Сопротивление коллектора теплого пола

Обновлено: 19.04.2024

Какие параметры, характеристики должны быть у теплого пола, — обычный вопрос, который задают себе все, кто хочет сделать эту систему отопления. Неплохо если имеется готовый проект. Но часто на этом экономят и делают по аналогии, рекомендациям и общепринятым схемам согласно опыту строительства. Ведь частные дома во многом сходны по своим условиям.

Сделанные подобным образом теплые полы, по своим характеристикам, смогут быть комфортообразующей системой дома. А также основной отопительной системой, работающей дольше за отопительный сезон, чем вспомогательная радиаторная.

Нагреваемые полы должны соответствовать строительным и санитарным нормативам, требованиям комфорта, которые предъявляют пользователи. Какие это характеристики и как их достичь?

Отапливаемая площадь

Экономить на создании теплого пола в отдельных комнатах себе дороже. Так как эта система — более экономичная среди прочих. Также удельные затраты на строительство маленькой общей площади обогреваемых полов больше чем у больших по площади.

Если создается система теплогенерации полами, то выгодней распространить ее на наибольшую площадь, подключить как можно больше комнат.

Под стационарной мебелью и оборудованием (кухонный гарнитур, унитаз, встроенный шкаф…) нагрев лучше не делать. Можно проложить трубопровод по границе закрытой зоны.

Но если такая зона у наружной стены, то можно пустить трубу вдоль стены, а затем по закрытой зоне положить с увеличенным шагом до 30 — 50 см, чтобы предотвратить охлаждение пола с конденсацией.

Делать ли на втором этаже

На втором этаже над отапливаемым помещением, если выполнена звукоизоляция перекрытия (она же теплоизолирует), то теплый пол также желателен.

Если же перекрытие с малым сопротивлением теплопередаче, то вероятно, нагревом комфорт сильно не увеличить, — и без него на втором этаже температура покрытия обычно составит 20 — 24 град, что достаточно для ощущения комфорта большинством людей.

Площадь теплых полов разбита на фрагменты стяжки

Какая температура у теплого пола в жилом доме

Наивысшая комфортная для человека температура напольного покрытия примерно +28 градусов С, чтобы возможно было в помещении прибывать постоянно.

На такую характеристику ориентируются при проектировании в жилых комнатах – в детской, спальне, гостиной, на кухне.

Но в ванной комнате, в санузел подходит погорячее — 32 градуса.

В прихожей, коридоре — оптимально 30 градусов.

В комнатах для занятий спортом и т.п. — 17 — 20 град.

В краевых зонах всех комнат (у холодных стен шириной 0,5 -0,8 метра) — до 32 — 35 градусов, для компенсации теплопотерь.

Повышение температуры в краевых зонах у наружных стен, чаще достигается увеличением отдаваемой мощности за счет уплотнения укладки трубопровода в 1,5 — 2 раза по сравнению с остальной частью комнаты.

Пирог теплого пола - какую конструкцию предпочесть

Какая мощность системы потребуется

При 28 град на поверхности пола, отдаваемая мощность вряд ли превысит 80 Вт с метра квадратного. При повышении температуры отдаваемая мощность может достигать 100 Вт с одного кв. м.

Но комфортная температура для пользователя чаще находится в пределах 22 — 26 градусов. Большинство людей предпочитает, чтобы пол их не отвлекал, — такое мнение устанавливается после того как «с этой игрушкой наиграются».

Реальная отдаваемая мощность, при комфортной температуре, чаще 40 — 60 Вт с м кв.

Поэтому для нашего климата теплые полы не могут быть единственной отопительной системой по отдаваемой мощности даже в нормально утепленном доме. Можно ли отапливать только полами, нужны ли радиаторы

При этом температура теплоносителя на подаче обычно в пределах 30 – 50 град, максимальная предельная – 60 град.

Расход тепла будет зависеть прежде всего от теплопотерь через утепление пола. На утепление пола экономить недопустимо. Как утеплить полы

Шаг укладки трубопровода и схема

Рекомендуется не увеличивать шаг укладки свыше 20 см даже в центральных частях дома. Это даст возможность использовать более холодный теплоноситель, уменьшит разность температур на подаче и обратке одного контура.

В холодных зонах шаг укладки 10 см.
Краевая зона делается более широкой у наружных стен с окнами и дверями — до 6 рядов по 10 см.
У стен без окон — 4 ряда.
От края стяжки до трубы — не менее 10 см.

Контура в основном укладываются улиткой, чтобы чередовать подачу и обратку и не образовывать горячих и холодных частей комнаты.

В краевых зонах у окон обычно делают не менее 4 рядов змейкой с подачи. Затем возможно раскручивать улитку, но с уплотнением рядов в краевой зоне.

Укладка труб осуществляется по определенной схеме

Длина контуров и размеры стяжки

Отопительный контур (петля отопительного трубопровода) в частных домах в основном создается из металлопластиковых (а также трубы РЕХ и PERT ) труб диаметром 16 мм. Это оптимальный диаметр, трубы большего диаметра, кроме облегчения кошелька, ничем полезным помочь не могут.

Оптимальная длина контура — 60 — 70 метров. При этом достигается баланс напора и необходимого расхода теплоносителя для поддержания разницы температур на подаче и обратке не более 10 градусов, — в основном 7 — 8 градусов.

Стремление достичь разницы в 5 градусов и меньше, требует большого расхода, ведет к неоправданному увеличению потерь напора и мощности насоса.

Максимальная оптимальная длина контура — 80 метров.
Рекомендуемая разница в длинах контуров – не больше 10 метров. Для чего коллектор по возможности располагается по центру дома.

Для малых отапливаемых площадей длина контура 30 — 45 метров. Это дает возможность упростить гидравлику и пользоваться ограничителями потока (РТЛ-головками) вместо смесительного узла.

Удельный расход труб при шаге 20 см — примерно 4,8 метра на 1 м кв. площади.

Площадь участка стяжки оптимальная для одного контура с шагом 20 см и частично 10 см — примерно 12 м кв.

Трубы подключенные к коллектору теплого пол

Размещение контуров по площади дома

Каждый контур располагается в пределах одной комнаты или участка стяжки ограниченной деформационными швами. Тогда максимальный рекомендуемый размер нагреваемой стяжки –5 метров.

Деформационный шов могут пересекать только подводящие участки труб, пересекать швом ряды контура недопустимо.

Один контур может располагаться в двух или трех смежных небольших комнатах, сделанных одним участком стяжки.
В одной комнате могут располагаться несколько кусков стяжки разбитых деформационными швами (несколько контуров).

В местах выхода/входа трубы ограждаются оберткой из гофры заходящей в стяжку на 20 см и больше. В месте расположения коллектора, для предотвращения перегрева стяжки, возможно применение кусков гофры до 2 метров и больше.

Коллектор теплого пола в сборе

О трубах

Диаметр подводящего трубопровода к смесительному узлу или коллектору теплого пола от котла (главной магистрали) — 1 дюйм, — по характеристикам резьбового соединения в 25 мм самого коллектора или др. применяемого оборудования. Это значит, что лучше применять следующие диаметры труб, — из полипропилена — 32 мм, металлопластиковую — 25 мм.

Смесительный узел должен соответствовать по расходу жидкости. Нужно подбирать так как отдельные двух и трех ходовые клапаны имеют меньшую пропускную способность — до 2м куб в час.

Не рекомендуется подключать к одному коллектору более 7 контуров длиной до 80 метров для насоса 25-40. Максимально по подводящему оборудованию на один коллектор — 11 контуров.

Площадь и насос

Применяемый насос — 25-40 для среднеутепленного дома в средней полосе площадью до 120 м кв., но с хорошим утеплением самих полов. Теплопотери же самого здания играют не столь важную роль, так как теплый пол создается в первую очередь для комфорта.

Но тем не менее они учитываются, поэтому площадь может сдвигаться в ту или иную сторону в зависимости от теплопотерь здания и климата его нахождения. Свыше указанной площади применяется насос 25-60.

Здесь пример теплотехнических «прикидок» и выбор насоса для теплого пола

Общий расход насосом 25-40 на 7 контуров от 1,5 м куб час, чтобы не было значительного падения температуры на обратке. Тогда, при длине контура 65 метров, возникнет потеря напора около 1,8 метра (при расходе около 0,2 м куб час в одном контуре), что вписывается в характеристики такого насоса.

На больших площадях оптимально применять, два и более небольших насосно-смесительных узла, со своей группой контуров.

Закрепление труб, сетки на стяжке

Особенности конструкции

Перепад высот уложенного трубопровода — не более 5 мм.
Толщина экструдированного пенополистирола обеспечивает сопротивление теплопередаче не менее рекомендованного СНиП для полов в данной климатической зоне, — 100 — 250 мм, над подпольем, проездами, 35 мм — над отапливаемыми помещениями.

Толщина стяжки из бетона М200 — от 80 мм, выше трубопровода — от 50 мм.
Состав стяжки

Напольное покрытие теплого пола соответствующее, с уменьшенным сопротивлением теплопередаче, экологичное.

Это далеко не все характеристики, которые пригодятся как данные при строительстве теплого пола в частном доме, но дополнительную информацию можно найти на других страницах ресурса.

Статья № 9.1 Как рассчитать гидравлическое сопротивление,каждой петли теплого пола.

22 марта 2015

Расчет водяного теплого пола с точки зрения систем укладки труб и с точки зрения расчета гидравлического сопротивления, соответственно балансировки всей системы водяного теплого пола.


Есть три основные типа укладки труб теплого пола -: Рис № 1 – улитка, Рис № 2 – змейка и Рис № 3 – двойная змейка. Какой из них лучше? Каждый имеет право на применение в зависимости от обстоятельств.

Красная часть трубы, половина длинны трубы, принимается за горячую.,

Синяя часть трубы, вторая половина длинны трубы, за холодную.

Главное требование с точки зрения работоспособности системы водяного теплого пола это

потеря давления или гидравлическое потери одной петли не должно превышать 20 000 Па

( 20 Кпа, 0.2 Бар, 0.02 Мпа).

Максимальная длинна петли теплого пола не должна превышать для трубы 16х2 – 100 метров(желательно – 80 м ) для трубы 20х2 ― 140 метров (желательно 120 м).

При выборе длинны петли надо обязательно учитывать способ применяемый для управления температурой водяного теплого пола ,Для разных способов управления а их два:

1 остановка подачи теплоносителя в петлю теплого пола при достижении в ней заданной температуры.

2 без остановки подачи теплоносителя в петли теплого пола, то есть увеличение или уменьшение подачи горячего теплоносителя в пели теплого пола

более подробно об этом можно ознакомится на нашем сайте в статье 8.1 или активизировать слово перейти и в статье 8.2 или активизировать слово перейти

При соблюдении этих правила не возникает опасности появления «запорной петли». Когда увеличение мощности насоса пропорционально увеличивает гидравлические потери, которые требуют большей мощности насоса и т.д.

Без : формул, но достаточно точно +/- 10 %, можно посчитать гидравлические потери в каждой петле теплого пола. Весь расчет строиться:

1. На скорости теплоносителя внутри трубы (при его температуре 30 гр. С) – примем ее максимальную для трубы 16 х 2 – 0.35 м/сек. и для трубы 20 х 2 – 0.2 м/сек. , т.е. при этих скоростях расход воды ( кг/ сек. )у этих труб будет примерно одинаковым. Эту скорость можно контролировать по расходомерам, установленным на гребенке теплого пола, на каждой петле.

2. На гидравлических потерях , при этой скорости и температуре теплоносителя, 1 метра прямого участка трубы: для трубы 16х2 –160 Па, для трубы 20х2 ― 50 Па.

3. На гидравлических потерях, при этой скорости и температуре теплоносителя, на каждом повороте трубы составит :

На поворот 90 гр. для трубы 16х2 – 35 Па, 20х2 ― 20 Па.

..На поворот на 180 гр. для трубы 16х2 ― 70 Па, для трубы 20 х 3 -40 Па.

Теперь каждый может посчитать, какие гидравлические потери будут в каждой петле теплого пола..

Приведу пример расчета Рис № 1. Условие ― труба 16х2 , длинна петли 80 метров. Шаг ( расстояние между трубами в петле теплого пола) не влияет на расчёты, но выше приведенные условия рассчитаны для среднего шага 150 мм. .

1. Определяем гидравлические потери в трубе, разложенной по прямой линии 80 метров х 160 Па = 16 000Па.

2. Считаем количество углов по 90 гр и по 180 гр. в нашей схеме Рис № 1 получается 18 углов по 90 гр. и 2 угла по 180 гр.

3. Определяем гидравлические потери на углах 90 гр. 18 углов х 35 Па = 630 Па. и 2 угла по 180 гр. – 2 угла х 70 Па.= 140 Па.

4. Суммируем все потери 16 000 Па + 630 Па + 140 Па = 16 770 Па

основные условия для этой петли выполнены: меньше 20 000 Па. и меньше 100 метров длинна петли

Эти расчеты важны для балансировки петель теплого пола , подключенных к одной гребенке, для его нормальной работы , т. к . для одной гребенки т надо стараться сделать так, чтобы гидравлические потери самой длинной петли и самой короткой петли отличались примерно не более чем на 20 % и чем меньше отличие тем лучше .

И теперь вернемся к вопросу схем укладки трубы представленных на рис 1,2,3.

Схема укладки Рис № 2 «двойной змейки» имеет примерно на !0 % большее гидравлические потери, при одних и тех же условиях работы, чем схема на Рис № 1-« улитка». Значит, петлю с меньшей длиной лучше уложить « двойной змейкой», чтобы увеличить гидравлические потери петли и приблизить их к гидравлическим потерям самой длинной петли, а самую длинную петлю возможно лучше уложить трубой 20 х 2 ,чтобы снизить гидравлические потери в этой петле и приблизить их к самой короткой. Так манипулируя схемами укладки и диаметром труб можно уменьшить разброс гидравлических потерь в петлях Теплого пола, подключенных к одной гребенке.

Правильно рассчитанный водяной теплый пол это полови условия длительной нормальной его работы .

Второе и самое важное условие это выбрать правильный тип труб для изготовления и качество этих труб должно соответствовать Европейским стандартам :

Вы открыли сайт компании ООО «Стандарт полимер». производителя металлопластиковых труб для отопления, водоснабжения и теплого пола в РБ . Запрос, «водяной теплый пол», по которому Вы зашли на наш сайт предполагает, что Вы находитесь, как нам кажется, в стадии принятия решения ― создания на Своем объекте водяного теплого пола

Ниже представленную информацию Вам представляет директор компании ― ООО «Стандарт полимер» ― Амельченко Валентин Павлович. Компания, в г. Минске, производит металлопластиковые трубы и пресс фитинги для них. Автор этой публикации внес дополнения и изменения в СТБ 1908 -2008 с изменением №1.


Автор этой публикации так же хорошо знаком с теории полимерных материалов , физико – химических свойствах этих

материалов, особенно такого полимерного материала , как полиэтилен. На основании этого считаю, что могу дать компетентную информацию посетителю нашего сайта.

. Главным элемент ом водяного теплого пола является труба, которую Вы примените для его создания. От этого элемента (трубы) зависит, сколько лет этот водяной теплый пол, без проблем, будет работать ― .5 или 50 лет. 50 лет работы водяного теплого пола могут обеспечить только два типа труб:

1. Мягкая (отожженная) медная труба. .В виду высокой стоимости медной трубы, Мы ее рассматривать не будем.

2. Металлопластиковая труба.

Если в первом варианте ― медная труба, приобрести не качественную медную трубу практически исключается, то с металлопластиковыми трубами все с точностью наоборот. Металлопластиковые трубы, представленные на рынке РБ, которые действительно проработают минимум 50 лет, в системе водяного теплого пола, представлены крайне не достаточно и причин этого крайне много. Перечисление всех их, в данной статье, займет много времени. Кого из наших читателей интересуют более подробная информация по этой проблеме, смотрите на нашем сайте в разделе «Новые статьи» статью 2.2 и другие статьи с индексом 2,3 и 4.

Остановлюсь только на основном требовании к металлопластиковой трубе, которое гарантирует работу этой трубы во внутренних системах отопления, водоснабжения и теплый пол для зданий и сооружений. Эту гарантию дают только полимерные материалы, которые применяются производителем металлопластиковых труб, для их производства. Требования к этим материалам должно соответствовать Европейским стандартам ISO на этот вид изделий:




Приведу только один пример – полимерные материалы, для металлопластиковой трубы с аббревиатурой PE - RT / AL / PE - RT и гарантией работы 50 лет делает, пока, только один производитель в мире это Corp . «DOW Chemical» USA ( крупнейший мировой химический концерн -70 000 работающих) изготавливающая « термостойкий полиэтилен PE-RT» под маркой Dowlex 2344 или 2388. Эта компания придумала этот материал и запатентовала его. Соответственно, МП трубы с аббревиатурой PE-RT/AL/ PE-RT соответствующая стандарту ISO 22391 должна быть изготовлена только из этого материала Dowlex 2344 или 2388. Комментарий к таблице:

К примеру ― металлопластиковая труба с аббревиатурой PE-RT/AL/ PE-RT, размер 1 6 х 2 , при постоянной работе с температурой теплоносителя протекающего внутри трубы равного 110 гр. С и постоянным давлением в трубе 6.5 Бар,. изготовленной из полимерного материала Dowlex 2344 прослужит 1.55 года, из Dowlex 2388 прослужит 1.47 года . Требование , Европейского стандарта ISO 22391( " Ke factor ") к выше приведенным параметрам работы трубы составит 1 год.

В тоже время, эта металлопластиковая труба, но с температурой теплоносителя 70 гр. С и давлением 6.5 Бар, из полимерного материала Dowlex 2344 прослужит- 77.29 года, из Dowlex 2388 -73.29 года . Требование , Европейского стандарта ISO 22391( " Ke factor ") к этим условиям работы трубы должен составлять 50 лет.

Колонка " Ke factor " это требование Европейского стандарта ISO 22391 в годах. к сроку службы трубы из PE-RT

Все производители металлопластиковых труб, как очень известные, так и никому не известные, изготавливающие свои трубы с аббревиатурой PE-RT/AL/ PE-RT из выше названного полимерного материала будут однозначно работать минимум 50 лет. Наш читатель, конечно понимает, что любой качественный продукт стоит не дешево. Соответственно, металлопластиковые трубы, сделанные из этих полимерных материалов, стоят не дешево. Приведу пример, проверенных нами на качество, металлопластиковых труб немецкого производителя компании « Oventrop », его труба достаточно широко представлена на рынке РБ. Цена на их трубы очень высокая и конкурировать по цене на рынке РБ ей крайне сложно, а вот по качеству своей продукции она на первых местах на этом рынке. Ведь цену видит каждый покупатель, а качество металлопластиковых трубы. по внешнему виду не видно, они все примерно одинаковы. Доказывать покупателю, что цена на продукцию соответствует ее качеству, всегда крайне сложно, ведь проверить качество труб покупатель сможет в процессе их эксплуатации, а. гарантия на этот тип продукции в РБ составляет 3 года.

Компания ООО "Стандарт полимер" с полной уверенностью маркирует свою металлопластиковую трубу сроком гарантии работы трубы 50 лет и более, т.к это гарантирует производитель полимерного материала из которого изготавливается труба.

Компания ООО "Стандарт полимер" с полной уверенностью маркирует свою металлопластиковую трубу сроком гарантии работы трубы 50 лет и более.

Презентую новую публикацию о услуге, которую предлагает компания ООО «Стандарт полимер»

Хочешь сделать хорошо – сделай Сам.

Реализация своими руками, с полной нашей поддержкой, проекта - отопление, водоснабжения и водяной теплый пол, частного дома. Экономия от 5 до 8 у.е. на 1 метре квадратном отапливаемой площади дома

Какие преимущества Вы получаете при создании системы отопления и водоснабжения Вашего частного дома воспользовавшись Нашим предложением.

1. Большая экономия финансовых средств за счет отсутствие затрат на оплату проекта разработанного проектной организацией или ИП для Вашего дома ,а это примерно от 1.5 до 3 уе за м2 отапливаемой площади Вашего дома

2. Большая экономия финансовых средств за счет отсутствие затрат на оплату работ сантехников ,а это примерно от 5 до 8 уе и более за 1 м2 отапливаемой площади Вашего дома .

Примерная экономия финансов при создания отопления и водоснабжения Вашего дома если Вы воспользуетесь Нашим предложением составит для дома с отапливаемой площадью 150 м2 равна:

- 150 м2 х 2 уе (проект) + 150 м2 х 6уе (сантехники) - 150 м2 х 0,7уе (наши услуги-- куда входят проект ,полная консультация по работам,комплектация оборудования, предоставления бесплатно всех инструментов для производства работ ).

Итого 300 + 900 - 105 = 1095 уе экономии.

3. Часть сэкономленных Вами средств Мы рекомендуем потратить на более качественную комплектацию оборудования, которая Вы примените на систему отопления и водоснабжения, что позволит Вам не иметь больших проблем в течении длительного срока эксплуатации Вашей системы ( минимум от 30 до 50 лет и более) все будет зависеть качества комплектации.

4. Еще одна важная опция которую Вы получите создавая систему отопления и водоснабжения самостоятельно Вы все знаете, что Вы сделали и дальнейшая эксплуатация этой системы и ее обслуживание у Вас не создает больших проблем.

Если Вас заинтересовало это предложение то более подробно с ним можно ознакомится активизировав слово перейти

Если Вы желаете ознакомится с другими статьями на нашем сайте активизируйте слово оглавление статей

Другие статьи на Нашем сайте, более развернуто, дают информацию по всем элементам темы отопление водоснабжение частного дома

С уважением директор ООО "Стандарт полимер" Амельченко В.П. тел. +375 29 676 51 42.

Есть три основных вопроса о сопротивлении теплого пола, которые чаще всего задают мои клиенты и гости сайта:

Зачем и в каких случаях необходимо измерять сопротивление электрического теплого пола

Измерение сопротивления – это наиболее эффективный способ проверки работоспособности и эффективности работы электрических систем отопления. Зная его величину вы, по закону Ома, сможете определить не только электрическую, но и тепловую мощность пола. Коэффициент полезного действия (КПД) у таких систем обогрева, близок к 100%, соответственно, практически вся потребляемая электрическая мощность превращается в тепловую.

Вам достаточно лишь сравнить получившиеся величины с заявленными производителем системы показателями, либо, если они неизвестны, со средними стандартными значениями, о которых я расскажу ниже, чтобы узнать правильно работает ли пол и работает ли вообще.

Измерение сопротивления электрического теплого пола, является обязательным этапом его установки. Производители рекомендуют замерять этот показатель:

- до начала монтажа, как только вы достали комплект греющего кабеля из коробки. Так вы сможете убедиться в том, что он исправен, а его характеристики совпадают с заявленными в паспорте или на упаковке;

- перед заливкой, когда элементы смонтированы на поверхности. Именно в период установки матов или кабеля вероятность его повредить максимальна. Поэтому, прежде чем заливать его стяжкой, плиточным клеем или другим раствором, нужно убедиться, что параметры не изменились;

- После завершения всех работ, непосредственно перед подключением терморегулятора. Зачастую, установка терморегулятора, производится не сразу, а лишь на финальной стадии ремонта помещения, когда с момента монтажа мата прошло достаточно много времени. Поэтому вам нужно еще раз убедится, что он исправен и его можно подключать к сети;

Во всех трех случаях показатели сопротивления должны быть одинаковыми!

Также, измерение сопротивления электрического теплого пола является основным и самым доступным методом диагностики его работы. Уступая по простоте только прозвонке тестером, но давая несравнимо больше информации. Если дополнительно к этому провести проверку мегаомметром на возможную утечку тока, вы будете уверены в работе награвателей на все 100%.

Как измерить сопротивление теплого пола самому с помощью мультиметра

Ниже, вашему вниманию представлена подробная пошаговая инструкция измерения сопротивления теплого пола мультиметром, с анализом всех возможных получившихся результатов.

1. Обычно электрический теплый пол имеет следующую конструкцию:

- Две жилы нагревающейся цепи и защитную оплётку. При этом, по конструкции, встречаются модели, в которых проводники непосредственно нагревающихся элементов располагаются:

- с разных концов – одножильный греющий кабель

- с одной стороны – двухжильный. Второй конец заизолирован.

Подготовительный этап начинается со снятия изоляции с проводников цепи, для удобства проведения замеров.

2. На мультиметре необходимо установить режим измерения сопротивления. Достаточный предел 200- 1000 Ом, в зависимости от модели измерительного устройства.

Поместить щупы в разъемы:

3. Прижать токопроводящий штырь на конце каждого щупа к подготовленным проводникам, каждый к своему. Порядок не важен. Главное, чтобы между собой эти элементы не пересекались.

4. Возможные результаты, которые вы можете увидеть на экране мультиметра при измерении:

"1" – Обрыв электрической цепи. Токопроводящая жила повреждена, нужно искать место обрыва.

"0" – Короткое замыкание. Любое близкое к 0 значение, означает замыкание, скорее всего из-за повреждения изоляции цепи.

Любое другое значение - это и есть его внутреннее сопротивление.

Теперь, когда вы знаете эту величину, осталось правильно интерпретировать её. Понять, нормальная ли она, насколько эффективно работает при этом пол, является ли греющий кабель причиной неисправности или проблема в других элементах – терморегуляторе или напряжении сети.


Каким должно быть сопротивление электрического теплого пола

Теплый пол чаще всего выпускается в виде греющего кабеля или матов:

Нагревающие маты, представляют собой определенным образом уложенный и зафиксированный в таком положении греющий кабель. Кроме того, что у такого варианта значительно более простой монтаж, у него фиксированная мощность на метр квадратный, которая не меняется.

А вот мощность квадратного метра пола, сделанного обычным кабелем, может сильно различаться, в зависимости от того, как он размещен на поверхности, с какой плотностью, сколько сделано витков и какое между ними расстояние.

Если вы знаете, какой мощности комплект, замерив его сопротивление, вам не составит труда проверить его исправность и эффективность:

Достаточно воспользоваться законом Ома, а именно следующей формулой:

P=U 2 /R , где P, Ватт – мощность; U, Вольт – напряжение сети, обычно учитывается 220 Вольт; R, Ом - Сопротивление;

Пример: Таким образом, зная, что в стяжке залит греющий мат общей мощностью 800 Вт, а мультиметр показал сопротивление около 60 Ом, можно проверить насколько фактические показатели соответствуют заявленным:

P = 220 2 /60= 806,7 Вт – что очень близко к номиналу, значит пол исправен.

Если же вы не знаете мощность установленной системы электрического обогрева, лишь примерно понимаете площадь поверхности, которую она отапливает и где установлена, диагностику нужно проводить следующим образом:

МОЩНОСТЬ ТЕПЛОГО ПОЛА НА КВАДРАТНЫЙ МЕТР

Независимо от того маты или кабель – теплый пол обычно выбирается так, чтобы на каждый квадратный метр нагреваемой поверхности приходилось, в среднем, 150 Вт электрической мощности. В зависимости от предназначения помещения и цели установки эта величина может варьироваться:

- от 100 – 130 Вт, когда достаточно лишь сделать температуру покрытия на поверхности комфортной, например, напольной плитки в ванной или на кухне;

- от 130-180 Вт, когда необходимо дополнить основную систему обогрева, применяется чаще всего. Может достаточно сильно нагреть напольное покрытие, тем самым дополнительно подогревает помещение в холодные периоды;

- от 180 – 250 Вт, когда тёплый пол используется как основной источник отопления, либо, является полноправной частью в общей системе обогрева мест где бывает особенно холодно, например балкона;

- В среднем, мощность погонного метра греющего кабеля для теплого пола – 10 – 20 Вт/м.п.;

Таким образом, вы, после замера сопротивления, должны прикинуть примерную площадь установки и приступить к расчетам:

Пример: Допустим у вас есть коридор в квартире, в котором порядка 6 квадратных метров подогреваются. Замерив мультиметром сопротивление греющего кабеля, вы получили результат 55 Ом. Осталось рассчитать, насколько этого достаточно для такой площади:

В первую очередь определяем общую мощность:

P=U 2 /R= 220 2/55 = 880 Вт

Затем мощность 1 квадратного метра:

Pкв.м.=880/6 = 146,7 Вт/м.кв. – что, с учетом погрешности, соответствует стандартной, наиболее распространённой мощности обогрева электрического пола. Если же рассчитанная величина, будет слишком низкой или высокой – то вы поймёте, что именно греющий кабель причина неисправности – и сможете его починить.

Как видите, измерение сопротивления греющего кабеля электрического тёплого пола, это основной способ диагностики. Греющие маты или кабель, после их установки в стяжку или плиточный клей, без полного демонтажа не достать и никак не осмотреть. А выполнить замер его сопротивления мультиметром в быту доступно каждому и не является невыполнимой задачей. Узнав, что проводники пола не разорваны, не коротят и имеют достаточную для нагрева мощность – вы сможете продолжить искать причину неисправности в других компонентах.

Если же вы столкнулись с ситуацией, не описанной в статье, не можете измерить сопротивление или проанализировать его – пишите о своей проблеме в комментариях к статье, постараюсь помочь. Кроме того, как всегда оставляйте обратную связь, замечания, дополнения к статье, это будет полезно многим!

Настройка теплого пола вызывает вопросы потому, что много вариаций конструкций гидравлики. Встречаются сложные коллектора с расходометрами, а есть и самодельные, сваренные из полипропилена… Известны несколько методов приемлемой настройки теплого пола, самый простейший из которых — с помощью балансировочного вентиля, руководствуясь субъективными ощущениями «горячая или не горячая» труба, «нормальная или ненормальная» температура теплого пола.

Но обычный подход заключается в другом, — каждый контур теплого пола настраивается по ротаметру в соответствии с расчетным расходом теплоносителя.

Но как настроить сам коллектор теплого пола? Многие коллектора оснащены двухходовыми клапаноми с термоголовкой, а также байпасом между подачей и обраткой, который снабжен настроечным клапаном, его нужно балансировать… Могут встретится коллектора с трехходовым клапаном, или другими вариантами…

Работа трехходового клапана

Трехходовой клапан смешивает два входящих в него потока, друга разновидность – разделяет их. Соотношение потоков и температура на выходе зависит от положения тарелки. Это регулируется утапливанием штока, на который в свою очередь надавливает термоголовка.

трехходовой клапан

Используются термоголовки с выносным датчиком, устанавливаемым на трубопровод, управляемые по температуре получаемого потока.

Таким образом, установив на входе в коллектор трехходовой клапан, мы может поддерживать в теплых полах нужную температуру теплоносителя, чаще 35 — 45 град. Настройка по температуре чаще заключается лишь в выставлении значений на термоголовке. Балансировать сам коллектор не нужно, только контура.

Схема гидравлики коллектора

Почему предпочитают двухходовые клапаны, а не трехходовые

В схеме с трехходовым клапаном температура теплоносителя будет слишком остро зависеть от положения тарелки клапана. Неточности в работе механизмов приводят к значительным ненужным результатам. Схема оказывается не столь надежной, как с двухходовым клапананом и байпасом.

Как работает коллектор с двухходовым клапаном

Двухходовой клапан регулирует расход «больше-меньше» в зависимости от утапливания штока термоголовкой. Устанавливается на входе в коллектор со стороны подачи и регулирует долю горячего теплоносителя, поступающего в коллектор, по сравнению с тем, что идет с обратки на подачу через байпас.

работает двухходовой клапан

Но эта система нуждается в предварительной настройке соотношения потоков через байпас и через открытый двухходовой клапан. Байпас же снабжается настроечным клапаном под шестигранный ключ. Его нужно настроить, но как правильно?

Или же на байпасе устанавливается двигатель, а настройка заложена в обратке коллектора. В общем нужно сделать предустановку количества с обратки теплого пола, по отношению к тому что идет с подачи от котла.

Как устроен коллектор

Какие термоголовки использовать, с какой температурой

Используемые термоголовки должны соответствовать температурному режиму теплых полов. Термоголовки имеют довольно узкие пределы регулировки температуры, например «40 – 70 град», или «50 – 80 град», поэтому их нужно правильно выбрать.

Наиболее подходящими остаются «20 – 50 градусов». Низкая граница в 20 градусов понадобится в спортивных комнатах, а также нередко летом для подогрева «ледяного» плиточного пола, но воздух при этом нагреваться не будет. Возможно также применение механизма с предустановкой «30 – 60 градусов» в системах частных домов.

Как настроить, отбалансировать коллектор с двухходовым клапаном

Сперва делается настройка расхода теплоносителя в каждом контуре с помощью ротаметров в соответствии с расчетом. При этом двухходовой клапан на входе полностью перекрывается, а кран на байпасе (подача с обратки) открывается, – жидкость циркулирует только по контуру теплого пола через байпас.

Регулировка ротаметров

После настройки контуров, двухходовой клапан полностью открывается, а вентиль на байпасе постепенно прикрывается. Как только тарелки на ротаметрах сдвинутся, — общий расход через контура начнет уменьшаться, – значит «Готово», система первично отбалансирована «по гидравлике» и работоспособна. Значит данная схема стала «чувствительной» к сопротивлению обратки.

Готовый коллектор с клапаном

Окончательная балансировка коллектора «По температуре» проводится после укладки стяжки и разогрева теплого пола в течении суток в номинальный режим. На вход коллектора от котла подается +50 градусов, а после байпаса на гребенке подачи должно быть +45 градусов. Если там температура больше, то клапан на байпас открывают (добавляется холод), если меньше, то закрывают. Но, чаще первоначальная настройка «по гидравлике» в особых корректировках не нуждается.

Где устанавливаются ротаметры — на подаче или на обратке?

Существуют два вида ротаметров, – или для подачи, или для обратки. Например, ротаметры для обратки отличают тем, что в нормальном положении тарелка утоплена вниз, а подходящая из контура (снизу) жидкость приподнимает тарелку.

У механизмов для подачи наоборот – без нагрузки тарелка находится вверху колбы, а жидкость идущая с коллектора будет ее опускать вниз.

Перепутать установку ротаметров, – значит запереть контуры, так как жидкость будет прижимать тарелки к седлу, система работать не будет.

Конструкция системы внутрипольного отопления

Заблуждение 1. Преимущество шага укладки трубы 150 мм над шагом 200 мм

Существует заблуждение, что в зависимости от теплопотерь помещения следует выбирать различный шаг укладки трубы: 100, 150, 200.

На самом деле, тепловая мощность системы внутрипольного отопления зависит от разницы температур поверхности пола (Тп) и температуры воздуха в помещении (Тв). Эта разница температур, умноженная на площадь плиты теплого пола и на коэффициент теплообмена (α≈10-12 Вт/м2/К) как раз и дает тепловую мощность в Ваттах в пределах одного помещения.

Чем реже шаг укладки, тем горячее должен быть теплоноситель, чтобы достичь необходимой температуры поверхности пола при определенной конструкции пирога пола и напольном покрытии.

ГРАФИК 1. Диаграмма нагрузок для пирога пола с сопротивлением теплопередаче R=0,06 Вт/м2/К (стяжка 6см, клей, керамогранит) Ось абсцисс – температурный напор между температурой теплоносителя (Тт) и температурой воздуха в помещении (Тв).

ГРАФИК 1. Диаграмма нагрузок для пирога пола с сопротивлением теплопередаче R=0,06 Вт/м2/К (стяжка 6см, клей, керамогранит) Ось абсцисс – температурный напор между температурой теплоносителя (Тт) и температурой воздуха в помещении (Тв).

Увеличение или уменьшение шага укладки трубы приводит к изменению площади поверхности трубы (разделительной стенки) участвующей в процессе теплопередачи от теплоносителя к стяжке. При уменьшении площади (т.е. увеличении шага) можно достичь той же тепловой мощности просто незначительно увеличив температуру теплоносителя: например, для шага 200мм на 1-3 градуса по сравнению с шагом 150мм.

ГРАФИК 2. Зависимость плотности теплового потока системы теплый пол от температуры поверхности пола Tп, [°С] при различном шаге укладки труб B, [мм] и температуре воздуха в помещении Tв=20 °С

ГРАФИК 2. Зависимость плотности теплового потока системы теплый пол от температуры поверхности пола Tп, [°С] при различном шаге укладки труб B, [мм] и температуре воздуха в помещении Tв=20 °С

Приняв тепло от теплоносителя, стяжка передает тепло напольному покрытию, устанавливая определенную температуру поверхности пола. Далее это тепло, за счёт разности температур, передается воздуху.

Зачем применяют различные шаги труб?

1. Для коррекции температуры поверхности пола в выбранном помещении относительно других помещений в доме. Например, если во всех помещениях принят шаг 200мм, это позволяет поддерживать температуру пола 28 градусов (при текущей температуре теплоносителя), но в ванной комнате теплый пол, смонтированный с шагом 150мм, нагревает поверхность пола до 30 градусов, соответственно выдает и бóльшую тепловую мощность (при той же температуре теплоносителя в системе).

2. Для поддержания одинаковой температуры поверхности пола при использовании различных напольных покрытий в разных помещениях в пределах одной системы.

Сопротивление теплопередаче R (или коэффициент теплопередачи k=1/R) пирога теплого пола напрямую влияет на установившуюся температуру поверхности пола при текущей температуре теплоносителя.

3. Для сохранения низких параметров теплоносителя при использовании напольных покрытий с низким коэффициентом теплопередачи. Шаг укладки трубы подбирается в зависимости от типа используемого покрытия для достижения необходимой проектной температуры поверхности пола при выбранном температурном графике системы отопления.

Для стяжки с плиткой в качестве напольного покрытия оптимальным является шаг 200мм. Для напольных покрытий с низким коэффициентом теплопроводности (например паркет, ламинат) используется 150мм или 100мм.

4. Для «сухого» метода укладки пола характерно высокое сопротивление теплопередаче слоев над трубами. Например при использовании пирога над трубами — два листа ГВЛВ + плитка — рекомендуем использовать шаг 100мм – по мощности такая система будет близка к классической плите с шагом 200 мм при одинаковой температуре теплоносителя в подающем трубопроводе.

Забегая вперед: чем выше сопротивление теплопередаче, тем меньше теплосъем с 1 м.п. трубы, соответственно, тем меньше расчётный расход теплоносителя и, вывод, контур можно делать длиннее. Контур с шагом 100мм и длиной 100м в «сухом» пироге по гидравлическому сопротивлению и мощности равен контуру «стяжка + плитка» с шагом 200 мм и длиной 65м.

Заблуждение 2. Максимальная длина контура строго ограничена определенным значением

Рекомендованные максимальные длины контуров:

Для 16х2,0 – до 80м, для 20х2,0 – до 120м –для разных диаметров труб при одном и том же располагаемом напоре на коллекторе и одинаковой удельной тепловой мощностью Вт/м2.

Это шаблон, при использовании которого проблем, как правило, не бывает. При использовании шаблона, чтобы гарантировать работоспособность системы, достаточно произвести гидравлический расчёт главного циркуляционного кольца (наиболее длинного, наиболее нагруженного), что занимает около одной минуты времени. Для подбора оборудования этого достаточно, а более глубокие знания могут потребоваться только на этапе пуско-наладки системы.

Всё что написано ниже — подробное объяснение — для скептически настроенных заказчиков, которые начинают спорить, увидев в своём проекте длину, не соответствующую шаблону, в который они верят.

Задачей проектировщика является обеспечить контур теплого пола требуемой мощностью. Для этого выбирается температурный график (температура подачи и температура обратки) и рассчитывается требуемый расход для каждого контура и системы в целом (сумма расходов всех контуров-потребителей). Далее, при расчетном расходе теплоносителя по графикам или таблицам производителя используемой трубы находят удельные линейные потери давления на 1м трубы. При умножении на длину трубопровода получают линейные потери давления в контуре. Учитываются также все потери давления до коллектора — циркуляционное кольцо включает в себя весь путь от источника до потребителя и обратно (гидравлическому расчёту будет посвящена отдельная статья). Сумму потерь давлений должен компенсировать подобранный циркуляционный насос, создавая в коллекторе теплого пола необходимую разность давлений или так называемый располагаемый напор на коллекторе (ΔPc, Па).

Просчет главного циркуляционного кольца для подбора насоса

Просчет главного циркуляционного кольца для подбора насоса

Располагаемый напор ΔPc является основным ограничивающим фактором максимальной длины контура теплого пола. Потери давления в контуре теплого пола всегда равны располагаемому напору на коллекторе. При этом в контуре устанавливается определенный гидравлический режим с неким расходом теплоносителя. Настройкой балансировочных вентилей либо расходомеров на коллекторе можно создавать местные потери давления в контуре с целью уменьшения расхода теплоносителя до расчётного значения.

Ошибкой проектирования является ситуация, при которой фактический расход теплоносителя через контур меньше расчётного при полностью открытом балансировочном вентиле (расходомере). Именно для исключения подобных ситуаций существуют рекомендации по ограничению максимальной длины контура, для объектов, где не выполняется гидравлический расчёт.

На практике значение располагаемого напора ΔPc, Па, находится в пределах от 5000 до 50000 Па. Низкие значения ΔPc встречаются при заужении диаметров магистральных трубопроводов между насосно-смесительном узлом в котельной и коллектором теплого пола, а также при неправильном подборе насоса и трехходового смесительного клапана. Высокий располагаемый перепад давлений достигается, например, при установке насосно-смесительного узла в непосредственной близости к коллектору.

Оптимальное значение ΔPc, которое необходимо обеспечить на коллекторе, можно принять 20000 Па. Под это значение легко спроектировать систему на самом популярном бытовом насосе UPS 25-60. Все контуры теплого пола, подключенные к коллектору, рассчитывают исходя из принятого располагаемого напора. Соблюдение условия равенства между располагаемым напором и потерей давления в контуре достигается либо изменением расчетного расхода теплоносителя (это приводит к увеличению/уменьшению разности температур подающей и обратной линии), либо снижением общей длины контура (для сохранения необходимого расхода теплоносителя), либо изменением внутреннего диаметра трубопровода.

Примеры параметров контура теплого пола:

Располагаемый перепад давлений ΔPc между подающим и обратным коллектором равен 20000 Па, пирог пола с сопротивлением теплопередаче R=0,06 [Вт/(м2*К)] (стяжка 6см, клей, керамогранит)

При температуре теплоносителя на подающем коллекторе в 45 градусов для трубы из сшитого полиэтилена d=16×2,0мм оптимальная длина трубы будет составлять 65м. Расход теплоносителя будет составлять 3 литра в минуту, мощность контура будет составлять 1150 Вт, что примерно равно 90Вт/м2 при шаге укладки 200мм. Температура обратной магистрали будет на 5 градусов ниже.

Если при прочих равных условиях контур будет иметь длину 80м, расход теплоносителя составит 2,7 литра в минуту, разница температур подачи/обратки будет уже 7 градусов, мощность контура 1300Вт (81Вт/м2). Разница температур в 7 градусов является оптимальной, поэтому дальнейшее увеличение длины контура нежелательно без увеличения располагаемого перепада давлений на коллекторном блоке.

При длине контура 100м расход теплоносителя будет 2,4 литра в минуту, разница температур подачи/обратки 10 градусов, мощность контура 1500Вт (75Вт/м2).

При температуре теплоносителя на подающем коллекторе в 45 градусов для трубы из сшитого полиэтилена d=20×2,0мм оптимальная длина трубы будет составлять 95м. Расход теплоносителя будет составлять 5,5 литров в минуту, мощность контура будет составлять 1800 Вт, это примерно 95Вт/м2 при шаге укладки 200мм. Максимальная рекомендуемая длина контура для трубы d=20×2,0мм находится в диапазоне 120-140 м.

Заблуждение 3. Смесительный узел необходим всегда

Насосно-смесительный узел (НСУ) применяется для подключения низкотемпературной системы внутрипольного отопления к высокотемпературной системе отопления.

Коллектор внутрипольного отопления подключен к системе радиаторного отопления через НСУ

Если система отопления состоит только из системы теплый пол, или будет работать на графике теплого пола, то и НСУ не нужен. Ограничение температуры теплоносителя в таком случае происходит на панели управления котла. Это верно для электрокотлов и газовых настенных котлов, а также для всех теплогенераторов, способных поддерживать заданную температуру теплоносителя и не имеющих требований по минимальной температуре обратной магистрали.

Котел и система внутрипольного отопления в качестве единственного источника тепла

Если источник тепла необходимо защищать от низкой температуры обратной магистрали (например, твердотопливный котел, дизельный или газовый напольный с чугунным теплообменником), подключение к единственному низкотемпературному потребителю возможно только через буферную емкость. После буферной емкости НСУ необходим.

Твердотопливный котел с защитой от низкой температуры обратной магистрали и низкотемпературная система отопления могут работать только через буферную емкость.

Заблуждение 4. Коллектор из нержавеющей стали лучше латунного

С точки зрения коррозионной стойкости коллекторы из нержавеющей стали нет смысла применять в системах отопления. Латунь успешно используется как в системах отопления, где риск коррозии по определению минимален, так и в системах водоснабжения. Латунные коллекторы, как и другие изделия из латуни дополнительно никелируют для исключения риска возникновения коррозии.

Европейские производители отказались от латуни из-за её высокой стоимости — в производстве коллектор из нержавейки дешевле латунного.

В случае с нержавеющими коллекторами важна марка стали, толщина стенки и качество шва. Европейские производители для систем отопления используют сталь AISI304, а научная база их производств и качество изделий не вызывает сомнений — в том числе и для этого они проводят ежегодные экскурсии на своих предприятиях. Коллекторы европейского производства на сегодняшний день на рынке представлены только нержавеющей сталью.

Бюджетные коллекторы из нержавеющей стали китайского производства потенциально менее надежны, чем бюджетные китайские коллекторы из латуни. Качество шва, марка стали, толщина листа – это доступные факторы для оптимизации себестоимости изделия. Коллектор из латуни в производстве невозможно ради экономии сделать тонким, а качество слоя никеля или его полное отсутствие можно легко определить на глаз.

В дискуссии о качестве коллекторного блока на первом месте должен стоять вопрос о качестве комплектующих – расходомеры, термостатические вентили, воздухоотводчики и сливные краны. Комплектующие составляют более половины себестоимости коллекторного блока. В 99% случаев проблемы возникают именно из-за некачественных комплектующих.

Читайте также: