С увеличением прочности бетона деформации

Обновлено: 16.05.2024

Аннотация научной статьи по технологиям материалов, автор научной работы — Коваль Сергей Борисович, Молодцов Максим Вилленинович, Головнев Станислав Георгиевич

Исследованы характер изменения и зависимость от различных технологических факторов мгновенных деформаций бетона, загруженного первый раз в раннем возрасте, и деформаций в момент его догружения после твердения под нагрузкой в течение некоторого времени.

Похожие темы научных работ по технологиям материалов , автор научной работы — Коваль Сергей Борисович, Молодцов Максим Вилленинович, Головнев Станислав Георгиевич

Текст научной работы на тему «Кратковременные деформации бетона»

КРАТКОВРЕМЕННЫЕ ДЕФОРМАЦИИ БЕТОНА

С.Б. Коваль, М.В. Молодцов, С.Г. Головнев

Исследованы характер изменения и зависимость от различных технологических факторов мгновенных деформаций бетона, загруженного первый раз в раннем возрасте, и деформаций в момент его догружения после твердения под нагрузкой в течение некоторого времени.

В момент приложения внешней нагрузки в конструкциях возникают мгновенные напряжения. В некоторых случаях они могут значительно превосходить расчетные из-за рывков и неточности выполнения монтажных работ. В результате чего, при загружении монолитных железобетонных конструкций внешней нагрузкой, бетон в начальный момент времени может испытывать значительные деформации. Поэтому одной из основных задач проводимого эксперимента являлась определение скорости нарастания и величины деформаций в момент приложения нагрузки.

Особенно важным моментом проводимого эксперимента явилось не только определение мгновенных деформаций бетона, загруженного первый раз в раннем возрасте, но и исследование его деформаций в момент догружения после твердения под нагрузкой в течение некоторого времени (в проводимом эксперименте -10 дней).

Из полученных экспериментальных данных, представленных в таблице, видно, что относительные сжимающие деформации достигают своих максимальных значений в момент приложения к бетону внешней нагрузки. После окончания нагружения деформации продолжают расти с тенденцией «затухания» в течение 5 минут, характеризуя собой кратковременную ползучесть бетона.

Причем в величине полных кратковременных деформаций доли деформаций, возникающих непосредственно в момент загружения, и кратковременной ползучести отличаются по величине. Зависимость соотношения деформаций, возникающих непосредственно в момент приложения нагрузки, и кратковременной ползучести от номера загружения и прочности бетона представлены на рис. 1 и 2.

Доля относительных деформаций, возникающих непосредственно в момент приложения нагрузки, несомненно, выше по сравнению с де-

№ замеса № загружения Прочность, МПа Относительные деформации сжатия, е-10 5 Полные кратковременные деформации - Ек

В момент загружения - єк1 Кратковременная ПОЛЗуЧеСТЬ - Ей

1 1 6,76 14,46 0,67 15,13

2 8,82 4,25 0,39 4,64

3 10,78 4,12 0,39 4,51

2 1 5,49 13,58 1,28 14,86

2 8,82 2,81 0,84 3,65

3 11,03 3,55 2,25 5,80

3 1 2,35 8,19 0,00 8,19

2 6,76 8,18 0,26 8,44

3 8,33 2,64 0,27 2,91

4 1 7,06 18,88 0,81 19,69

2 10,78 4,04 0,27 4,31

3 11,27 2,28 0,004 2,28

5 1 3,36 13,24 0,80 14,04

2 5,20 2,96 0,26 3,22

3 6,86 3,36 0,00 3,36

6 1 1,86 9,01 0,83 9,84

2 3,92 3,17 0,28 3,45

3 5,88 1,80 0,14 1,94

I - Относительные деформации кратковременной ползучести,

і - Относительные деформации в момент загружения

Рис. 1. Соотношение относительных деформаций сжатия, возникающих в момент загружения и кратковременной ползучести в зависимости от номера загружения: а - для бетона с добавкой ЫаЫ02; б - для бетона без добавки №N02

1 2 3 4 5 6 7 8 9 10 11 12

Рис. 2. Соотношение величины относительных деформаций, возникающих в момент загружения - £„1 в зависимости от прочности бетона: * - бетон без добавки ЫаЫ02; ♦- бетон с добавкой №N02

формациями относительной ползучести. Из рис. 1 видно, что номер загружения не оказывает существенное влияние на изменение соотношения между ними и составляет в среднем 94 % на 6 % соответственно.

В тоже время зависимость соотношения мгновенных деформаций и кратковременной ползучести от прочности в момент загружения носит более выраженный характер, в особенности для бетонов с добавкой нитрита натрия. Объяснить увеличение доли деформаций кратковременной ползучести с увеличением прочности бетона можно за счет более сформировавшейся при этом структуры бетона.

Несмотря на это, развитие деформаций, возникающих непосредственно в момент приложения нагрузки, более опасно, так как кратковременная ползучесть протекает в течение хоть и небольшого, но промежутка времени. В тоже время величина кратковременной ползучести при любых усло-

виях не превышает значения мгновенных деформаций. В связи с этим необходимо более подробное рассмотрение механизма возникновения мгновенных деформаций и определение их зависимости от различных технологических параметров.

В зависимости от номера загружения деформации, возникающие в момент загружения — £кЬ при первом загружении больше по сравнению с деформациями последующих загружений (рис. 3). В тоже время деформации второго загружения превышают деформации третьего. То есть, с увеличением номера загружения величина мгновенных деформаций под действием приложенной нагрузки уменьшается. Это объясняется тем, что в процессе первого загружения происходят существенное обжатие бетона с созданием более плотной структуры. Кроме этого, перед вторым и третьим загружениями бетон в течение 10 дней находился под нагрузкой, под действием которой в нем протекали пластические деформации. Откуда очевид-

Коваль С.Б., Молодцов М.В., Головнвв С.Г.

Кратковременные деформации бетона

но, что более интенсивное уплотнение будет наблюдаться на более ранних этапах загружения -при меньших значениях прочности.

Рис. 3. Область изменения относительных деформаций, возникающих непосредственно в момент загружения в зависимости от номера загружения

На величину относительных деформаций, возникающих непосредственно в момент загружения, помимо номера загружения оказывает влияние и прочность бетона в момент загружения. Однако это влияние наиболее наглядно проявляется только в процессе его первого загружения. Так если принять минимальную прочность первого загружения и соответствующую ей значение деформации за начало координат, то с процентным увеличением прочности наблюдается прирост деформаций бетона (рис. 4.). Причем, независимо от наличия в его составе противоморозной добавки, эта зависимость носит ярко выраженный линейный характер.

Приращение прочности бетона, % от ІІ28

Рис. 4. Превышение относительных деформаций в момент первого загружения в зависимости от приращения прочности бетона: ■ - бетона без №Ы02; • - бетона с №Ы02

Характер изменения представленной зависимости объясняется тем, что при первом загруже-нии отсутствовали пластические деформации, возникающие в процессе длительного выдерживания под нагрузкой. При этом бетон с меньшей прочностью меньше деформируется из-за присутствия большого количества свободной влаги, которая препятствует (в отличие от сформировавшейся структуры бетона) развитию деформаций от действия внешних сил. Как показывают ранние иссле-

дования [1], наибольшей сжимаемостью обладает «сухой» цемент. С увеличением содержания жидкой составляющей происходит уменьшение сжимаемости цементного теста.

Из двух выше представленных факторов, влияющих на деформации бетона, возникающие непосредственно в момент приложения нагрузки, наибольшее влияние на величину деформаций оказывает не прочность бетона в момент загружения, а номер загружения.

Это же подтверждают данные рис. 5, из которых видно, что в зависимости от номера загружения величина относительных деформаций бетона, имеющего одну и ту же прочность, может изменяться в несколько раз. В то же время при одном и том же номере загружения деформации в зависимости от прочности бетона меняется в значительно меньшей степени (см. таблицу).

Рис. 5. Деформации, возникающие в момент приложения нагрузки к бетону различной прочности в зависимости от номера загружения: ■ - прочность бетона 72 кг/см2 без №Ы02; • - прочность бетона 69 кг/см2 с ЫаЫ02; А - прочность бетона 69 кг/см2 без ЫаЫ02

Общеизвестно, что изменение относительных деформаций в зависимости от величины внешней приложенной нагрузки может приводить как к положительному уплотнению бетона, так и к образованию нежелательных микротрещин, снижающих конечную прочность бетона. Поэтому величину интенсивности нагружения внешней нагрузкой необходимо увеличивать по мере набора прочности бетона [2]. Однако, как показали приведенные выше данные, эта интенсивность загружения так же должна зависеть и от номера загружения.

Помимо прочности бетона и номера загружения на величину деформаций оказывает влияние и наличие в составе бетона различных добавок. Как видно из данных таблицы влияние противоморозной добавки проявляется в должной степени только при первом загружении бетона, которое представлено на рис. 6.

В процессе второго и третьего загружений наличие добавки не носит ярко выраженного влияния и может приводить как к увеличению, так и уменьшению относительных деформаций, что объясняется более существенным влиянием других технологических параметров выдерживания

бетона под нагрузкой при реальных температурах наружного воздуха.

Рис. 6. Влияние добавки Ыа1Ч02 на относительные деформации бетона, возникающие в момент первого загружения: ■ - без добавки №Ы02; • - с добавкой №Ы02

Из представленных экспериментальных данных видно, что наличие противоморозной добавки ЫаЫОг приводит к уменьшению величины относительных деформаций. Причиной этого может являться то, что данная добавка способствует снижению пористости за счет уменьшения средней крупности пор и увеличения их однородности по объему бетона [3]. А это позволяет получать более плотную структуру бетона, что препятствует увеличению деформаций при влиянии на бетон внешней приложенной нагрузки. Это объяснение также хорошо согласуется с данными представленными на рис. 2. А именно: в результате более плотной структуры бетона с добавкой при увеличении прочности он менее подвержен мгновенным деформациям в момент непосредственного приложения нагрузки. В результате чего доля кратковременной ползучести возрастает.

Таким образом, на величину кратковременных деформаций бетона, выдерживаемого длительное время под нагрузкой и догружаемого в

процессе твердения, оказывают влияние номер загружения, величина приложенной нагрузки и наличие в составе бетона добавок (в частности противоморозной добавки NaN02). Решающим фактором, обеспечивающим наибольшие деформации в момент приложения нагрузки, является номер загружения. Величина приложенной к бетону нагрузки и наличие добавки оказывает ощутимое влияние только на первом этапе загружения, когда бетон не подвергнут длительным пластическим деформациям в результате выдерживания под нагрузкой.

Скорость нарастания кратковременных деформаций достигает наибольших значений непосредственно в момент приложения нагрузки. Соотношение величины мгновенных деформаций и кратковременной ползучести увеличивается в пользу последней только с увеличением прочности бетона к моменту загружения.

1. Ахвердов И.Н. Высокопрочный бетон (экспериментальные и теоретические исследования по технологии бетона). — М.: Государственное издательство литературы по строительству, архитектуре и строительным материалам, 1961. — 162 с.

2. A.c. 1442618. СССР, Е 04 F 21/20, 1980. Способ возведения монолитных железобетонных конструкций в зимнее время / С.Г. Головнев, А.Н. Алабугин, С.Б. Коваль, Н.В. Юнусов (СССР). — № 4068852/29-33; Заявлено 08.09.88; Опубл. 07.12.88, Бюл. № 45, Приоритет 18.02.86. -2 с.

3. Мягков А.Д. Совершенствование технологии зимнего бетонирования тонкостенных и малообъемных монолитных конструкций на основе электропрогрева бетона, содержащего противо-морозные добавки: Автореф. дис. . канд. тех. наук. - М.: ЦНИИОМтГосстроя СССР, 1983 - 22 с.

Деформативные свойства бетона определяются его начальным модулем упругости Еb. Этот модуль может быть определен в зави­симости от марки или класса бетона по таблице ниже.

Начальные модули упругости тяжелого бетона

Модуль упругости Еb·10 -3 МПа

За начальный модуль упругости бетона при сжатии и растя­жении принимается отношение нормального напряжения в бето­не к его относительной деформации при величине напряжения σb < 0,2Rb. Упругие свойства бетона следует проверить путем эк­сперимента, определив начальный модуль упругости вь = 0,2Rb и условный модуль деформаций при σb = 0,2Rb, подвергнув осе­вому сжатию призму размером 100x100x300 мм, замеряя деформацию ε = Δl/l.

При однократном непрерывном сжатии бетонного образца мак­симальной разрушающей нагрузкой диаграмма напряжения-дефор­мации имеет криволинейное очертание, деформации в бетоне рас­тут быстрее напряжений (рис. ниже). Такой характер диаграммы возникает, потому что при быстром достижении максимального усилия в бетоне под действием нагрузки одновременно с упругими деформациями развиваются также неупругие, обусловленные пол­зучестью бетона. Ползучесть — это способность бетона деформи­роваться во времени даже при неизменной нагрузке.

Диаграммы напряжения-деформации бетона при сжатии

1 - 0224

В момент окончательного разрушения призмы получают рас­четное сопротивление Rb. После этого строится график с отклады­ванием по оси х относительного удлинения, а по оси у — напряже­ния в бетоне (рис. выше).

1. начальный модуль упругости при напряжении σb = 0,2Rb (тан­генс угла наклона касательной к действительной диаграмме σ-ε в начале координат)

2. с увеличением напряжений угол наклона касательной к кривой σbb будет уменьшаться (вследствие развития во времени де­формаций ползучести). Находят тангенс угла наклона к оси абс­цисс касательной, проведенной к этой кривой,

3. определяют условный модуль упругости (средний модуль упругопластичности бетона) при σb = 0,5Rb (тангенс угла наклона секущей к кривой полных деформаций)

4. выражая модуль упргопластичности бетона через модуль упру­гости (из выражений выше), получают коэффициент упругости бетона (коэффициент Пуассона)

Коэффициент Пуассона (отношение поперечной деформации к продольной) с увеличением напряжений в бетоне возрастает: на­чальное его значение принимается равным 0,2.

Призменная прочность бетона может быть получена по формуле

где Nmax — разрушающая нагрузка, кН; А — площадь сечения об­разца, см 2 .

Виды деформаций. Под деформативностью бетона понимается изме­нение его формы и размеров под влиянием различных воздействий (в том числе в результате взаимодействия бетона с внешней средой).

Бетон является упруго-пластическим материалом, в котором, на­чиная с малых напряжений, помимо упругих деформаций (ee), появля­ются и неупругие остаточные или пластические (epl), т.е. полная дефор­мация (eb) без учёта усадки равна:

В бетоне различают деформации двух основных видов: объём­ные, развивающиеся во всех направлениях под влиянием усадки или изменения температуры, и силовые, развивающиеся главным образом в направлении действия сил. Силовым продольным деформациям также соответствуют некоторые поперечные деформации бетона; начальный коэффициент поперечной деформации бетона v равен 0,2 (коэффициент Пуассона). Причём v остаётся практически по­стоянным вплоть до напряжений . При этом относительная продольная деформация будет , апоперечная деформация .

Силовые деформации в зависимости от характера приложения нагрузки и длительности её действия подразделяются на следующие три вида:

- при однократном первичном загружении кратковременной на­грузкой;

- при длительном действии нагрузки;

- при многократном повторяющемся действии нагрузки.

Наибольший практический интерес представляют продольные деформации бетона при осевом сжатии. Для изучения деформативности бетона при сжатии используют бетонные призмы с h/a = 4, чтобы исключить влияние на получаемые результаты сил трения, возникающих между опорными гранями образца и плитами пресса. На боковые грани призм в средней их части по высоте устанавли­вают приборы для замера деформаций (рис. 12, а) или наклеивают электротензодатчики.

Нагрузка к призме прикладывается постепенно по этапам или ступеням (ступень обычно составляет 1/10. 1/20 от ожидаемой раз­рушающей нагрузки). Если деформации на каждой ступени прило­жения нагрузки замерять дважды: первый раз сразу после приложе­ния нагрузки и второй раз через некоторое время после выдержки под нагрузкой (обычно около 5 минут), то на диаграмме полу­чим ступенчатую линию, изображенную на рис. 12, б. Деформации, измеренные сразу после приложения нагрузки, упругие и связаны с напряжениями линейным законом, а деформации, развивающие­ся за время выдержки под нагрузкой, неупругие и на диаграмме имеют вид горизонтальных площадок. При достаточно боль­шом числе ступеней загружения зависимость между напряжениями и деформациями может изображаться плавной кривой (рис. 12, б).

Деформации бетона при однократном первичном загружении кратковременной нагрузкой. Длительность загружения обычно не превышает 60 минут. Диаграмма для этого случая показана на рис. 13.

Степень её криволинейности зависит от продолжительности действия нагрузки, уровня напряжений и класса бетона, т. е. .

В связи с этим целесообразно выделить исходные (эталонные) диаграммы, полученные на стандартных призмах, испытываемых скоростью роста деформаций 2%, а затем уже переходить к кор­ректировке (трансформированию) диаграмм. Такая скорость изме­нения деформаций позволяет достигать вершины диаграммы при­мерно за 1 час.

Если по мере падения сопротивления бетона удаётся в той же мере снижать нагрузку, то может быть получен нисходящий участок диаграммы. Знать как работает бетон на этом участке важно для ряда конструкций и видов нагружения.

Полная относительная деформация при однократном загружении бетонной призмы кратковременно приложенной нагрузкой без учёта усадки бетона равна , т.е. она состоит из упругой части, равной и неупру­гой , которая после снятия нагрузки практически не исчезает. Точнее небольшая доля неупругих деформаций (около 10%) в течение некоторого времени после разгрузки исчезает. Эта часть пластической деформации называется деформацией упруго­го последействия εер. Кроме того, исчезает упругая составляющая пластической деформации εе1,характеризующая обратимое сплю­щивание пустот цементного камня. Таким образом, после разгрузки бетона окончательно остается остаточная деформация, возникаю­щая из-за необратимого сплющивания пустот цементного камня и излома их стенок εрl1 (рис. 13). R2 напряжение в момент, пред­шествующий началу интенсивного разрушения бетона (условная ве­личина).






Рис. 12. К определению продольных деформаций бетона при сжа­тии:

а – опытный образец (призма) с наклеенными на боковых по­верхностях электротензодатчиками; б – диаграмма при при­ложении нагрузки ступенями; 1 – прямая упругих деформаций, 2 – кривая полных деформаций

При невысоких напряжениях ( ) превалируют упругие деформации ( ), а при бетон можно рассмат­ривать как упругий материал. При осевом растяжении диаграмма имеет тот же характер что и при сжатии.

Необходимо обратить внимание на предельные деформации, при которых бетон разрушается (точнее начинает разрушаться). Неза­висимо от режима нагружения за предельное значение деформации бетона принимают величину, соответствующую максимальному на­пряжению. Считают приближенно, что средние значения предель­ных деформаций тяжёлого бетона любого класса составляют при кратковременном действии нагрузки:

- при сжатии еиЬ = 0, 002 (2 мм на 1 м);

- при растяжении еиbt = 0,00015 (0,15 мм на 1 м).

Знание предельных деформаций бетона необходимо, так как от их величин зависит диапазон совместной работы арматуры с бето­ном и эффективность её использования.

Деформации бетона при длительном действии нагрузки. При длительном действии нагрузки (t > 60 минут), даже постоянной, неупругие деформации с течением времени значительно увеличива­ются. В реальных же условиях в процессе строительства зданий и сооружений идёт постепенное ступенчатое нагружение железобетонных элементов.

Нарастание неупругих деформаций при длительном действии на­грузки называется ползучестью бетона. Впервые ползучесть бетона была обнаружена И. Самовичем в 1885 г. Деформации ползуче­сти состоят из двух частей: пластической, протекающей почти од­новременно с упругой, и вязкой, для развития которой требуется определённое время. При длительном загружении бетона постоян­ной нагрузкой, которая меньше разрушающей, диаграмма сжатия выглядит так, как показано на рис. 14, а. Участок 0 - 1 этой диа­граммы соответствует деформации, возникающей при загружении; кривизна этого участка зависит, главным образом, от скорости загружения. Участок 1 - 2 характеризует нарастание неупругих де­формаций при постоянном значении напряжений. Наибольшая ин­тенсивность нарастания деформаций ползучести наблюдается в пер­вые 3. 4 месяца после загружения бетона (рис. 14, б). Они достига­ют к концу этого периода 40. 45% от eupl,через год они составляют приблизительно 65. 75% от eupl,и через два года 80. 90%. Затем на­растание этих деформаций по мере приближения к предельной для данных условий величине eupl постепенно затухает. Замечено, что нарастание деформаций ползучести прекращается одновременно с окончанием нарастания прочности бетона. Опыты показывают, что независимо от того, с какой скоростью достигнуто напряжение σь, конечные неупругие деформации, соответствующие этому напряже­нию, всегда будут одинаковы (рис. 14, в).


Рис. 14. Неупругие деформации бетона в зависимости:

а, б – от длительности действия нагрузки; в – от скорости начального загружения

Деформации ползучести развиваются главным образом в на­правлении действия усилий и могут превышать упругие в 3. 4 раза, т. е. εирlе - 3. 4. Это обстоятельство заставляет с ними считаться при проектировании железобетонных конструкций.

Одновременно с ползучестью развиваются и деформации усадки, т. е.:


(1.13)

Природа ползучести бетона объясняется его структурой, дли­тельным процессом кристаллизации и постепенным уменьшением количества геля при твердении цементного камня. Под нагрузкой происходит постепенное перераспределение напряжений с испыты­вающей вязкое течение гелевой структурной составляющей на кри­сталлический сросток и зёрна заполнителей. Развитию деформаций ползучести способствуют также капиллярные явления, связанные с перемещением в микропорах и капиллярах избыточной воды под нагрузкой. С течением времени процесс перераспределения напря­жений затухает и деформирование прекращается.

Ползучесть бетона условно разделяют на линейную и нелиней­ную. Считают, что линейная ползучесть имеет место при ( напряжение, соответствующее нижней границе микрораз­рушений). В этом случае деформацию ползучести определяют по формуле:


(1.14)

где с – мера ползучести бетона при сжатии .

В практических расчётах используют обычно предельную меру ползучести бетона спр, отнесенную ко времени t → ∞ (практически t = 3. 4 годам). Её значения при для различных сроков загружения бетона приведены в СНиП 2.05.03-84 «Мосты и трубы» в табл. 3.

Обозначим через v= εе/εь коэффициент упругопластичности бетона, а через λ = εpl /εь – коэффициент пластичности бетона, тогда отношение


(1.15)

будет называться характеристикой ползучести бетона φ, которая из­меняется от 0 до 4.

Зависимость между с и φ можно получить из (1.14) и (1.15), учитывая, что , тогда φ = сЕb; φ и с вводятся в расчёт для количественной оценки деформаций линейной ползучести при сжатии.

Величина деформации ползучести зависит от многих факторов.

Загруженный в раннем возрасте бетон (при прочих равных усло­виях) обладает большей ползучестью, чем старый бетон. Ползучесть бетона в сухой среде значительно больше, чем во влажной. Техно­логические факторы также влияют на ползучесть бетона: с увели­чением W/C и расхода цемента на единицу объёма бетонной смеси ползучесть возрастает; с повышением прочности зёрен заполнителя ползучесть уменьшается; с повышением класса бетона ползучесть уменьшается. Бетоны на пористых заполнителях обладают несколь­ко большей ползучестью, чем тяжёлые бетоны. Ползучесть зависит от вида цемента: наибольшей ползучестью обладают бетоны, при­готовленные на шлакопортландцементе или портландцементе. Пол­зучесть тем меньше (при прочих равных условиях), чем больше размеры поперечного сечения бетонного элемента. Максимальные деформации ползу­чести (при прочих равных условиях) достигаются при водонасыщении бетона в пределах 20. 35%. Пропаривание бетона снижает его ползучесть на 10. 20%, а автоклавная обработка – на 50. 80%. Ползучесть бетона оказывает существенное влияние на ра­боту железобетонных конструкций под нагрузкой, что учитывают, например, при расчете внецентренно сжатых элементов, при оценке деформативности конструкций и при определении внутренних уси­лий в статически неопределимых конструкциях.

Деформации бетона при многократно повторяющемся действии нагрузки. Многократное повторение циклов нагрузки и разгрузки бетонного образца приводит к постепенному накоплению неупругих деформаций. Линии нагрузки и разгрузки образуют петлю гистере­зиса, площадь которой характеризует энергию, затраченную за один цикл на преодоление внутреннего трения.

При напряжениях, не превышающих предел выносливости , после достаточно большого числа циклов неупругие дефор­мации бетона, соответствующие данному уровню напряжений, по­степенно выбираются и бетон начинает работать упруго (рис. 15).

При высоких напряжениях после некоторого числа циклов кривая достигает прямолинейного вида, а затем на­чинает искривляться снова, но уже в обратном направлении, т.е. вогнутостью в сторону оси напряжений. Искривление начинается с верхней части прямой (т.е. вблизи наивысшего напряжения) и появ­ляется точка перегиба. При продолжающемся повторении приложении нагрузки точка перегиба опускается всё ниже по кривой, пока не исчезнет. Тогда вся кривая оказывается вогнутой в сторону оси напряжений. При этом остаточные деформации после каждой разгрузки неогра­ниченно растут, а кривая всё больше наклоняется к оси абс­цисс. Петля гистерезиса всё больше увеличивается и, наконец, обра­зец хрупко разрушается.

Физические явления, происходящие в бетоне при повторных нагружениях, близки к явлениям, происходящим при действии очень длительных нагрузок, т.е. длительное нагружение можно рассмат­ривать как многократно повторное с .

При вибрационных нагрузках с большим числом повторений в минуту (200. 600) наблюдается ускоренное развитие ползучести бе­тона, называемое виброползучестью или динамической ползучестью бетона.

В зависимости от назначения железобетонных конструкций и условий их эксплуатации нормы проектирования СП 52-101-2003 устанавливают показатели качества бетона (их несколько). Важнейшим из них является класс бетона по прочности на осевое сжатие В. Он указывается в проектах во всех случаях как основная характеристика бетона.

Классом бетона по прочности на осевое сжатие В называется наименьшее контролируемое значение временного сопротивления сжатию бетонных кубов с размером ребра 150 мм, испытанных после 28 суток твердения при температуре t = 20 ± 2°С и относительном влажности воздуха более 60% с соблюдением всех требований стандарта, которое принимается с доверительной вероятностью 0,95.

Для бетонных и железобетонных конструкций нормами проектирования СНиП 52-01-2003 по прочности на сжатие предусмотрены следующие классы тяжёлого бетона: В3,5; В5; В7,5; B10; B15; В20; В25; В30; В35; В40; В45; В50; В55; В60; В65; В70; В75; В80; В85; В90; В95; В100; В105; В110; В115; В120.

Число, стоящее после буквы «В» в обозначении класса бетона, соответствует гарантированной прочности бетона на осевое сжатие, выраженной в МПа, с обеспеченностью 95%. Например, классу бетона В20 соответствует гарантированная прочность бетона 20 MПa.

Чтобы оценить количественно изменчивость прочности бетона и обеспечить её гарантированное для заданного класса бетона значение используют методы теории вероятностей.

Классы бетона по прочности на осевое растяжение (Вt0,4; Вt0,8; Вt1,2; Вt1,6; Вt2; Вt2,4; Вt2,8; Вt3,2; Вt3,6; Вt4; Вt4,4; Вt4,8; Вt5,2; Вt5,6; Вt6) устанавливаются для конструкций, работающих преимущественно на растяжение (например, стенок резервуаров и водонапорных труб).

Кроме того, при необходимости для более полной характеристи­ки качеств бетона могут устанавливаться марки бетона по морозо­стойкости F, по водонепроницаемости W и по средней плотности D.

В п. 5.1.3. СНиП 52-01-2003 предусмотрены бетоны следующих ма­рок:

- по морозостойкости F15, F20, F25, F50, F75, F100, F150, F200, F300, F400, F500, F600, F700, F800, F900, F1000, они характеризуются числом циклов попеременного заморажи­вания и оттаивания в насыщенном водой состоянии, которые вы­держивает бетон без снижения прочности более чем на 15%;

- по водонепроницаемости W2, W4, W6, W8, W10, W12, W14, W16, W18, W20;

число — величина давления воды в кгс/см 2 , при котором еще не наблюдается просачивания ее через испытуемый стандартный об­разец толщиной 15 см;

- по средней плотности от D 200 до D 5000, соответствует среднему значению объемной массы бетона в кг/м 3 .

Для напрягающих бетонов устанавливают марку по самонапряжению.

При необходимости устанавливают дополнительные показатели качества бетона, связанные с теплопроводностью, температуростойкостью, огнестойкостью, коррозионной стойкостью (как самого бетона, так и находящейся в нем арматуры), биологической защитой и с другими требованиями, предъявляемыми к конструкции.

Виды деформаций. Под деформативностью бетона понимается изме­нение его формы и размеров под влиянием различных воздействий (в том числе в результате взаимодействия бетона с внешней средой).

Бетон является упруго-пластическим материалом, в котором, на­чиная с малых напряжений, помимо упругих деформаций, появля­ются и неупругие остаточные или пластические, т. е. полная дефор­мация без учёта усадки равна:

В бетоне различают деформации двух основных видов: объём­ные, развивающиеся во всех направлениях под влиянием усадки или изменения температуры, и силовые, развивающиеся главным образом в направлении действия сил. Силовым продольным деформациям также соответствуют некоторые поперечные деформации бетона; начальный коэффициент поперечной деформации бетона v равен 0,2 (коэффициент Пуассона). Причём v остаётся практически по­стоянным вплоть до напряжений . При этом относительная продольная деформация будет , апоперечная деформация .

Силовые деформации в зависимости от характера приложения нагрузки и длительности её действия подразделяются на следующие три вида:

- при однократном первичном загружении кратковременной на­грузкой;

- при длительном действии нагрузки;

- при многократном повторном действии нагрузки.

Наибольший практический интерес представляют продольные деформации бетона при осевом сжатии. Для изучения деформативности бетона при сжатии используют бетонные призмы с h/a = 4, чтобы исключить влияние на получаемые результаты сил трения, возникающих между опорными гранями образца и плитами пресса. На боковые грани призм в средней их части по высоте устанавли­вают приборы для замера деформаций (рис. 2.4а) или наклеивают электротензодатчики.




Нагрузка к призме прикладывается постепенно по этапам или ступеням (ступень обычно составляет 1/10. 1/20 от ожидаемой раз­рушающей нагрузки). Если деформации на каждой ступени прило­жения нагрузки замерять дважды: первый раз сразу после приложе­ния нагрузки и второй раз через некоторое время после выдержки под нагрузкой (обычно около 5 минут), то на диаграмме полу­чим ступенчатую линию, изображенную на рис. 1.7б. Деформации, измеренные сразу после приложения нагрузки, упругие и связаны с напряжениями линейным законом, а деформации, развивающие­ся за время выдержки под нагрузкой, неупругие и на диаграмме имеют вид горизонтальных площадок. При достаточно боль­шом числе ступеней загружения зависимость между напряжениями и деформациями может изображаться плавной кривой (рис. 2.4б).



Рисунок 2.4 – К определению продольных деформаций бетона при сжа­тии: а - опытный образец (призма) с наклеенными на боковых по­верхностях электротензодатчиками; б - диаграмма при при­ложении нагрузки ступенями; 1 - прямая упругих деформаций, 2 - кривая полных деформаций

Деформации бетона при однократном первичном загружении кратковременной нагрузкой. Его длительность обычно не превышает 60 минут. Диаграмма для этого случая показана на рис. 2.5. Степень её криволинейности зависит от продолжительности действия нагрузки, уровня
напряжений и класса бетона, т. е. .

Полная относительная деформация при однократном загружении бетонной призмы кратковременно приложенной нагрузкой без учёта усадки бетона равна:



Рисунок 2.5 – Диаграмма зависимости между напряжениями и деформациями бетона при сжатии и растяжении: I – область упругих деформаций; II – область пластических деформаций; 1 – нагрузка; 2 – разгрузка; – предельная сжимаемость; – предельная растяжимость; – максимальная сжимаемость при нисходящей ветви диаграммы

т. е. она состоит из упругой части, равной и неупру­гой , которая после снятия нагрузки практически не исчезает. Точнее небольшая доля неупругих деформаций (около 10%) в течение некоторого времени после разгрузки исчезает. Эта часть пластической деформации называется деформацией упруго­го последействия εер. Кроме того, исчезает упругая составляющая пластической деформации εе1 характеризующая обратимое сплю­щивание пустот цементного камня. Таким образом, после разгрузки бетона окончательно остается остаточная деформация, возникаю­щая из-за необратимого сплющивания пустот цементного камня и излома их стенок εрl1 (рис. 2.5). R2- напряжение в момент, пред­шествующий началу интенсивного разрушения бетона (условная ве­личина).

При невысоких напряжениях () превалируют упругие деформации (), а при бетон можно рассмат­ривать как упругий материал. При осевом растяжении диаграмма имеет тот же характер что и при сжатии.

Деформации бетона при длительном действии нагрузки. При длительном действии нагрузки (t > 60 минут), даже постоянной, неупругие деформации с течением времени значительно увеличива­ются. В реальных же условиях в процессе строительства зданий и сооружений идёт постепенное ступенчатое нагружение элементов.

Нарастание неупругих деформаций при длительном действии на­грузки называется ползучестью бетона. Деформации ползуче­сти состоят из двух частей: пластической, протекающей почти од­новременно с упругой, и вязкой, для развития которой требуется определённое время. Деформации ползучести развиваются, главным образом, в на­правлении действия усилий и могут превышать упругие в 3. 4 раза.

Загруженный в раннем возрасте бетон (при прочих равных усло­виях) обладает большей ползучестью, чем старый бетон. Ползучесть бетона в сухой среде значительно больше, чем во влажной. Техно­логические факторы также влияют на ползучесть бетона: с увели­чением W/C и расхода цемента на единицу объёма бетонной смеси ползучесть возрастает; с повышением прочности зёрен заполнителя ползучесть уменьшается; с повышением класса бетона ползучесть уменьшается. Бетоны на пористых заполнителях обладают несколь­ко большей ползучестью, чем тяжёлые бетоны. Ползучесть зависит от вида цемента.

Виды деформаций. Под деформативностью бетона понимается изме­нение его формы и размеров под влиянием различных воздействий (в том числе в результате взаимодействия бетона с внешней средой).

Бетон является упруго-пластическим материалом, в котором, на­чиная с малых напряжений, помимо упругих деформаций, появля­ются и неупругие остаточные или пластические, т. е. полная дефор­мация без учёта усадки равна:

В бетоне различают деформации двух основных видов: объём­ные, развивающиеся во всех направлениях под влиянием усадки или изменения температуры, и силовые, развивающиеся главным образом в направлении действия сил. Силовым продольным деформациям также соответствуют некоторые поперечные деформации бетона; начальный коэффициент поперечной деформации бетона v равен 0,2 (коэффициент Пуассона). Причём v остаётся практически по­стоянным вплоть до напряжений .При этом относительная продольная деформация будет , апоперечная деформация .

Силовые деформации в зависимости от характера приложения нагрузки и длительности её действия подразделяются на следующие три вида:

- при однократном первичном загружении кратковременной на­грузкой;

- при длительном действии нагрузки;

при многократном повторном действии нагрузки.

15Что такое обьемная деформация бетона

Объемные деформации. Деформации, вызванные усадкой бетона, изменяются в довольно широком диапазоне. Деформация бетона при набухании в 2—5 раз меньше, чем при усадке.

Деформации бетона, возникающие под влиянием изменения температуры, зависят от коеффициента линейной температурной деформации бетона.

18 что такое ползучесть бетона

стечением времени деформации в бетоне могут возрастать без увеличения внешней нагрузки. Данное свойство материалов называется ползучестью.

Ползучесть – способность бетона к увеличению деформаций без изменения внешней нагрузки.

Стоит отметить, что ползучесть свойственна не только бетону, но и многим пластикам, льду, а также металлам при повышенных температурах и другим материалам.

В бетоне ползучесть проявляется как при сжатии, так и растяжении. В большинстве случаев ползучесть является отрицательным фактором, однако в ряде случаев ползучесть можно считать полезным свойством – например, ползучесть может приводить к увеличению трещиностойкости и перераспределению усилий в статически неопределимых конструкциях.

Численно ползучесть бетона может характеризоваться двумя показателями:

1. Коэффициент ползучести. Коэффициентом ползучести называется отношение деформаций ползучести к упругим деформациям. Таким образом, если мы говорим, что коэффициент ползучести равен 2,0, то это означает, что деформации ползучести вдвое превышают упругие, а полные деформации, следовательно, втрое превысят упругие.

2. Мера ползучести.

19 как определить модуль деформации бетона

Характеристикой упруго-пластических свойств бетона является его модуль деформаций, устанавливающий зависимость между напряжениями и относительными деформациями в любой точке диаграммы деформирования

Учитывая нелинейную связь между напряжениями и деформациями обычно используют при определении модуля продольных деформаций:

– мгновенный модуль полных деформаций Ес, выражаемый тангенсом угла наклона касательной к кривой, описывающей диаграмму «s–e» в ее произвольной точке (рис. 3.6);

Рис. 3.6. К определению модуля деформаций бетона

– средний модуль упругости Ecm, выражаемый тангенсом угла наклона секущей, проходящей через начало координат (s = 0) и точку на кривой при sе = 0,4fcm;

– начальный модуль упругости E, выражаемый тангенсом угла наклона касательной к кривой, описывающей диаграмму «s–e», и проходящей в начале координат (sс = 0).

Величину среднего модуля упругости для тяжелого и мелкозернистого бетонов в соответствии с нормами определяют по эмпирической формуле вида (МПа):

Нормы проектирования железобетонных конструкций устанавливают значения среднего модуля упругости Ecm, основанные на структурно-механической модели бетона с учетом технологических свойств бетонной смеси.

Значения относительных деформаций в параметрических точках диаграммы деформирования бетона при осевом сжатии




Как было показано выше, при расчетах железобетонных конструкций диаграмма деформирования (состояния) рассматривается как обобщенная характеристика механических свойств бетона. Для ее аналитического описания, а также для определения критерия наступления предельного состояния конструкции, необходимо иметь обоснованные значения относительных деформаций в параметрических точках: eс1 – относительной деформации, соответствующей пиковым напряжениям диаграммы, и ecu – предельной деформации бетона при сжатии.

Нормы устанавливают значения относительной деформации eс1 в зависимости от класса бетона, соблюдая установленную тенденцию к ее возрастанию с ростом прочности материала. При этом численные значения, внесенные в СНБ 5.03.01-02 приняты с некоторым обоснованным запасом в сторону обеспечения безопасности конструкции. Особенно это характерно для высокопрочных бетонов (выше С50/60).

Если принятые в нормах численные значения относительной деформации eс1отражают единую тенденцию возрастания этой величины с ростом прочности бетона, то в отношении назначения предельной относительной деформации (предельной сжимаемости) ecu у специалистов нет единого мнения. Нормы предлагают принимать предельную относительную деформацию для бетонов нормальной прочности (до С50/60 включительно) постоянной и равной ecu = 3,5 ‰ .

Коэффициент поперечных деформаций бетона при сжатии или так называемый коэффициент Пуассона принимают равным =0,20. В случае, когда допускается образование трещин в бетоне растянутой зоны, коэффициент Пуассона принимают равным =0.

20.Что такое начальный модуль упругости бетона

Модуль упругости бетона – общее название совокупности нескольких физических величин, характеризующих способность материала периодически подвергаться деформации при воздействии на него какой-либо нагрузки.Понятие модуля упругости бетона не имеет широкого распространения и известно лишь узкому кругу специалистов. Для застройщика, занимающегося частными постройками, или для строителя сочетание этих слов не несет никакой информации. Однако стоит помнить, что срок службы того или иного возводимого объекта напрямую зависит от рассматриваемого понятия.

Начальный модуль упругости рассчитать сложно, однако можно установить его примерное значение. В ходе проведения испытаний образца бетона на прочность составляется график зависимости деформации от силы воздействия. Обычно на таких графиках секущая кривой графика зависимости деформации от напряжения параллельна касательной, проходящей через начало координат. Косвенным путем по такому графику можно определить модуль упругости бетона.

Как правило, модуль упругости прямо пропорционален корню из его прочности. Правда, это утверждение верно не для всего графика, а лишь для его основной части. Многое зависит еще и от условий, в которых проводились испытания, и от окружающей среды. Например, водонасыщенный бетон более упругий, чем сухой, хотя прочность у них практически одинакова. Большое влияние оказывает на показатель упругости качество крупного наполнителя. Зависимость прямая – легкие образцы бетона имеют более низкий модуль упругости, чем тяжелые.

Данный показатель зависит и от возраста материала. Чем старше бетон, тем более высок у него модуль упругости.В практическом применении модуль упругости бетона важен при строительстве. При выпуске все материалы маркируются, поэтому примерный начальный модуль можно определить на основе маркировки. Для этого составлена специальная таблица, по которой высчитывается количественное значение модуля упругости каждой марки бетона. Очень важно правильно подобрать материал, чтобы конструкция не обрушилась при строительстве, а оставалась прочной на долгие годы.

21 дайте понятие арматуре

Арматура – материал, изготовление которого проходит в условиях производства методом горячего проката. Сталь после прибытия на завод отгружается, а затем подается в отделение заготовки. Металлолом проходит тщательную сортировку и помещается на плавление до жидкого состояния. Дальше жидкая сталь разливается в изложницы. После застывания стальных слитков осуществляется их нагрев, обжим и прокат. Потом продукция остывает на холодильниках, проходит контроль качества, обрезается и готовится к транспортировке. Купить строительную арматуру потребитель может в стержнях либо мотках (в зависимости от вида).

Арматура используется в качестве основы строительных конструкций, требующих повышенного уровня безопасности. Поэтому характеристики и качество металлопрокатной продукции должны быть чрезвычайно высокими.

Строительная арматура должна соответствовать следующим критериям:

· соoтветствие ГОСТу для более жесткого сцепления с бетоном;

· устойчивость к коррозии.

В зависимости от будущего месторасположения в составе каркаса, арматура может быть поперечной либо продольной. Поперечная применяется для защиты конструкции от возникновения трещин поблизости опор, а также для улучшения связки с бетоном. Продольная препятствует образованию вертикальных напряжений и принимает на себя часть нагрузок бетона.

Арматура строительная (вес погонного метра колеблется от 2,22 кг до 39,46 кг и зависит от толщины и длины профиля) бывает таких видов:

Рабочая армaтурa принимает растягивающие усилия, которые возникают в результате влияния на постройку внешних нагрузок, а также собственного веса. Монтажная предназначена для формирования каркаса и фиксации рабочих прутков. Распределительная армaтурa делит нагрузку между всеми стержнями, препятствуя их перемещению и прогибу. Хомуты защищают бетон от растрескивания поверхности возле крепежей. Если каркас необходимо расположить в балках или ригелях, то применяют двойные стальные пруты.

По принципу связи с бетоном арматура бывает напрягаемой и ненапрягаемой. В зависимости от способа формирования бывает канатная, стержневая и проволочная арматура.

По способу установки армaтуру разделяют на сварочную и вязаную в форме сетки или каркаса. Сварочную армaтуру иногда еще называют штучной. Ее используют при небольших объемах работ. При возведении масштабных сооружений каркас должен быть гибким – «плавать», как говорят профи. Иначе здание может разрушиться даже при незначительном оползне либо в случае минимальных движений земной поверхности. Именно поэтому каркас чаще «вяжут».

Арматурная сетка состоит из стержней, которые фиксируются в местах пересечения сваркой либо вязкой. Каркасы, собранные из прутков и соединительной решетки, называют плоскими. Пространственные каркасы - еще одна разновидность армированных конструкций. Они составлены из нескольких плоских сеток или пакетов.

В зависимости от того, из какого материала выполнена, строительная арматура делится на стальную и композитную.

22Классификация арматуры по признакам

Виды стальной арматуры различают по следующим признакам:

1.по технологии изготовления: - горячекатаная стержневая (в сортаменте обознач-ся буквой А), - холоднотянутая проволочная (обознач-ся буквой В);

2.по форме поверхности: - гладкая; - рифленая;

3.по поперечному сечению: - гибкая (проволока, стержни); - жесткая (фасонный прокат);

4.по условиям применения: - предварительно напрягаемая; - ненапрягаемая.

Класс арматуры для ж/б конструкций выбирают с учетом назначения арматуры, марки и вида бетона, условий изготовления арматуры. изделий (сварка, вязка и др.), и условий эксплуатации. Термически упрочненная арматура имеет рисунок «елочка». Канаты образуются при свивке проволок.

Читайте также: