых разных ремонтно-строительных работах.

Производство цемента

В процессе нагревания смеси, которую получают из известняка (до 75%), глины (до 25%) либо других похожих по составу и активности материалов, до температуры +1450С достигается состояние частичного плавления – таким образом образуются гранулы клинкера.

Чтобы в итоге получить цемент, клинкер смешивается с 2-5% гипса (точный объем зависит от содержания SO3 в самом клинкере и марки гипса), затем перемалывается в тончайшую пыль. Благодаря гипсу удается обеспечить быстрое схватывание материала. Хотя, в некоторых случаях его частично заменяют иными формами сульфата кальция. При помоле также допускается вводить другие добавки.

Виды цемента, который производят из клинкера:

  • Портландцемент – после обжига известняков, глинистых примесей, мергелей получают раствор цемента. Клинкер обычно смешивают с доменным шлаком, ракушечником и другими добавками. Портландцемент производят двумя способами: мокрым (когда компоненты смалывают и смешивают с водой, потом обжигают) и сухим (аналогичные действия, но без воды). Из портландцемента делают высокопрочные бетоны, облицовочные плитки, монолитные конструкции, даже искусственный мрамор и т.д.
  • Романцемент – создается посредством обжига известняков (содержание глинистых минимум 25%) при температуре свыше +1000С. Применяют для производства блоков, стеновых панелей, бетонных смесей низких марок.

Стандартный клинкер предполагает такой состав:

  • Трехкальциевый силикат (алит) – активный минерал, достаточно интенсивно набирает прочность и твердость с выделением тепла.
  • Двухкальциевый силикат (белит) – медленно твердеет в первоначальной стадии.
  • Трехкальциевый алюминат – обладает низким уровнем стойкости под воздействием серно-кислых соединений.
  • Четырехкальциевый алюмоферрит – намного медленнее твердеет в сравнении с алитом, но все равно быстрее белита. Прочность демонстрирует более низкую, чем у алита.

Четыре главные фазы клинкера

Цементный клинкер – это основной материал, который используется для производства цемента разных марок. То есть, проводится два действия: сначала производится клинкер в виде гранул, который получают путем нагревания глины и извести (с добавками) методом плавления, потом клинкер смалывается, в него добавляется гипс и получается цемент.

Разные способы обработки обуславливают то, что клинкер может быть с элементарным химическим или минералогическим составом. От того, какие объемы клинкерных материалов использовались при обжиге, зависят свойства цемента: он может быть быстросохнущим, созданным специально для использования при минусе, обладать другими свойствами.

Состав представляет собой систему нескольких клинкерных минералов, которые появляются в процессе плавки и обжига. Но заметить части отдельных составляющих клинкера невозможно, так как речь идет об аморфных и тонкозернистых кристаллических фазах.

Прежде, чем производить цемент, клинкер подбирают по составу. Обычно речь идет о четырех основных фазах, указанных ниже. Кроме них, в небольших объемах в веществе могут присутствовать другие фазы (оксид кальция, щелочные сульфаты).

Самая важная составляющая любого клинкера для цемента. В составе должно быть минимум 50-70% трехкальциевого силиката (обозначается 3СаO*SiО2 или сокращенно C3S). Структура и состав данной фазы модифицируются благодаря размещению в решетке инородных ионов (в особенности Аl3+, Mg2+, Fе3+). Алит стремительно реагирует с водой, в нормальных цементах имеет самое большое значение для обеспечения прочности. Особенно важен алит для обеспечения набора прочности цемента в течение 28 суток.

Белит

Когда производится клинкер цементный, содержание белита должно быть равно 15-30%. Двухкальциевый силикат обозначается как 2СаO*SiО2 (либо сокращенно C2S), модификация происходит за счет добавления в структуру инородных ионов, чаще всего большей частью либо полностью присутствует в формате β-модификации.

Белит

Белит с водой реагирует достаточно медленно, не оказывает воздействия на уровень прочности цемента на протяжении 28 суток. Но он влияет на прочность в значительно поздние сроки, что также немаловажно. Так, через год в идентичных условиях показатель прочности чистого белита и чистого алита примерно одинаков.

Алюминатная фаза

Алюминатная фаза в клинкере цементном составляет 5-10%. Трехкальциевый алюминат обозначается как 3СаO*Al2O3, меняется по составу и структуре в некоторых случаях благодаря инородным ионам (в особенности Nа+, Si4+, К+, Fe3+). Фаза мгновенно реагирует с водой, из-за чего становится причиной быстрого высыхания, если в состав не был введен контролирующий скорость схватывания реагент, в качестве которого выступает обычно гипс.

Алюмоферритная фаза

Ферритная фаза составляет около 5-15% цементного клинкера, обозначается как 4CaO*Al2O3*Fe2O3 (сокращенно CaAlFe). Четырехкальциевый алюмоферрит существенно меняет состав при изменениях пропорции Al/Fe и нахождении в структуре инородных ионов.

Скорость реакции базы с водой может быть разной из-за отличий в составе. Как правило, показатель достаточно высокий на первых этапах, в более поздние сроки средний между показателями алита и белита.

Сухой цемент представляет собой искусственное вещество, которое поставляется в формате порошка и используется в качестве вяжущего в процессе замешивания разного типа бетонных растворов. В момент смешивания с водой цемент провоцирует прохождение химической реакции с изменением структуры материала, который застывает и превращается в камень, обеспечивая монолиту должные характеристики прочности, стойкости, способности выдерживать механические нагрузки.

Состав цемента может быть разным, что напрямую зависит от вида вяжущего и возложенных на него функций, требуемых свойств материала. Классический цемент делают из клинкера (обожженные и спаянные в куски известняк и глина, взятые в определенной пропорции), смешанного с гипсом и различными минеральными добавками.

  • Известь (оксид кальция) – около 60%.
  • Кремниевый диоксид – до 20%.
  • Алюминий (глинозем) – 4%.
  • Гипс, оксиды железа – до 2%.
  • Магния оксид – 1%.

Данное процентное соотношение актуально для портландцемента – самого распространенного вида материала. Пропорции могут меняться, в соответствии с классном и технологией производства цемента. Ввиду существования большого числа марок и видов цемента точного рецепта его производства (и химической формулы) не существует – тут все зависит от показателей минералогического состава.

методы производства цементного вяжущего

Производство цемента осуществляется из клинкера – продукта обжига глины и известняка, взятых в пропорции 1:3. Клинкер представляет собой полуфабрикат для создания цемента. После обжига при высокой температуре (до 1500 градусов) клинкер мелко измельчают до гранул величиной около 6 сантиметров. Потом клинкер измельчают до порошкообразного вида, вводя различные добавки.

  1. Гипс, который регулирует длительность схватывания.
  2. Корректирующие добавки для улучшения определенных характеристик цемента (присадки, пластификаторы и т.д.).

В качестве основного исходного сырья в производстве цемента используют различные горные породы – карбонатного типа (могут быть с кристаллической либо аморфной структурой, определяющей уровень эффективности взаимодействия материала с остальными компонентами состава в процессе обжига) и осадочного происхождения (глинистое сырье с минеральной базой, которое при сильном увлажнении разбухает и становится пластичным, увеличиваясь в объеме; материал вязкий, применяется при производстве сухим способом).

как выглядит клинкер для производства цемента

Мокрая технология производства цемента

Потом на завод доставляют глину из карьера, ее обрабатывают в вальцевых дробилках до тех пор, пока размер кусков не будет равен максимум 100 миллиметрам. Измельченную смесь глины отмачивают в болтушках до момента получения глиняного шлама влажностью в пределах 70%. Потом шлам отправляют в мельницу, где его смешивают и размалывают вместе с известняком.

Далее шлам, влажность которого находится уже на уровне 40%, отправляют в вертикальный бассейн, где осуществляется окончательный процесс корректировки. Данная операция чрезвычайно важна, так как именно тут формируется и обеспечивается правильная химическая формула состава шлама.

мокрый метод производства цемента

В случае, когда производство цемента предполагает использование сырья с неизменным химическим составом, корректирование состава шлама выполняется в горизонтальном бассейне.

Далее шлам отправляют на обжиг в печь, где он превращается в клинкер. Клинкерная основа, полученная в итоге, отправляется в промышленный холодильник и там охлаждается. Потом клинкер дробят, подают в емкости мельниц, повторно измельчают до состояния порошка.

В случае, когда процесс обжига шлама требует применения твердого топлива, необходимо позаботиться о строительстве дополнительного помещения (где будет храниться, готовиться уголь). Если технологическая схема производства цемента требует применения газообразного/жидкого топлива, процесс обжига клинкера упрощается.

На завершающем этапе производства цемент из бункеров мельниц направляют в специальные помещения, где он хранится. Здесь лаборанты исследуют качество продукции, определяют марку. Только по завершении проверки цемент может отправляться на упаковочные аппараты.

где и как производят цемент

Преимущества

Рассматривая мокрый способ производства цемента, стоит учитывать его плюсы и минусы. Как и любой технологический процесс, данный обладает своими особенностями.

  • Понижение технологических затрат на измельчение сырьевой базы – глина и мел прекрасно намокают в воде в бассейне при первичной обработке, в связи с чем измельчаются легче и проще.
  • Транспортировка, усреднение, корректировка шлама осуществляются проще, безопаснее с точки зрения экологии, особенно в сравнении с аналогичными процессами при производстве цемента сухим способом.
  • Намного меньше образуется пыли.
  • Печи обжига по конструкции простые, надежные, обладают высоким коэффициентом использования пространства (варьируется в пределах 0.89-0.91).
  • Есть возможность использовать в производстве компоненты с достаточно «пестрым» (разным) химическим составом, а также обеспечена хорошая гомогенизация шлама.

Недостатки

Недостатков в мокром методе производства цемента мало, но они есть и не учитывать их нельзя.

  1. Высокий удельный расход тепловой энергии в процессе обжига сырья. Сырье, которое поступает для обжига, обладает в среднем влажностью до 45%. И для испарения влаги, правильного прогрева компонентов необходимо до 6800 кДж/кг тепловой энергии либо 35% тепловой мощности печи. В связи с такими расчетами часть обжиговой печи функционирует в качестве сушильного агрегата с последующими сложностями.
  2. Высокий уровень материалоемкости печей для обжига наряду с не очень большой производительностью.

Указанные недостатки приводят к достаточно низкой производительности труда, существенным эксплуатационным и технологическим расходам, что обуславливает высокую стоимость всего производства.

Сухая технология производства

Сухой способ производства цемента использует другую технологическую схему. Известняк и глина, которые добывают из карьера, дробятся и отправляются в сепараторную мельницу. Тут они смалываются, смешиваются, сушатся. Полученную смесь доставляют в смесительные аппараты, окончательно перемешивают с использованием сжатого воздуха. Сейчас же корректируется и химический состав цемента.

При применении глинистого компонента сырье подают для смешивания в шнеки, где частично увлажняют водой. Создаются прочные гранулы со влажностью максимум 14%, потом они поступают для обжига в печь.

Обжиг сырья при сухом методе может осуществляться в разных печах – в данном случае особое внимание обращают на приготовление сырья. А дальнейшие этапы производства сходны с мокрым методом.

сухой метод производства цемента

Плюсы технологии

В сравнении с мокрым, сухой метод обладает некоторыми преимуществами, которые обязательно нужно учитывать при расчетах (когда планируется организовать бизнес по производству цемента, к примеру).

  • Сравнительно невысокий удельный расход энергии тепла на обжиг клинкера – в пределах 2900-3700 кДж/кг.
  • Объем печных газов меньше на 30-40%, их можно вторично применять для сушки сырья и значительно снизить энергозатраты на создание клинкера, уменьшить затраты на обеспыливание.
  • Значительно меньшая металлоемкость печей для обжига при повышенной производительности в сравнении с мокрой технологией. Мощность печей при «сухом» методе составляет 3000-5000 тонн в сутки, что больше в 1-2 раза аналогичного оборудования мокрого метода.
  • Нет необходимости в мощных источниках воды.

Минусы технологии

Несмотря на явные преимущества, есть у технологии и свои минусы.

  • Значительно больше выделяется пыли, что усложняет соблюдение санитарных норм, правил охраны окружающего пространства.
  • Сложность конструкции печей для обжига и их требовательность в плане колебаний химического состава сырья, его степени влажности, дисперсности.
  • Сравнительно низкий коэффициент использования печей – где-то 0.7-0.8.

Отличия мокрой технологии производства от сухой

Обе технологии производства цемента обладают своими нюансами, плюсами и минусами. Но есть ключевые особенности, которые необходимо учитывать в первую очередь при планировании бизнеса и просчете расходов, прибыли. Главный недостаток мокрого метода производства цемента – существенная энергоемкость всего процесса, которая отражается соответствующим образом на цене конечного продукта в сторону повышения.

Сухая же технология менее экологична и опасна для окружающей среды, в связи с чем требует значительных расходов на устранение этого фактора. При этом, сам процесс производства обходится дешевле по всем пунктам, позволяет понизить цену конечного продукта.

Особенности полусухого способа

Полусухой метод производства цемента достаточно схож с сухим, но предполагает некоторые отличия. Фракция сырья, что проходит стадию гранулирования, равна примерно 10-20 миллиметрам, уровень влажности 11-16%. Сначала сырье обжигают в печах Леполь, потом создавшиеся гранулы отправляют в конвейерный кальцинатор.

Из печи выходят газы, проходящие сквозь гранулы, находящиеся на решетке. Таким образом сырье нагревается до 900 градусов, полностью высушиваясь в процессе. Такая термообработка способствует декарбонизации смеси примерно на 25-30%, что нужно для производства. После сырье отправляют в печь – это завершающий этап производства цемента.

Гранулированный цемент может обжигаться и в шахтных печах – в таком случае гранулирование осуществляется с частицами угля, после чего цемент уходит на хранение.

сухой и мокрытй способы производства цемента

Комбинированный метод производства

Данный способ базируется на подготовке компонентов сырья по мокрому методу, а вот их обжиг осуществляется по схеме полусухого метода. Шлам, полученный в сырьевой мельнице, обладает влажностью в диапазоне 30-45%, он отправляется в фильтр: тут обезвоживается до уровня влажности в 15-20%, потом сырье смешивают с пылью, влажность доводят до показателя в 12-14%.

На следующем этапе смесь отправляется на обжиг, который осуществляется в печах полусухого способа изготовления цемента. Все остальные операции ничем не отличаются от аналогичных этапов мокрого метода производства.

особенности производства цемента

Подходящий метод производства цемента выбирают в соответствии с технологическими и технико-экономическими факторами – качеством и типом сырья, влажностью и однородностью смеси, наличием соответствующего оборудования, возможностей и т.д. В Москве заводы работают по всем трем схемам и поставляют на рынок цемент высокого качества.

Состав цементного клинкера который получается от производства цементного камня по новой технологии. Способы схем процесса производства цемента из клинкера.

Производство цемента из клинкера

Романцемент — получают путем обжига известняков, содержащих глинистых не менее 25% при температуре 1000-1200 градусов по Цельсию. Применение: производство бетонов низких марок, стеновые панели, блоки.

Портландцемент — после обжига известняков, мергелей и глинистых примесей получают цементный клинкер. Клинкер смешивают с добавками (ракушечник, доменный шлак).

Романцемент

Способы производства портландцемента

1. Мокрый — компоненты измельчают и смешивают в присутствии воды, полученную суспензию (шлам) обжигают.

2. Сухой — все тоже самое, только в сухом состоянии.

Минералогический состав цементного клинкера

Трехкальциевый силикат (алит) является активным минералом. Быстро твердеет и набирает прочность, сопровождается значительным тепловыделением.

Двухкальциевый силикат (белит) в начальный период твердеет медленно.

Трехкальциевый алюминат — низкая стойкость против серно-кислых соединений.

Четырехкальциевый алюмоферрит твердеет медленнее алита, но быстрее белита. Прочность ниже алита.

Применение портландцемента

Приготовление растворов невысоких марок для кладочных и штукатурных работ, бетонные изделия.

Виды портландцемента

Глиноземистый — быстро твердеет. Получают путем обжига известняков и бокситов (богаты глиноземом). Процесс твердения сопровождается большим тепловыделением.

Свойства: сульфатостойкий, водонепроницаемый, жаростойкий, в 3-4 раза дороже портландцемента.
Применение: срочные ремонтные работы, аварийные работы, бетонные работы в зимних условиях, производство жаростойких бетонов.

Водонепроницаемый расширяющийся портландцемент получают путем тщательного измельчения глиноземистого цемента, гипса и гидроалюминатов кальция. При взаимодействии двух последних происходит образование гидросульфатоалюминатов кальция. Твердение сопровождается увеличением объема.

Применение: создание гидроизоляционных покрытий, заделка стыков и трещин железобетонных конструкций.

Быстротвердеющий портландцемент характеризуется быстрым нарастанием прочности.

Конечно, скорость твердения не сравнить с гипсом. Но самая быстрая из всех видов цемента.

Применение: возведение монолитных сооружений, приготовление высокопрочных бетонов.

Шлакопортландцемент жаро-, водо- и сульфатостойкий. Процесс твердения медленный.

Применение: изготовление железобетонных конструкций для работы в горячих цехах, гидротехнические сооружения.

Пуццолановый портландцемент твердеет медленно, требует систематического увлажнения.

Свойства: водостойкий, сульфатостойкий, не морозостойкий.

Применение: бетонные и ж/б конструкции.

Пластифицированный позволяет снизить водопотребление бетонных смесей и расход цемента на 5-8%.

Применение: дорожные бетоны, аэродромное и гидротехническое строительство.

Гидрофобный по своим свойствам похож на пластифицированный. Применение тоже.

Белый и цветной портландцемент

Белый изготавливают из сырья в котором мало окрашивающих оксидов (чистый известняк). Цветной — в которых много (охра, железный сурик).
Применение: облицовочные плитки, фактурный слой стеновых панелей, искусственный мрамор.

Сульфатостойкий портландцемент изготавливают из клинкера с другими примесями не более 7%.

Производство цемента

Цемент — это один из самых востребованных строительных материалов на рынке. Однако, производство готового цемента является затратным как по капитальным вложениям, так и по использованию энергии. Заводы по его производству обычно расположены вблизи мест добычи основного сырьевого компонента, каковым является известняк. Сам цемент используется в строительстве, как в чистом виде, так и в качестве основы для изготовления незаменимых материалов (бетона и железобетона).

Производство цемента начинается с добычи клинкера. Затем клинкер измельчают и получают вещество в виде порошка, в которое добавляют гипсовый компонент и другое. Расходы на добычу клинкера — большая доля затрат в себестоимости цемента. В итоге такая статья затрат, как добыча сырья, составляет долю в себестоимости готового продукта равную 70%.

Фабрика по производству цемента

Метод, с помощью которого осуществляют добычу и разработку залежей известняка называется «сносом». Используя этот метод, часть горной породы «сносят», освобождая путь к известняку желто-зеленого цвета. Глубина залегания известняка обычно составляет 10 м, толщина пласта равна 70 см. До принятой глубины породу желто-зеленого цвета можно встретить еще примерно четыре раза. На следующем этапе добытый известняк с помощью ленты для транспортировки отправляется на измельчение. Здесь известняковая порода должна приобрести размер кусков не более 10 см в диаметре. Измельченный до таких размеров известняковый компонент транспортируется на сушку и повторное перемалывание, где к нему добавляются другие составляющие. Затем известняковая смесь обжигается. Так происходит процесс получения клинкера.

Следующая стадия заключается в обработке клинкера. В первую очередь, клинкер дробят. Одновременно проходит процесс подсушки минеральных компонентов и дробление гипсового камня. Затем все компоненты смешивают и еще раз подвергают перемалыванию.

Поскольку сырье имеет порой разные технические и физические характеристики, то в промышленности существует три метода производства готового продукта. Так, при производстве цемента применяется три способа изготовления готовой смеси: мокрый, сухой и комбинированный.

Цементная смесь, произведенная мокрым способом, сделана на основе карбоната (мела), силикатов (глины) и добавок, содержащих железо. К последним относятся конвертерный шлам, огарки пирита и железистый продукт. При этом глина должна содержать влагу не более 20%, а мел не более 29%. Все компоненты смеси проходят измельчение в воде, в итоге получается суспензия, влажность которой составляет 30-50%. Суспензия, а вернее шлам, поступает в специальные печи, где проходит обжиг. Печь для обжига имеет весьма внушительные размеры: ее высота составляет 7 м, а длина — 200 м. В процессе обжига из шлама происходит выделение углекислот. На выходе из печи после обжига получается клинкер, который имеет вид шариков. Эти шарики измельчают и получают готовую цементную смесь.

При сухом способе производства происходит сушка всех сырьевых составляющих цемента, и только затем перемалывание. Таким образом, смесь имеет вид порошка.

Сухой цемент

При комбинированном способе осуществляется частичное использование двух предыдущих. Таким образом, комбинированный способ производства подразделяется на два вида. При первом из них смесь сырьевых компонентов готовят по мокрому способу, и только затем влажность смеси снижают с помощью специальных фильтров, она не должна превышать 16-18%. Потом эту массу отправляют на обжиг. При втором виде для получения смеси используется способ сухого получения первоначальной смеси, а затем в нее добавляют воду. Так получают гранулы, размер которых составляет не более 10-15 мм. Затем эти гранулы отправляют в печь для обжига.

Дата публикации статьи: 6 ноября 2014 в 11:32
Последнее обновление: 19 января 2021 в 15:50

Хранение цемента

Цемент доставляется с завода-изготовителя к месту потребления железнодорожным и автомобильным транспортом. При доставке цемента по железной дороге используются…

Применение и производство листового стекла в строительстве

Сырье для изготовления стекла Стекло — твердый, аморфный, прозрачный в той или иной области оптического диапазона материал. Получают…

Состав тяжелого бетона

Бетонная смесь имеет первостепенное значение на любой современной стройке. Прежде всего, ее используют при закладке фундаментов. Она также…

Магнезит, доломит

Ускорители твердения: поваренная соль, двуводный гипс, жидкое стекло. Замедлители твердения: клей животного происхождения, СДБ. Магнезиальные вяжущие — тонко…

Результаты многолетних исследований авторов [1–5] позволили представить процесс получения цементного клинкера как единый процесс структурообразования, сопровождающийся последовательным упорядочиванием, уплотнением и упрочнением его структуры. На разных этапах технологического процесса в обжигаемом материале формируются как структуры, определяемые хрестоматийной классификацией П.А. Ребиндера [6]: коагуляционные, конденционные, кристаллизационные, так и структуры смешанные: коагуляционно-конденционные, конденционно-кристаллизационные. При этом каждая последующая структура в значительной мере сохраняет особенности предыдущей, т. е. обладает определенной «наследственностью». Наследственность эта базируется на том, что дисперсная система, каковой является исходная для получения клинкера сырьевая смесь, обладает «памятью», даже «памятью» двух видов: «памятью механической», фиксирующей особенности подготовительных этапов, в частности, тонкого измельчения или механоактивации, и «памятью тепловой», фиксирующей особенности режимов высокотемпературной обработки. Нами было установлено, что сырьевые смеси, изготовленные из одного и того же сырья, с одними и те ми же модульными характеристиками, но механоактивированные в различных измельчителях, не только ведут себя по-разному при обжиге и дают клинкер разного минералогического состава, но и цементы, полученные из них в ранние сроки твердения (до 7 сут.), существенно отличаются по своей активности [7].

Наличие «наследственности» и «памяти» дает возможность управлять процессом клинкерообразования при получении цементного клинкера. Создание оптимальных условий структурообразования в многокомпонентной, разнородной по химическому составу цементной сырьевой смеси, – проблема очень сложная, но решение ее, в конечном счете, сводится, в первую очередь, к оптимизации исходных характеристик сырьевой смеси, в частности, регулированию дисперсности и химического состава, а также параметров и способов ее термообработки, а в конечном счете, к формированию структурных элементов и построению из них новых кристаллических структур, определяющих качество клинкера и цемента.

Вещественный минералогический состав цементных сырьевых смесей определяется природой используемого сырья и может меняться в широких пределах даже на одном предприятии. При этом незначительные колебания в их составе могут существенно отражаться на реакционной способности, динамике клинкерообразования, структуре клинкера и, соответственно, качестве цемента. Чтобы оценить степень такого влияния, нами исследованы более 100 видов сырья, в т. ч. более 50 видов карбонатного компонента.

С учетом ограниченности объема данной статьи и большого объема накопленного экспериментального материала, авторы считают целесообразным при изложении настоящей концепции ограничиться только некоторыми данными по исследованию структуры и структурных превращений карбонатного компонента, составляющего ~ 3/4 цементной сырьевой смеси. Основное внимание уделено известнякам и мелам, наиболее часто используемым в цементном производстве. Их осадочное происхождение предопределяет разнообразие структуры и состава. Тем не менее, оказалось, что расхожее мнение о крупнокристалличности известняков и мелкокристалличности мелов достаточно условно. По данным наших исследований, структура карбонатных компонентов изменяется от мелко – (0,5–1 мкм) до среднекристаллической (20–30 мкм). При этом и мела, и известняки могут характеризоваться как мелкокристаллической, так и среднекристаллической структурой.

Основной составляющей карбонатных пород является кальцит, но его свойства существенно меняются в зависимости от вида породы (табл. 1), а с другой стороны, карбонатные породы, даже относящиеся к одному классу минералов, могут существенно отличаться по своей структуре (рис. 1, 2).

Таблица 1. Свойства Кальцита для различных пород

Порода ρ, кг/м 3 Параметры решетки
α, Å Dhkl, Å εhkl, доли
а с 112 102 112 102
1 Мел, «Вольскцемент» 2160 4,9910 17,0632 5744 3328 0,0223 0,0611
2 Известняк, «Горнозаводскцемент» 2640 4,9898
17,610 13851 6242 0,0444 0,0163
3 Мрамор 2710 4,9856
17,0602
15334 9472 0,0746 0,1898
4 СаСО3 («ЧДА») 2690 4,9922 17,0624 10585 6582 0,0313 0,0735



Рис. 1. Микроструктура мелов(а-г), и известняков (д-з):
а,б – ОАО «Мальцовский портландцемент», старый и новый карьеры; в – ОАО «Вольскцемент»; г – ОАО «Себряковцемент»; д, е – ОАО «Горнозаводскцемент»; ж,з – ОАО «Якутцемент»

Рис. 2. Микроструктура обожженных мелов ОАО «Себряковцемент»:
а,б – мелкокристаллический мел; б,г – среднекирсталлический мел; I T – = 900°С, 40 мин; II T – = 1300°C, 20 мин.

Уже при декарбонизации меняется структура материала на наноуровне и наглядно реализуется принцип «памяти материала» и наследственности структур в едином процессе структурообразования (табл. 2). Параметры структурных элементов карбонатного компонента зависят не только от его природной структуры, но и от внешних факторов, в первую очередь теплового воздействия. С ростом плотности исходного карбоната увеличивается плотность образующегося оксида кальция. Кристаллиты оксида кальция, полученные из мела, отличаются вдвое меньшими размерами и одновременно повышенными значениями микроискажений, что обеспечивает большую активность СаО, полученного из мела, по сравнению с СаО, полученным из других карбонатных пород.

Таблица 2. Влияние природы карбонатного компонента на свойства частиц СаО

Свойства СаО СаО, полученный декарбонизацией по разным режимам
мела
известняка мрамора СаCO3
I* II* I II
I II
I
II
ρ, кг/м 3 3220 3060 3260 3140 3310 3160
3290 3160
α, Å 4,8108
4,8166 4,8088 4,8148 4,8034 4,8150 4,8076 4,8169
Dhkl, Å
1884 998 4205 1620 5374 2348 5231 1487
εhkl, доли
0,0405
0,0647 0,0396 0,1476 0,0302 0,0547 0,0321 0,0472
Q, Дж/кг/ч 787,0 1012,6 907,2 1033,0 807,2 947,1 939,1 1156,3
Q – тепловыделение при гидратации.
*Режимы обжига: I – температура 1100 °С, скорость подъема температуры 300° С/ч, изотермическая выдержка при этой температуре 20 мин; II – кратковременный обжиг во взвешенном состоянии в течение 1 с при 1700° С.

Влияние структуры сырьевых материалов с их природной «наследственностью» прослеживается на всех последующих этапах тепловой обработки. Для оценки значимости этого фактора было исследовано 70 сырьевых шихт, отличающихся как видом сырьевых компонентов – карбонатного, алюмосиликатного, железосодержащего, так и модульными характеристиками.

Кинетические кривые подтвердили, что природа сырьевых материалов существенно влияет на энергетику процесса. При использовании плотных известняков Еакт снижается с 96–129,1 до 47–65,4 кДж/моль. Наибольшей активностью в реакциях минерало- и кристаллообразования характеризуются сырьевые смеси, содержащие более крупнокристаллические мела и известняки, что может быть связано с их большими структурными изменениями при декарбонизации и большей дефектностью получаемого оксида кальция (рис. 3).

vliyanie prirody cementnogo syria na protsessy strukturoobrazovaniya pri obzhide klinkera 3.jpg

Рис. 3. Спекаемость сырьевых смесей на основе мелов (a) и известняков (б) и киинетика твердения цементов (с, д), полученных из клинкеров с различными карбонатными компонентами: мела: 1, 3 – плотный,среднекристаллический; 2, 4 – рыхлый, мелкокристаллический; известняки: 5, 6 – менее плотный и 7, 8 – более плотный. Характеристики сырьевых смесей: 1, 2 – KH = 0,9; n = 2,3; ρ = 0,9; 3, 4 – KH = 0,85; n = 2,3; ρ = 0,9; 5, 6 – KH = 0,92; n = 2,5; ρ = 1,2; 7, 8 – KH = 0,85; n = 3,0; ρ = 2,0.

Структура сырьевых материалов определяет и характер кристаллической структуры клинкера. Клинкеры, синтезированные на основе мелкокристаллического карбонатного компонента, отличаются также мелкокристаллической структурой 10–30 мкм (рис.4). Чем плотнее и менее пориста структура карбонатного компонента, тем более четкая формируется структура клинкеров.

Соответственно меняется и активность цементов. Так, мел ОАО «Вольскцемент» 95 горизонта (составы 1, 3 на рис. 3) характеризуется более плотной структурой по сравнению с мелом 82 горизонта (составы 2, 4). Это обусловливает снижение реакционной способности сырьевых смесей на его основе. Полученные клинкеры характеризуются нечеткой структурой. Все это в совокупности обусловливает пониженные прочностные характеристики, как при изгибе, так и при сжатии (рис. 3, в). Различие в прочности при сжатии в возрасте 28 сут. составляет 10 МПа и более. Аналогично изменяются прочностные характеристики и в случае синтеза клинкеров с известняками (рис. 3, г). Клинкеры, синтезированные на основе плотного, хорошо сложенного известняка 275 горизонта ОАО «Горнозаводскцемент» (составы 7, 8), характеризуются более отчетливой кристаллизацией по сравнению с клинкерами, полученными с известняком 265 горизонта (составы 5, 6). И это привело к большей прочности цементов.

vliyanie prirody cementnogo syria na protsessy strukturoobrazovaniya pri obzhide klinkera 4.jpg

vliyanie prirody cementnogo syria na protsessy strukturoobrazovaniya pri obzhide klinkera 4,2.jpg

Рис. 4. Структура клинкеров, синтезированных на основе мелкокристаллических мела (а – KH = 0,92) и известняка (б, в – KH = 0,92); среднекристаллического (г – KH = 0,80; д – KH = 0,90) и крупнокристаллического (е–з KH = 0,94) известняков; сырьевая смесь с огарками (б) и с феррованадиевым отходом (в); без модификатора (е), с введением 1% CaSO4 (ж) и 1% CaF2+CaSO4 (з)

Гидратационная активность промышленных клинкеров в значительной степени определяется их структурой (характером кристаллизации, распределением кристаллов, преобладающим размером кристаллов и пористостью). Подтверждена линейная зависимость балльной оценки структуры промышленных клинкеров и марочной прочности цементов, полученных на основе данных клинкеров. Нечеткая кристаллизация с неравномерным распределением кристаллов-минералов обусловливает низкие марочные прочности цементов (рис. 5, a – в). Напротив, отчетливая кристаллизация с равномерным распределением кристаллов алита и белита приводит к формированию прочного цементного камня (рис. 5, г – е).

vliyanie prirody cementnogo syria na protsessy strukturoobrazovaniya pri obzhide klinkera 5.jpg


Рис. 5. Микроструктура заводских клинкеров с разной марочной прочностью цементов на их основе. Прочность цементов, МПа: a – 41,0; б – 43,7; в – 43,2; г –53,9; д – 51,7; е – 58,0. Увеличение × 300.

Комплексное исследование широкого спектра сырьевых материалов цементной промышленности и клинкеров цементных заводов позволило доказать высокую степень наследования их структурных особенностей в единой цепочке технологических переделов: сырьевые материалы → сырьевая шихта → цементный клинкер → цементный камень. Это позволяет по анализу структурных особенностей сырья прогнозировать качество получаемого цемента, а также рекомендовать особенности технологических параметров, обеспечивающие получение высококачественного цемента даже при специфических недостатках сырья.

1. Тимашев, В.В. Агломерация порошкообразных силикатных материалов / В.В. Тимашев, Л.М. Сулименко, Б.С. Альбац. – М.: Стройиздат, 1978. – 136 с.
2. Сулименко, Л.М. Влияние размеров, формы и структуры гранул на кристаллизацию клинкерных минералов / Л.М. Сулименко // Изв. вузов, Химия и химическая технология. – 1978. – Т. 21. – № 4. – С. 553–557.
3. Тимашев, В.В. Влияние механоактивации на структурно-механические параметры перерабатываемого сырья / В.В. Тимашев, Л.М. Сулименко, Ш. Майснер // Изв. АН СССР, сер. «Неорганические материалы». – 1986. – Т. 21. – № 3. –С. 489–493.
4. Сулименко, Л.М. Агломерационные процессы в производстве строительных материалов / Л.М. Сулименко, Б.С. Альбац // М.: ВНИИЭСМ, 1994. – 312 с.
5. Осокин, А.П. Модифицированный портландцемент / А.П. Осокин, Ю.Р. Кривобородов, Е.Н. Потапова. – М.: Стройиздат, 1993. – 328 с.
6. Ребиндер, П.А. Физико-химическая механика дисперсных структур / П.А. Ребиндер. – М.: Наука, 1966. – 160 с.
7. Сулименко, Л.М. Механоактивация сырьевых смесей и гидратационная активность клинкера / Л.М. Сулименко // Техника и технология силикатов. – 1994. – № 1. – С. 18–22.

Использование опубликованных на сайте материалов допускается только с упоминанием источника (журнал «Цемент и его применение») и активной гиперссылкой на цитируемый материал.

Читайте также: