Регулировка смесительного узла теплого пола про аква

Обновлено: 01.05.2024

В настоящее время большинство владельцев жилых помещений предпочитают использовать в качестве отопления тёплые водяные полы. Эффективность работы данной конструкции зависит от грамотного расхода теплоносителя.

Обеспечить контроль за расходованием воды в трубопроводе и произвести точную настройку системы позволит регулировка расходомера коллектора теплого пола.

Данное устройство способно облегчить балансировочный процесс и рационально распределять жидкость по греющим контурам, тем самым создавая равномерный обогрев всех помещений.

Нужен расходомер или нет?

Расходомер — прибор, предназначенный для корректировки работы нагревательного пола, который чаще используется в многоконтурных водяных конструкциях. Без него, сложно добиться надлежащего обогрева помещения. Произвести регулировку в ручном режиме коллектор тёплого пола очень сложно.

Проведение настройки контуров тёплого пола по расходомерам — нормирование потоков жидкости по змеевикам. Ведь в зависимости от размера ветки, требуется разное её количество, которое двигаясь по петле, остывало бы строго по расчётному показателю.

В конструкции без расходомера:

  1. Температура в разных помещениях будет отличаться;
  2. Обогрев полов приведёт к перерасходу энергии.

К сведению! Мнение, что возможно определить оптимальный расход воды, отталкиваясь от производительности циркуляционного насоса — ошибочно.

Так как, во-первых, сложно точно вычислить длину змеевика, а во-вторых нарушается правило при выборе параметров оборудования — отталкиваться от потребностей устройства, а не наоборот. Кроме того, расчёт данным способом приведёт к тому, что объём жидкости в контурах будет отличаться от расчётного показателя.

Устройство расходомера

Ротаметр — механический прибор, корпус которого изготовлен из пластика или латуни. Он имеет полипропиленовый поплавок размещённый внутри. Сверху корпус оснащён прозрачной колбой со шкалой. Такое устройство ещё называется поплавковым ротаметром.

Фото — Расходомер

К сведению! Чаще в напольном отоплении используется ротаметр из пластика.

Рекомендовано устанавливать смесительный узел с расходомерами, и с терморегулятором на обратке. Данное устройство способно снабжать каждую петлю требуемым количеством теплоносителя, а клапаны на выходе будут открываться, и закрываться по мере остывания воды.

Следует сказать, что водомеры встречаются нескольких видов:

  • измеряющий ротаметр — монтируется вместе с клапаном, в нём регулирование осуществляется самостоятельно, с учётом измеренных показателей;
  • регулирующий — служит в качестве распределителя теплоносителя;
  • комбинированный — в этом виде совмещаются обе модели, но и стоит он дороже.

Принцип работы и функциональность

Главная функция расходомера — обеспечить регулировку теплоносителя по контурам. Присутствие ротаметров позволяет:

  1. Контролировать нагрев жидкости, что даёт возможность экономить электроэнергию;
  2. Обеспечивать равномерное прогревание всех ветвей пола;
  3. Избежать температурных колебаний в разных помещениях;
  4. Вести визуальный контроль за объемом теплоносителя идущего от котла в магистраль.

К сведению! Потребность обустраивать коллекторную группу расходомерами при сооружении тёплых полов особенно остро встаёт в доме, где помещения имеют разную площадь.

Чем комната больше, тем степень обогрева ниже. Тем самым, достичь равномерный прогрев без данного приспособления очень сложно.

Принцип работы расходомеров в коллекторе тёплых полов довольно прост. Теплоноситель, передвигаясь в контуре, приводит в движение поплавок, вследствие чего он начинает перемещаться. С учётом его местонахождения, на шкале, нанесённой на колбе, определяется количество воды в змеевике.

Водомер функционирует автономно, не нужен дополнительный источник питания. А наличие смесителя с таким прибором, значительно упростит полный контроль над конструкцией, при этом монтаж устройства и его обслуживание несложные.

Критерии выбора

Во многом, на правильность функционирования системы, а тем самым, и на комфорт в помещении, влияет модель расходомера. Поэтому, к её выбору следует подходить очень серьёзно.

Покупая ротаметр для тёплого пола необходимо обращать внимание на:

  1. Материал, из которого изготовлен корпус. Латунный — имеет высокую износоустойчивость, а сверху такой прибор покрыт никелем. Стоит такое изделие дорого. Пластмассовый — по цене доступный, но и прочность его ниже.
  2. Целостность — прежде чем покупать изделие, нужно осмотреть корпус и колбу на наличие трещин и дефектов.
  3. Внутренняя пружина должна быть стальная.
  4. Колба. В качественных изделиях она поликарбонатовая. Этот материал имеет повышенную термостойкость и крепость.
  5. Технические показатели — с ними можно ознакомиться в инструкции. Температура не меньше 110 градусов, а давление — 10 бар.
  6. Пропускную способность — через ротаметр должно проходить не менее 2 — 4 м3 воды.
  7. Надёжность производителя — обязательное наличие сертификата качества на изделие и гарантийный срок не меньше 5 лет. Не добросовестные производители, с целью получения прибыли, стараются заменять дорогие и качественные элементы устройства, на менее качественные.

В магазинах огромный выбор данных приборов, поэтому придерживаясь этих советов, вы сможете приобрести качественное изделие.

Как правильно установить расходомер

По рекомендации производителя, расходомер монтируется на обратку коллектора, хотя возможна установка на подачу.

Главное требование при монтаже ротаметра — вертикальное размещение. Такое положение позволит правильно вычислять уровень воды. Следовательно, гребёнку нужно располагать строго по горизонтали. Точность установки можно определить при помощи отвеса или уровня.

Так как, устройство — коллектор плюс ротаметр, должно работать автоматически, то требуется дополнительное подключение термодатчика. Такая схема полностью или частично перекрывает поступление теплоносителя к петлям при достижении требуемого градуса нагрева.

Монтаж коллектора своими руками: схема подключения и настройка, виды и принцип работы.

Сам процесс монтажа расходомера заключается в следующем:

  • Устанавливается ротаметр — осуществляется это путём вкручивания его в гнездо собирающей гребёнки коллектора специальным ключом, положение строго вертикальное. Устройство оснащено уплотнительным кольцом и гайкой.

Фото — Устанавливается расходомер

К сведению! В дополнительном утеплении данное соединение не нуждается.

  • Скручивается и снимается колба — путём поворота против часовой стрелки. Затем снимается кольцо, предназначенное изготовителем для защиты. После чего, колба с метками одевается в обратном порядке.
  • Поворачивается латунное кольцо по часовой стрелки до требуемого значения, тем самым производится балансировка скорости поступающего теплоносителя.
  • Прикрывается кольцо из латуни накладкой — это предотвратит прибор от механических повреждений.

После данных действий обязательно нужно проверить всю систему на работоспособность.

Регулировка коллектора теплого пола с расходомерами и его корректировка

Убедившись в функционировании конструкции, у многих возникает вопрос — как правильно регулировать тёплый пол расходомерами? Процесс несложный, ведь использование ротаметров существенно облегчает процедуру.

При ручной настройке работа достаточно трудоёмкая, так как корректировка осуществляется при помощи обычного крана — термоголовки, которая устанавливается на обратке и подаче.

Данный способ значительно уменьшает расходы на монтаж конструкции, но время на такую регулировку потребуется много. Кроме того, и точность настройки при ручной балансировке страдает, ведь определять температуру придется, отталкиваясь от личных ощущениях.

Наиболее удобным методом считается проведение регулировочных работ расходомерами, установленными на входе в змеевик. В каждой комнате следует провести отдельную регулировку, при этом учитывается уровень нагрева жидкости и гидравлическое сопротивление.

Всё что необходимо будет делать в последствии, это производить контроль за разницей показателей между контурами, они не должны превышать 0,3 — 0,5 л.

Пред тем как настраивать тёплый пол на коллекторе расходомерами, необходимо понимать — зачем это надо. Задача балансировки — установить потребность каждого ответвления и общий баланс расходов.

Кроме того, правильность настройки расходомеров на коллекторе влияет на качество напольного покрытия при эксплуатации — ведь оно не должно перегреваться. Более высокая температура приведёт к порче напольного изделия, и потребуется его замена.

Принцип действия напольного греющего отопления отличается от других обогревающих устройств. Особенность заключается в разнице температур воды, если в радиаторах циркулирует жидкость, нагретая до 80 градусов, то в тёплом полу 40, при этом поверхность прогревается до 22 градусов.

К сведению! Существует мнение, что тёплая напольная система не нуждается в балансировке, а расход воды в петлях регулируется самостоятельно, при помощи автоматических приборов — термостатов и контролёров, но это неправильное рассуждение.

Регулировочный процесс

Как уже говорилось выше, надо проводить отдельную регулировку каждого контура, с учётом укладочной схемы трубопровода. Ведь объём теплоносителя для каждого змеевика требуется различный, и зависит от его длины.

Определяется данный показатель по формуле — тепловая нагрузка берётся в соотношении к теплоёмкости воды, и к разнице температур на входе и выходе. Перед процедурой надо провести проверку установленного контура на наличие протечек, так как они исказят показатели при регулировке.

Для этого, трубопровод следует заполнить водой и спустить воздух, то есть открыть расходомеры, трёхходовой клапан, воздухоотводчик, и запорные вентили на подаче и обратке.

Данная процедура сопровождается свистящим звуком, когда он прекратится, это говорит о полном выходе воздуха. После чего, все вентиля закрываются кроме одного на подаче, и проводится поочерёдно опрессовка каждого контура.

Фото — Проверка работоспособности системы и её опрессовка

Затем, можно переходить к регулированию расходомеров тёплого пола, процедура заключается в следующем:

  • Вычисляется размер теплоносителя, проходящий за 1 минуту через коллекторную группу. Этот показатель измеряется в литрах, полученное значение берётся за 100%.
  • Определяется потребность воды для каждого водяного контура отдельно, в процентах. Затем результат следует перевести в литры в минуту. Начинать надо с самой длинной петли, и при наибольшей мощности, путём открывания регулирующего вентиля на полную мощность.

К сведению! Далее, относительно него будет устанавливаться расход в других змеевиках.

  • Корректируется объём подаваемой в магистраль воды расходомерами.

Фото — Корректировка пола расходомерами

После того как расходомеры настроены, включается циркуляционный насос на распределительном узле. В трубопровод начнёт поступать горячая вода, которая будет вытеснять холодную, эта процедура займёт часа 3.

К сведению! Перед запуском пола в работу, на расходомерах следует выставлять максимальные показатели, обычно они разные для каждой ветки, в последствие их необходимо корректировать, чтоб обогрев был равномерный.

Стоит сказать, что процесс регулировки системы с ротаметром зависит от его модели. Если расходомер без встроенного клапана, то необходим дополнительный запорный элемент, который способствует установке положения «открыто». При этом балансировочный процесс происходит при функционирующем приборе.

Если, в наличии комбинированный тип устройства, то рекомендовано провести предварительную регулировку, путём поворота встроенного вентиля на полную мощность.


Для того чтобы правильно настроить узел необходимо знать его основные функции. Узел предназначен для поддержания заданной температуры и расхода во вторичном циркуляционном контуре, гидравлическую увязку первичного и вторичного контуров. Поэтому узел, прежде всего, настраивается на требуемое соотношение теплоносителя первичного и вторичного контуров (для получения требуемой температуры теплоносителя), балансируется с остальными приборами отопления.


Узел имеет всего три органа регулирования:


При помощи этого клапана задаётся соотношение расходов теплоносителей первичного и вторичного контуров, то есть задаётся температура теплоносителя в подающем трубопроводе вторичного контура. Поворот клапана осуществляется шестигранным ключом, для предотвращения случайного поворота во время эксплуатации клапан фиксируется зажимным винтом. На клапане имеется шкала со значениями пропускной способности клапана от 0 до 5 м 3 час.


Балансировочно-запорный клапан предназначен для увязки узла COMBIMIX с остальными приборами отопления (балансировки).

Клапан закрыт шестигранным колпачком, поворот клапана осуществляется шестигранным ключом. Положение клапана также можно фиксировать зажимным винтом.


Предназначен для предохранения насоса от режима, при котором отсутствует проток жидкости через насос. Клапан срабатывает на определённый перепад давления, который задаётся поворотом ручки.

Сбоку клапана есть удобная шкала с диапазоном значений от 0,2-0,6 бар.

Алгоритм настройки узла регулирования:

1. Снять термоголовку (1) или сервопривод

Для того чтобы привод регулирующего клапана не влиял на узел во время настройки её следует снять.


2. Выставить перепускной клапан в максимальное положение (0,6 бар)

Если перепускной клапан сработает во время настройки узла, то настройка будет некорректной. Поэтому его следует выставить в положение, при котором он не сработает


3. Рассчитать положение балансировочного клапана вторичного контура (2).

Требуемую пропускную способность балансировочного клапана можно рассчитать, самостоятельно используя несложную формулу


t1 – Температура теплоносителя на подающем трубопроводе первичного контура
t21 – Температура теплоносителя на подающем трубопроводе вторичного контура
t22 – Температура теплоносителя на обратном трубопроводе (У обоих контуров совпадает)
Kvт – Коэффициент, для COMBIMIX принимается 0,9
Полученное значение Kv выставляем на клапане.


Пример расчёта
Исходные данные
Расчётная температура подающего теплоносителя - 95°С
Расчётные параметры контура тёплого пола 45°С-35°С


Полученное значение Kv выставляем на клапане.

4. Настроить насос.

Для этого требуется рассчитать расход воды во вторичном контуре; кг/час и потери давления в контурах после узла; м.в.ст по формулам.


Где Q – Сумма тепловой мощности всех приборов, подключённых после COMBIMIX.
с – теплоёмкость теплоносителя; если теплоноситель вода то
с=4,2 кДж /(кг•°C) Если используется иной теплоноситель, то теплоёмкость следует взять из технического паспорта этого теплоносителя.
t21; t22 – Температура теплоносителя на подающем и на обратном трубопроводе контура после узла COMBIMIX.
Pс – Потери давления в расчетном контуре теплого пола (включая коллекторы). Данную величину можно получить, выполнив гидравлический расчёт тёплого пола. Для этого можно использовать бесплатную программу Valtec.prg

На номограммах насосов представленных ниже, определяем скорость насоса. Для определения скорости насоса на характеристике отмечается точка, с соответствующим напором и расходом. Далее определяется ближайшая кривая, выше данной точке, она и будет соответствовать требуемой скорости.


Для COMBI 01/04 и COMBI 02/4 Для COMBI 01/06 и COMBI 02/6


Пример для тёплого пола с суммарной мощностью 10 кВт
И с потерями давления в самой нагруженной петле 40 кПа (4,07 м.вод.ст)
Расход воды во вторичном контуре:


Потери давления в контурах после узла CombiMIX с запасом 1 м.в ст.



Выбрана скорость насоса – MAX по точке
(0,86 м3/час; 4,05 м.в.ст)

Если нет возможности рассчитать насос, то данный этап можно пропустить и сразу приступить к следующему. Насос при этом выставить в минимальное положение. Если в процессе балансировки выясниться, что давления насоса не хватает, то переключить насос на более высокую скорость.

5. Балансировка веток тёплого пола


Закрываем Балансировочно-запорный клапан первичного контура. Для этого откидываем крышку клапана и шестигранным ключом поворачиваем клапан против часовой стрелки до упора.

Ветки между собой балансируются балансировочными клапанами или регуляторами расхода (в комплект COMBIMIX не входят). Если после COMBIMIX только один контур, то ничего увязывать не нужно.

Ход балансировки следующий: Балансировочные клапаны/регуляторы расходов на всех ветках тёплого пола открываются на максимум, далее выбирается ветка, у которой отклонение фактического расхода от проектного максимально. Клапан на этой ветке закрывается до нужного расхода. Таким образом, надо отрегулировать все ветки тёплого пола. Если после балансировки всех веток расход сбился, то следует подкорректировать расход в ветках.

Для индикации расхода можно использовать расходомер VT.FLC15.0.0. Если нет возможности использовать индикатор расхода, то отбалансировать ветки можно приблизительно по прогреву полов либо по температуре обратного теплоносителя.

Если в процессе балансировки не удалось получить требуемый расход по веткам даже при открытых клапанах, то следует переключить насос на высшую скорость.


6. Увязка узла COMBIMIX с остальными приборами отопления.

Открываем балансировочно-запорный клапан первичного контура при помощи шестигранного ключа до обеспечения требуемого расхода теплоносителя через первичный контур. Увязка узла производится совместно с увязкой всей остальной системы.


Контролировать расход теплоносителя можно при помощи расходомеров или контролируя температуру теплоносителя в обратном трубопроводе тёплого пола.
Расход теплоносителя в первичном контуре можно рассчитать по формуле:


Q – Сумма тепловой мощности всех приборов, подключённых после COMBIMIX.
с – теплоёмкость теплоносителя; если теплоноситель вода то
с=4,2 кДж (кг•°С) Если используется иной теплоноситель, то теплоёмкость следует взять из технического паспорта этого теплоносителя.
t1;t21 – Температура теплоносителя на подающем и на обратном трубопроводе первичного контура (температуры теплоносителя в обратном трубопроводе первичного и вторичного трубопровода совпадают).

Пример: для тёплого пола с суммарной мощностью 10 кВт
Расчётная температура подающего теплоносителя - 95°С
Расчётные параметры контура тёплого пола 45°С-35°С


7. Настройка перепускного клапана

Значение давления клапана выставляется на 5-10% меньше, чем максимальное давление насоса при выбранной скорости. Максимальное давление насоса определяется по характеристике насоса.

Перепускной клапан должен открываться при приближении работы насоса к критической точке, когда отсутствует расход воды и насос работает только на нагнетание давления. Давление в данном режиме можно определить по характеристике.


Пример определения настроечного значения перепускного клапана.


В данном примере видно, что насос в случае отсутствия движения воды на первой скорости имеет давление 3,05 м.в.ст (0,3 бар);
на средней скорости – 4,5 м.в.ст (0,44 бар);
и на максимальной 5,5 м.в.ст (0,54 бар).
Так как насос выставлен на максимальную скорость, то выбираем уставку на перепускном клапане 0,54-5%=0,51 бар

8. Проверка правильной работы узла

Необходимо убедиться в правильной работе узла COMBIMIX. Проверка производится по равномерности прогрева всех веток тёплого пола и по правильному соотношению температур теплоносителя подающего и обратного трубопровода.
Эту проверку можно выполнить, даже если текущие параметры теплоносителей не соответствуют проектным. Узел настроен правильно, если выполняются следующее условие:


Где температуры с индексом «р» - расчётные значения, а температуры с индексом «ф» - фактические значения.

Если условие не выполняется, то следует открыть или закрыть балансировочно-запорный клапан на четверть оборота и вновь снять показания.

Если условие выполняется, то следует установить обратно термоголовку, одеть все защитные колпачки и затянуть зажимной винт балансировочного клапана. Узел готов к эксплуатации.

Пример:
Расчётная температура подающего теплоносителя - 95°С
Расчётные параметры контура тёплого пола 45°С-35°С
Фактичекские показания, снимаемые с термометров
Температура подающего теплоносителя - 95°С
Температура теплоносителя на подаче во вторичный контур 32°С
Температура теплоносителя на обратном трубопроводе вторичного контура 25°С


(отклонение 6,6% менее 10%, следовательно, система настроена корректно)

Требуемый расход теплоносителя в любой системе водяного отопления подсчитывается по следующей формуле:

G = Q /c⋅ ∆T, (1)

где Q — тепловая мощность системы, Вт; с — удельная теплоёмкость теплоносителя, Дж/кг °С; ∆Т — разность температур между прямым и обратным теплоносителем, °С.

В системах радиаторного отопления перепад температур ∆Т обычно составляет порядка 20 °С, а в системах напольного отопления ∆Т = 5–10 °С.

Это значит, что для переноса одного и того же количества теплоты тёплые полы требуют расхода теплоносителя в 2–4 раза больше.

Максимальная температура теплоносителя в системах тёплого пола, как правило, не превышает 55 °С, рабочее значение этого параметра обычно лежит в пределах 35–45 °С.

В радиаторном же отоплении теплоноситель обычно подаётся с температурой 80–90 °С.

В связи с этими двумя факторами неизменным атрибутом системы напольного отопления является узел смешения.

    Насосно-смесительный узел системы тёплого пола должен выполнять следующие основные функции:
  • поддерживать во вторичном контуре температуру теплоносителя ниже температуры первичного контура;
  • обеспечивать расчётный расход теплоносителя через вторичный контур;
  • обеспечивать гидравлическую увязку между первичным и вторичным контурами.
    К вспомогательным функциям насосно-смесительного узла можно отнести следующие:
  • индикация температуры (на входе и выходе);
  • отсекание циркуляционного насоса шаровыми кранами для его замены или обслуживания;
  • защита насоса от работы на «закрытую задвижку» с помощью перепускного клапана;
  • аварийное отключение насоса при превышении максимально допустимой температуры теплоносителя;
  • отведение воздуха из теплоносителя;
  • дренирование узла.

Принцип работы простейшего насосно-смесительного узла рис. 1.

Рис. 1. Тепломеханическая схема простейшего насосно-смесительного узла

Нагретый теплоноситель поступает на вход насосно-смесительного узла от котла или стояка радиаторной системы отопления с температурой T1. На входе в узел установлен настраиваемый термостатический клапан 2, на приводе которого выставляется требуемая температура теплоносителя, поступающего в тёплый пол Т11. Термочувствительный элемент 3 привода клапана располагается после насоса 1. При повышении температуры Т11 выше настроечного значения, клапан 2 закрывается, а при понижении – открывается, пропуская горячий теплоноситель на вход насоса. Пройдя по петлям тёплого пола, теплоноситель остывает до температуры Т21. Часть остывшего теплоносителя возвращается к котлу, а часть – через балансировочный клапан 4 поступает на вход насоса, смешиваясь с горячим теплоносителем.

Таким образом, в первичном (котловом) контуре температура теплоносителя снижается с Т1 до Т21 (∆Ткк = Т1Т21). Температуру Т21 задаёт пользователь. Перепад температур в петлях тёплого пола ∆Ттп = Т11Т21 также задаётся на стадии расчётов. Зная эти данные, и требуемую тепловую мощность тёплого пола, можно определить соотношение расходов в узле:

    Исходные данные:
  • температура на входе в насосно-смесительный узел Т1 = 90 °С;
  • температура после насоса Т11 = 35 °С;
  • перепад температур в петлях тёплого пола ∆Ттп = 5 °С;
  • тепловая мощность тёплого пола Q = 12 кВт.
    Решение:
  1. Температура на выходе из петель тёплого пола: Т21 = Т11 – ∆Ттп = 35 – 5 = 30 °С.
  2. Перепад температур в первичном (котловом) контуре: ∆Ткк = Т1Т21 = 90 – 30 = 60 °С.
  3. Расход во вторичном контуре G11 = Q/c⋅ ∆Tтп = 12000/4187⋅5 = 0,573 кг/с.
  4. Расход в первичном (котловом) контуре G1 = Q/c⋅ ∆Tтп = 12000/4187⋅60 = 0,048 кг/с.
  5. Расход через байпас G3 = G11G1 = 0,573 – 0,048 = 0,535 кг/с.

Таким образом, расход в контуре тёплого пола в данном примере должен быть в 12 раз выше, чем в котловом контуре.

Как правило, циркуляционный насос при проектировании выбирается с некоторым запасом, поэтому он может перекачивать через байпас большее количество теплоносителя, чем требуется по проекту. К тому же, и температура теплоносителя в первичном контуре может по факту оказаться меньше расчётной. Именно для корректировки этих расхождений с расчётными данными служит балансировочный клапан 4, которым можно ограничить расход через байпас.

В линии подмеса узла установлен балансировочный клапан, который задаёт соотношение между количествами теплоносителя, поступающего из обратной линии вторичного контура и прямой линии первичного контура, а также уравнивает давление теплоносителя на выходе из контура тёплых полов с давлением после термостатического регулировочного клапана.

От настроечного значения Kvb этого клапана и установленного скоростного режима насоса зависит тепловая мощность смесительного узла.

Узел адаптирован для присоединения к нему коллекторных блоков с межосевым расстоянием 200 мм и горизонтальным смещением между осями коллекторов 32 мм. При этом коллекторные блоки могут присоединяться как на входе, так и на выходе насосно-смесительного узла. Это позволяет использовать этот узел в комбинированных системах отопления (рис. 4), где отопление тёплым полом совмещается с радиаторным отоплением.

Насосно-смесительный узел VT.DUAL

Насосно-смесительный узел VT.DUAL (рис. 5 и 6) состоит из двух модулей (насосного и термостатического), между которыми монтируется коллекторный блок контура тёплого пола. Для смешения используется трехходовой термостатический клапан, управляемый термоголовкой с капиллярным термочувствительным элементом, установленным на обратный коллектор вторичного контура.

Рис. 5. Насосно-смесительный узел VT.DUAL

Предохранительный термостат подающего коллектора останавливает насос в случае превышения настроечного значения температуры, прекращая циркуляцию в петлях тёплого пола.

Рис. 6. Узел VT.DUAL с коллекторным блоком (подключение справа)

Конструкция узла предусматривает перепускной контур с балансировочным клапаном, сохраняющим неизменным расход теплоносителя в первичном контуре при перекрытии петель тёплого пола.

Элементы узла устанавливаются не вертикально, а под углом 9°, что вызвано горизонтальным смещением осей коллекторного блока. Это позволяет подключать узел к подводящим трубопроводам как справа, так и слева.

Насосно-смесительный узел VT.VALMIX

Узел поставляется с термоголовкой VT.3011, имеющей диапазон настройки температур от 20 до 62 °С. Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.

Рис. 7. Насосно-смесительный узел VT.VALMIX

Насосно-смесительный узел VT.TECHNOMIX

Так же как узел VT.VALMIX, узел VT.TECHNOMIX (рис. 8) рассчитан на установку циркуляционного насоса длиной 130 мм, но имеет несколько большую монтажную длину.

Кроме того, входные и выходные патрубки узла находятся в одной плоскости, поэтому узел монтируется к коллекторному блоку под углом 9°, и может устанавливаться как справа от обслуживаемого коллекторного блока, так и слева от него.

Узел поставляется с термоголовкой VT.5011, имеющей диапазон настройки температур от 20 до 60 °С.

Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.

Сравнение насосно-смесительных узлов VALTEC

Таблица 1. Сравнительная таблица насосно-смесительных узлов VALTEC

Тёплые водяные полы сегодня набирают популярность, они являются признаком комфорта. Но, чтобы такое отопление эффективно функционировало, требуется насосно-смесительный узел. Он позволяет добиться оптимального температурного уровня теплоносителя, а также отрегулировать его поступление в петли.

Поэтому, мы решили рассказать о существующих моделях насосно-смесительных узлов, и об их комплектации. Вы узнаете, как собрать узел подмеса для тёплых полов своими руками, а также как произвести монтаж и настройку.

Фото — Насосно-смесительный узел

Насосно-смесительный узел

Функции

Использование термосмесительного узла при обустройстве тёплого пола, позволяет соорудить независимую водяную систему отопления с возможностью регулировки температуры теплоносителя.

Гидрополовое отопление является низкотемпературным оборудованием. В напольный трубопровод, вода должна подаваться с температурой не больше +55 градусов. Так как, чаще производится обвязка данной конструкции от батареи или котла, где степень нагрева жидкости намного выше, то требуется специальный модуль подмеса.

Именно в этом узле происходит подмешивание охлаждённого теплоносителя из обратки к горячей воде, поступающей от источника нагрева, до необходимого показателя.

Данное водосмесительное устройство также контролирует объём теплоносителя, идущего в каждую петлю.

Принцип работы

Суть функционирования любой модели насосно-смесительного устройства одинакова. Поток нагретого теплоносителя, перемещаясь от источника, проходит через термостат, где фиксируется его температура. Затем вода поступает в предохранитель, там производится регулирование её температурного уровня, путём открытия и закрытия головки.

Если степень нагрева теплоносителя превышает заданный показатель, то предохранитель открывает заслонку и осуществляется подмес охлаждённой воды из обратки. При достижении нужного градуса, происходит перекрывание подачи.

За циркуляцию жидкости в гидроузле отвечает насос, именно от его работы зависит равномерность прогрева поверхности пола.

Области применения

Потребность в насосно-смесительном узле возникает, если теплоносителем выступает вода. Узнаем в каких случаях это происходит.

  1. Если водяной тёплый пол подключается от центрального отопления — так как нагрев воды в централизованной системе превышает требуемый уровень для напольного обогрева.
  2. При подключении от котла, который не работает с обраткой +55 и ниже — это все твёрдотопливные котлы и функционирующие на газе.
  3. Если магистраль — два и больше контуров с различной температурой (тёплые полы с радиаторами).

Все насосно-смесительные узлы делятся по типу рабочего органа:

  • С трёхходовым клапаном — устанавливаются в помещениях имеющих большую площадь, так как устройство способно пропускать большой объём воды. Подключается такой тройник для смешивания чаще к внешнему термодатчику, что даёт возможность производить установку уровня нагрева отталкиваясь от уличной температуры. Регулировочный процесс производится при помощи заслонки, которая расположена в месте стыка подающей и обратной трубы. В основном используется схема проектирования — последовательная.

Фото — Трёхходовой клапан

Трёхходовой клапан

  • С двухходовым — рекомендован для помещений до 200 м2, подключается как по параллельной, так и по последовательной схеме смешения. Вентиль имеет термоголовку с датчиком, им контролируется температурный уровень, при превышении показателя перекрывается подача горячей воды. Объём жидкости, которую способна пропускать данная конструкция, небольшой, поэтому процесс регулировки плавный.

Фото — Двухходовой клапан

Двухходовой клапан

  • Комбинированные — объединяют в себе клапан и балансировочный узел. Но этот вариант редко используется с нагревательными полами.

Схемы насосно-смесительных узлов

Насосно-смесительные узлы собираются несколькими способами, отличие кроется в подсоединение насоса и в виде клапана.

Фото — Схемы подключения узла

Схемы подключения узла

С последовательным подключением насоса

При включённом насосе по последовательной схеме осуществляется лишь подготовка теплоносителя и обеспечение его перемещения по петлям. Несмотря на потребность в двух отдельных аппаратах для перекачки жидкости по первичному и вторичному контурам, данная схема более совершенна технологически.

Она имеет повышенную производительность, чем при параллельном подключении. Поэтому, профессионалы чаще используют именно этот вариант при установке тёплых полов.

Однако, для эффективности работы пола при такой сборке, важную роль играет правильность расчёта и настройки, а также точность составленного чертежа.

С параллельным

Плюс параллельной схемы — требуется всего один аппарат для перекачки воды по обоим контурам. Это значительно упрощает сборочный процесс, но необходим более мощный агрегат.

Если смешивающее устройство планируется для небольшой отопительной системы, то рекомендуется параллельная компоновка. Так как при сборке такой конструкции собственноручно, происходит меньше проблем, тем самым проще избежать возникновения серьёзных ошибок. Но для больших площадей тёплого пола данная схема не подходит — низкая производительность и эффективность.

Какой лучше выбрать смеситель

Подбирать термосмеситель необходимо с учётом характеристик отопительного устройства. При выборе распределительного оборудования нужно учитывать способ подмеса — центральный или боковой.

Если площадь большая, с несколькими отдельными контурами, то обязательно обустройство смесительного узла с трёхходовым клапаном. Этот агрегат прекрасно справится с большим объёмом жидкости. При одноконтурном полу подойдёт коллектор с двухходовым смесителем.

Насосно-смесительный узел для тёплых полов можно сделать своими руками, но если приобретать готовый, то советуем эти модели:

Это проверенные модели, и лучше покупать их.

Комплектация

Смесительный узел — сложный механизм, отвечает за поддержание стабильной температуры воды, и за её беспрерывную циркуляцию. Он входит в коллекторный блок, и состоит из ряда механизмов.

Насос

Основная функция насоса — создавать постоянное перемещение воды по трубопроводу. Он осуществляет подачу и возврат её через коллектор и ветки пола. Главные его показатели — давление и производительность.

При правильном их расчёте, насос обеспечит преодоление гидравлического сопротивления в магистрали пола. Рекомендовано применять приспособление с автоматическим переключателем рабочих режимов.

Фото — Циркуляционный насос

Циркуляционный насос

Регулятор расхода

  1. Балансировочный кран первичного контура (поплавковый)— он отвечает за количество теплоносителя, который поступает в магистраль из первичного высокотемпературного источника. Поток регулируется за счёт его пропускной возможности. Настройка производится вентилем с головкой, он вращается ключом. Регулировка также проводится клапаном термостата, за управление которым отвечает выносной датчик.
  2. Балансирный вентиль вторичного контура — он настраивается в зависимости от размера обогреваемой площади. Путём открывания и закрывания регулирующего крана меняются пропорции нагретого и охлаждённого потока. Закрытие балансировочного вентиля обратки вторичного контура приводит к увеличению подачи горячего теплоносителя от котла, а это — к увеличению теплопроводности.

Степень открытия регулируется с помощью шкалы, она нанесена на колбе. По ней определяется пропускная способность прибора в м3 за час.

Фото — Балансировочный клапан

Балансировочный клапан

Байпасный клапан

Байпас вмести с перепускным клапаном, способствует обеспечению бесперебойного функционирования насосного оборудования, при действии режима подпора — при полном или частичном прекращении циркуляции жидкости по трубопроводу пола. Это может произойти, если закрыты вентиля петель на гребёнке в ручную, или при помощи кранов.

В итоге, повышается сопротивление течению воды, а также нагрузка на механизм. Уровень давления в системе увеличивается, происходит открывание перепускного клапана.

Через байпасные патрубки и насос осуществляется перетекание теплоносителя, тем самым замыкается малый циркуляционный цикл. Это приводит к исключению аварийных ситуаций.

Фото — Байпас

Байпас

Вспомогательные элементы

За функции контроля и поддержания эффективной работы насосно-смесительной конструкции отвечают также элементы вспомогательного типа. Это:

  • термометр — контролирует температуру теплоносителя;
  • воздухоотводчик — через него удаляется воздух из системы;

Фото — Воздухоотводчик

Воздухоотводчик

  • дренажные краны, их предназначение — спуск воды;
  • обратный шаровой вентиль — предотвращает движение теплоносителя в обратную сторону.

Коллекторный блок

Коллекторная группа — к ней подключаются контуры тёплого пола, рассчитывается на определённое число ветвей. В неё входит подающая и обратная гребёнки.

Сегодня, чтобы в холодный период сделать условия проживания в доме более комфортными, большинство владельцев устанавливают водяные тёплые полы. Но даже при правильном проектировании и монтаже системы, не всегда, получается, достичь комфортный микроклимат в квартире.

Причина кроется в некорректной регулировке системы отопления. Поэтому, важно понимать — как правильно настроить водяной тёплый пол.

Фото — Водяной тёплый пол

К сведению! Плюс индивидуальных отопительных конструкций — возможность регулировать оптимальный тепловой уровень, при минимальных расходах.

Оптимальные температурные параметры

Настройка водяного тёплого пола осуществляется в зависимости от индивидуальных потребностей. Кто-то любит, когда в комнате тепло, а кто-то отдаёт предпочтение бодрящей свежести, даже в самые лютые морозы. Но несмотря на это, есть общие стандарты, которые разрабатывались с учётом санитарных нормативов, к ним относятся:

  • прогрев пола до 28 градусов;
  • при наличии другого источника тепла или при проживании в помещении постоянно, идеальный уровень от 22 до 26 — это оптимальные условия для человека;
  • если данный тип источника тепла единственный, или он находится в ванной, коридоре, на балконе, или в доме, где проживают не постоянно, допустимо поднимать градус до 32.

Поэтому, при регулировании водяных полов, помимо своих предпочтений, чтобы микроклимат в квартире был здоровый, следует учитывать данные нормы.

Схемы подключения

Водяной тёплый пол чаще выступает как дополнительный источник тепла. Он в основном объединяется с общей отопительной системой или с горячим водоснабжением. Именно от способа подключения зависят особенности регулировки тёплых полов.

Есть несколько схем подсоединения водяных греющих устройств.

Комбинированная

Популярный и технологически оправданный метод — комбинированное отопление, включает себя радиатор и систему тёплых полов. Однако, для обустройства данной конструкции нам потребуется:

  • котёл;
  • насос;
  • расширительный бак;
  • коллекторы для радиаторов и тёплого пола;
  • радиаторы;
  • трубы.

Фото — Комбинированное подключение

Важно правильно объединить разные отопительные приборы, чтобы они эффективно функционировали. Основные способы соединения радиаторов с тёплыми водяными полами в единую конструкцию:

  1. Параллельное подсоединение коллекторного узла к отопительной системы. Врезаются контуры в магистраль до батарей. Циркуляция жидкости обеспечивается насосом.
  2. Подключение по кольцам, первичным или вторичным. Трубопровод, при укладке образует кольца, они врезаются в систему подачи в нескольких местах. Температура теплоносителя зависит от удалённости змеевика от источника тепла.
  3. Подсоединение к компланарному коллектору, к крайней его точки. Движется вода в контуре за счёт работы общедомового насоса, размещённого в генераторной. При этом тёплый пол имеет приоритет при подаче горячего теплоносителя.
  4. С применением гидравлического распределительного узла — отличный вариант: если нагревательных устройств несколько, при разнице в длине петель пола и расходе воды в них. В этой схеме так же не обойтись без компланарного коллектора.
  5. Локальное подключение контура через унибокс по параллельной схеме. Подходит для помещений имеющих небольшую площадь: ванная комната, коридор.

Подключение к радиатору

Распространённый способ подпитывания тёплых полов от радиаторов. При такой схеме, температура жидкости в водяном полу напрямую связана со степенью её нагрева в радиаторе.

Для сооружения данной системы нужна магистраль, у которой есть подача с обраткой, а также трубы пола и унибокс. Так как, вода в батареи нагревается до 80 градусов, то петли пола рекомендовано подсоединять к обратке.

Унибокс — устройство, виды и принцип работы, преимущества использования, монтаж своими руками.

От котла

Это простой вариант — установленный котёл предназначен только для обогрева воды для тёплого пола, поэтому никакие регуляторы не нужны.

При наличии современного газового котла, он способен сам регулировать температуру, достаточно установить требуемый показатель на панели. Даже при двухконтактной системе, когда котёл осуществляет нагрев воды для батарей и тёплого пола, значения для каждого устройства легко отрегулировать автоматикой котла.

При использовании котла, который работает от твёрдого топлива, требуется наличие компенсаторного бочка. Уровень температуры и давления регулируется за счёт установки на бочке узла безопасности, который состоит из манометра, клапана для выпуска воздуха и терморегулятора.

К сведению! На функционирование водяного тёплого пола влияет схема укладки труб — узнайте какие бывают схемы укладки, а так же способы подключения теплых полов. При «змейке», прогрев будет не равномерный, с холодными и горячими участкам. При размещении контура по схеме «улитка», равномерный прогрев обеспечен.

Температурный режим

Принцип работы водяного тёплого пола отличен от функционирования других греющих приборов. Главное различие в уровне нагрева теплоносителя. В радиаторы подаётся вода, нагретая до 80 градусов, для контуров водяного пола максимум — 42 градуса. При такой температуре, прогрев напольного покрытия будет достигать 26 градусов.

Есть два метода для регулировки температуры водяных тёплых полов:

  1. Осуществляя контроль в узле подачи коллектора, путём подмешивания отработанной воды. Достигается это оборудованием трёхходового клапана с термостатической головкой. При работе учитывается температура воды, а не воздуха, и обеспечивается неизменный объём потребляемой жидкости, при незначительном колебании её температуры.
  2. Ограничивая поступление нагретого теплоносителя в трубы. Для этого также требуется термоголовка, она размещается на трёхходовом клапане и используется, чтобы перекрыть обратный поток. При этом краны подачи и обратки соединяются с байпасом, через него и производится регулировка потока ограничительным клапаном. Так как тёплые полы инертны, то в трубы подаётся вода номинальной температурой, и меняется лишь её потребление.

В обоих методах, термостатическая головка в работе отталкивается от температуры обратки.

Правила заправки системы

Правильно настроить функционирование водяной конструкции нельзя, если объём жидкости в трубопроводе будет изменяться самостоятельно. Это может произойти, при наличии воздуха в системе — смотрите инструкцию как спустить воздух с теплого пола самостоятельно. Поэтому, важно как профессионально смонтировать конструкцию, так и правильно её заполнить.

Для качественного заполнения системы, следует обе коллекторные ветки оснастить автоматическими воздухоотводчиками. Заправку петель пола следует проводить отдельно от других отопительных устройств. Генератор и радиаторы заполняются заранее. Перед заправкой коллекторные входные вентили перекрываются.

Чтобы правильно произвести запуск пола, нужно к крану подачи подсоединить шланг от источника водоснабжения или насоса, а к возвратке — шланг для выхода воздуха.

Начинать заполнение водяного пола надо с коллектора и его распределительных узлов. Для этого, расходомеры подающего вентиля открываются на полную, в этот момент краны на обратке следует отключать.

Петли заполняются поочерёдно, вода пускается пока из стравливающего шланга, она не пойдёт чистая, и без воздушных пузырьков. Запускать воду следует небольшим напором, это сделает процесс выхода воздуха из труб равномерней. После заправки всех петель, устройство можно включать.

Работа с расходомерами коллекторов

Под балансировкой тёплого пола подразумевается определение норм для каждой петли. Ведь от размера ветки пола, чтобы в процессе прохождения по ней теплоноситель остывал согласно расчётного значения, количество воды требуется разное. Объём жидкости, которую пропускает через себя петля, является тепловой нагрузкой на неё.

Не редко, рекомендуют определять расход теплоносителя, отталкиваясь от мощности насоса, то есть объём поступающей жидкости разделяется пропорционально на длину петель. Однако стоит отказаться от этого способа, так как точно рассчитать размер каждого змеевика этим методом не просто.

Помимо этого, вычисления данным способом приводит к несоответствию напора в петли с расчётным значением, что делает невозможным настроить конструкцию.

Сам же регулировочный процесс расходомерами несложный — статья с пошаговой инструкцией. Пропускная возможность устройства настраивается с учётом модели, либо поворотом корпуса, либо штока с помощью ключа. В приборе отражается количество воды в литрах, прошедшее за минуту, необходимо лишь установить желаемое значение.

В основном всегда, при регулировке пропускной способности одной петли, происходит изменение в других. Поэтому, процесс следует повторять последовательно с каждым расходомером. Значительные сбои свидетельствуют о том, что арматура имеет плохую пропускную способность, или циркулирующий насос имеет низкую производительность.

Читайте также: