Расположение фундаментов по высоте проверяют

Обновлено: 16.05.2024

Работы по инженерно-техническому обследованию фундамента произведены 04-09 июля 2014г.

Элементы, подлежащие обследованию.

Согласно техническому заданию выполнялось визуальное и детальное (инструментальное) обследование, объектами технического обследования являлись:

Целью работ по выполнению технического обследования является определение технического состояния фундамента, установление максимальной несущей способности конструкций, с учётом существующего технического состояния.

В состав отчета по итогам обследования технического состояния объекта вошли:

  • Оценка технического состояния (категория технического состояния) конструкции;
  • указание наиболее вероятных причин появления дефектов и повреждений в конструкциях (при наличии);
  • рекомендации по восстановлению или усилению конструкций (если необходимо).
  • составление ведомости дефектов;
  • результаты инструментальных замеров прочности бетона;
  • обмерный чертёж фундамента;
  • поверочный расчёт конструкции фундамента.

Выполненный комплекс работ.

1. Подготовка к проведению обследования.

Произведен анализ архивной проектной документации.

2. Работы на объекте

В соответствии с СП 13-102-2003 на объекте были произведены обмерные работы и работы по сплошному обследованию конструкций.

Для определения геометрии и сечения конструктивных элементов выполнены следующие обмерные работы:

  • определены фактические размеры расчетных сечений конструкций и их элементов, замерены основные геометрические параметры несущих конструкций;
  • определены формы и размеры узлов стыковых сопряжений элементов и их опорных частей;
  • в железобетонных конструкциях определено наличие, расположение, количество и класс арматуры, а также состояние защитного слоя и признаки коррозии арматуры.

Выполнен неразрушающий контроль прочности бетона строительных конструкций в 27-и точках по ГОСТ 18105-2010 и ГОСТ 17624-87. Произведено освидетельствование дефектов. По результатам осмотра выполнена дефектная ведомость.

Инструментальное обеспечение обследования, методика проведения испытаний.

Съемка геометрических параметров и прочностных характеристик конструкций выполнена приборами:

  • 5-и метровой рулеткой измерительной металлической РГ-5 ГОСТ 7502-80;
  • Ультразвуковой тестер бетона УКС-МГ4;
  • Дальномер CONDTROL Mettro 100 Pro;
  • ПОС-50МГ4 «Отрыв со скалыванием».

Использованная при обследовании проектная, исполнительная, эксплуатационная и другая документация.

Все работы выполнены в соответствии с ГОСТ Р 31937-2011 «Здания и сооружения. Правила обследования и мониторинга технического состояния» и СП 13-102-2003 «Правила обследования несущих строительных конструкций зданий и сооружений». Настоящие стандарты и правила предназначены для применения в строительстве при проведении обследований и мониторинга технического состояния зданий и сооружений, при разработке заданий на проектирование и разработке проектной документации, и не устанавливают требований к проектированию мероприятий по устранению выявленных недостатков в грунтовых массивах, конструкциях, их элементах и соединениях, а также к проектированию мероприятий по восстановлению, усилению и капитальному ремонту объекта.

Классификация технического состояния конструкций приведена в соответствии с ГОСТ Р 31937-2011, для оценки технического состояния предусмотрено четыре категории характеризующее состояние конструкций здания:

Нормативное техническое состояние: Категория технического состояния, при котором количественные и качественные значения параметров всех критериев оценки технического состояния строительных конструкций зданий и сооружений, включая состояние грунтов основания, соответствуют установленным в проектной документации значениям с учетом пределов их изменения.

Работоспособное техническое состояние: Категория технического состояния, при которой некоторые из числа оцениваемых контролируемых параметров не отвечают требованиям проекта или норм, но имеющиеся нарушения требований в конкретных условиях эксплуатации не приводят к нарушению работоспособности, и необходимая несущая способность конструкций и грунтов основания, с учетом влияния имеющихся дефектов и повреждений, обеспечивается.

Ограниченно-работоспособное техническое состояние: Категория технического состояния строительной конструкции или здания и сооружения в целом, включая состояние грунтов основания, при которой имеются крены, дефекты и повреждения, приведшие к снижению несущей способности, но отсутствует опасность внезапного разрушения, потери устойчивости или опрокидывания, и функционирование конструкций и эксплуатация здания или сооружения возможны либо при контроле (мониторинге) технического состояния, либо при проведении необходимых мероприятий по восстановлению или усилению конструкций и (или) грунтов основания и последующем мониторинге технического состояния (при необходимости).

Аварийное состояние: Категория технического состояния строительной конструкции или здания и сооружения в целом, включая состояние грунтов основания, характеризующаяся повреждениями и деформациями, свидетельствующими об исчерпании несущей способности и опасности обрушения и (или) характеризующаяся кренами, которые могут вызвать потерю устойчивости объекта.

Характеристика объекта

3.1. Назначение существующего здания.

3.2. Год постройки здания.

Незавершённое строительство. На момент проведения исследований возведено 26 столбчатых фундаментов. Возраст бетона фундамента более 28 суток.

3.3. Климатические данные района строительства.

Район строительства по СНиП 23-01-99.

Расчётная температура наружного воздуха:

  • Средняя, наиболее холодной пятидневки(0.92) минус -28°С.
  • Средняя, наиболее холодной пятидневки(0.98) минус -30°С.
  • Средняя, наиболее холодных суток (0.92) минус -32°С.
  • Средняя, наиболее холодных суток (0.98) минус -36°С.

Зона влажности района строительства, согласно СНиП 23-02-2003 – нормальная.

Согласно СП 20.13330.2011 здание расположено в III снеговом районе, с весом снегового покрова, на 1м 2 горизонтальной поверхности земли, равным 1,8кПа. Нормативная среднемесячная температура января -10°С.

Нормативное значение ветрового давления для I района составляет 0,23 кПа.

Нормативная глубина промерзания грунта, согласно Пособию к СНиП 2.02.01-83*, принимается h0=1,75 м.

3.4. Уровень ответственности.

Будет определен проектной документацией на надземную часть здания.

Результаты инструментальных исследований

Результат обследования фундамента

4.1. Количество выполненных шурфов для проведения обследования

4.2. Тип фундамента.

Столбчатый, с плитной частью.

4.3. Глубина залегания фундамента

4.4. Конструкция фундаментов по результатам обследования.

Столбчатые фундаменты, с плитной частью в основании фундамента, выполнены из монолитного бетона.

  • Шурф №1. Размеры столбчатой части 670х670мм, высота 900мм, высота плитной части 500мм, размеры подошвы фундамента 1300х1300мм.
  • Шурф №2. Размеры столбчатой части 670х670мм, высота 1020мм, высота плитной части 250мм, размеры подошвы фундамента 1300х1300мм.

Армирование фундамента выполнено из 6-ти продольных стержней диаметром 12мм класс А400, и поперечных стержней диаметром 8мм, установленных с шагом 150мм по высоте фундамента.

4.5. Сведения о грунтах основания здания.

По архивных данным инженерно-геологических изысканий, выполненных фирмой ООО «. » в 2014 году, в городе Электросталь установлено:

В геологическом строении исследованного участка по данным бурения с поверхности под слоем насыпных грунтов до глубины 10м,0 принимают участие покровные (prQII-III) флювиогляциальные (FQII) и моренные (gQII) отложения.

От поверхности земли участок имеет следующее строение: Насыпные грунты мощностью 1,5 м, на глубину 0,5-1,8м участок покрыт покровными тугопластичными суглинками коричневого цвета, опесчанеными с редким включением дресвы, сильнопучинистыми.

Под покровными грунтами залегают флювиогляциальные отложения, представленные песками средней крупности, с редким включением дресвы, коричневого цвета, средней плотности, средней степени водонасыщения и водонасыщенные, мощностью 0,9-2,6м.

Ниже по разрезу, на всю вскрытую мощность, залегают моренные отложения, представленные суглинками крано-коричневого цвета тугопластничной консистенции, с включением гальки и дресвы до 5-7%. Вскрытая мощность 5,4-6.8м. Физико-механические характеристики грунтов основания приняты с понижающим коэффициентом 0.9.

4.6. Горизонтальная и вертикальная гидроизоляция

Выполнена обмазка битумом за 1 раз.

4.7. Дефекты, выявленные при обследовании.

Зафиксированы сквозные вертикальные и диагональные трещины в узлах соединения балок фундамента со столбами. Трещины носят деформационных характер, причина появления трещин - недостаточное поперечное армирование балок в узлах соединения со столбами.

При осмотре фундамента повсеместно зафиксированы поры, раковины, оголение арматуры. Дефекты являются следствием некачественно выполненных работ. Бетон не провибрирован. Вертикальная гидроизоляция имеет отслоение и местами отсутствует.

Ведомость дефектов и повреждений по результатам визуального обследования

Конструкция

Место дефекта

Дефект или повреждение

Объём дефекта

Возможные причины возникновения дефектов

Мероприятия по устранению дефектов

Ось А/2-3, ось А/3-4, ось А/6-7.

Деформационные трещины в балке

Трещина сквозная, глубиной 240мм. Высота трещины 240мм

Недостаточный шаг поперечной арматуры в узле соединения балки и столба.

Инъекционное укрепление под давлением.

Постановка дополнительных арматурных каркасов на длину 1.5м от узла соединения балки со столбом фундамента, с поперечной арматурой диаметром 8мм, с шагом 100мм. Торкретирование балок под давлением, для создания защитного слоя бетона.

Фундаментный столб частично разрушен.

Установка опалубки, армирования и анкерных болтов, заливка бетоном.

Не выполнена заливка бетоном столбчатого фундамента, не выполнена заливка балок в осях А/Б-10, Б/В-10 А/Б-1

Не закончены работы по устройству фундамента

Установка опалубки, армирования, заливка бетоном

Поры, раковины, биопоражение.

На площади до 30 % фундамента

Некачественно выполненные бетонные и опалубочные работы, некачественно выполненные гидроизоляционные работы. Отсутствие консервации объекта.

Очистка и устройство гидрофобизации фундамента, обработка фундамента ремонтным составом «Скрепа М500»

Смещение арматурных стержней, недостаточная толщина защитного слоя, обнажение арматуры, некачественно выполненные опалубочные работы, частичное или полное отсутствие гидроизоляции.

Результаты поверочных расчетов

В соответствии с СП 56.13330.2011 произведен поверочный расчёт столбчатого монолитного фундамента, совместно с грунтовым основанием. В расчёте грунтового основания приняты физико-механические характеристики с использованием нормативных значений приложения Б СП 22.13330.2011 и архивных данных, на основании проведённых в 2014 году инженерно-геологических изысканий, выполненных в городе Электросталь. В соответствии с СП22.13330.2011 расчётное сопротивление насыпных грунтов для песков пылеватых, суглинков и глин при степени влажности Sr>0.8 составляет 100КПа (10т/м2). На основании архивных данных физико-механических свойств грунта расчётное сопротивление насыпного грунта составляет 6.267т/м 2 . В расчёте применено минимальное значение 6.267т/м 2 .

По результатам проведённых поверочных расчётов установлено, что предельная нагрузка на столбчатый фундамент не должна превышать 5тс.

(Графические материалы поверочного расчёта представлены в приложении №2).

Образец бетона. Заполнитель бетона - гранитный щебень

Оценка технического состояния конструкций и сравнение с требованиями нормативных документов

Наименование конструкции

Техническое состояние

Мероприятия для обеспечения нормальной эксплуатации

Ограниченно-работоспособное, по ГОСТ 31937-2011 и неудовлетворительное по СП22.13330.2011.

Усиление фундаментных балок. Гидрофобизация бетона фундамента, обработка фундамента составом «Скрепа М500». Устройство буроинекционных свай под плитными частями фундаментов по специальному проекту.

Выводы

В результате проведенного детального обследования технического состояния, и поверочных расчётов фундамента можно сделать следующие выводы:

8.1. Существующий железобетонный фундамент выполнен из отдельных столбов размерами 670х670мм, высотой 0.9-1м, с плитной частью размерами 1300х1300мм высотой 250-500мм. Между столбами выполнены монолитные железобетонные балки сечением 240х240мм, длиной 6000мм.

8.3. Техническое состояние существующих фундаментов, в связи с наличием трещин в узлах соединения со столбами фундамента и недостаточной глубиной залегания, соответствует ограниченно-работоспособному. Необходимы конструктивные мероприятия по усилению существующих балок.

8.4. Поверочный расчёт произведён для определения максимальной нагрузки на фундамент, с учетом несущей способности грунтов основания под подошвой фундамента. В ходе расчёта фундамента определена максимальная нагрузка на грунты основания, выявлена разность осадок и общая осадка здания. На основании проведённого расчёта установлено, что максимальная нагрузка на фундамент, с учётом несущей способности грунтов основания, не должна превышать 5тс.

8.5. При выполнении поверочного расчёта бетонного сечения монолитного столбчатого фундамента установлено, что при нагрузке на фундамент 5тс несущая способность использована на 16,9%.

8.6. При превышении проектной нагрузки более допустимой необходимо выполнить мероприятия по передачи нагрузки от фундамента на более прочный грунт, путём устройства буроинъекционных свай (по специальному проекту).

8.7. Для обеспечения надежности бетона и арматуры фундаментов после выполнения ремонтных работ произвести пропитку бетона гидрофобизирующими составами типа «Пенетрон».

Работы по устройству фундамента не завершены

Заключение

9.1. В следствии того, что глубина залегания существующего фундамента недостаточна и фундамент опирается на непрочное обводненное основание из насыпных грунтов для дальнейшей эксплуатации железобетонного фундамента и устройства по нему надземной части здания необходимо выполнить мероприятия по усилению фундаментных балок и подведения под подошвы столбчатых фундаментов монолитного ростверка и буроинъекционных свай. А также выполнить ремонтные работы, для устранения дефектов, допущенных при выполнении стоительно - монтажных работ. (см. п.5 Дефектная ведомость).

9.2. Разработать проект усиления фундаментов. До разработки проекта провести инженерно-геологические изыскания на площадке строительства.

Рекомендации

Общий вид фундамента

Список использованной литературы и инструктивно-нормативных документов

Приложение 2. Графические приложения: обмерные планы, дефектные ведомости

Приложение 3. Поверочный расчёт железобетонного фундамента

Результаты поверочного расчета:

Коэффициент использования 0.169 - прочность на продавливание незамкнутого бетонного элемента при действии сосредоточенной силы и изгибающих моментов (в том числе дополнительных от внецентренного приложения силы относительно контура продавливания) с векторами вдоль осей X,Y (площадка приложения у края плиты).

Нажмите, чтобы узнать подробности

Тест по теме «Основы геодезии» представлен в трех вариантах. Каждый вариант состоит из десяти вопросов, на каждый вопрос - четыре ответа, один из которых правильный. Тест позволяет выявить и оценить уровень знаний учащихся по данной теме. Рекомендуется для учащихся строительных лицеев квалификации «Каменщик»

Просмотр содержимого документа
«Тест по теме «Основы геодезии»»

Контроль знаний по теме:

«Основы геодезии»

Выберите правильный ответ

1. Определением формы и размеров Земли, измерениями на земной поверхности для отображения их в планах и картах занимается наука:

а) метрология; б) топография;

в) геометрия; г) геодезия.

2. Оси, которые проходят в плане по контуру здания и в местах расположения деформационных швов, называют:

а) главные; б) основные;

в) вспомогательные; г) красные линии.

3. Геодезический инструмент для определения разности высотных точек, представляющий собой две стеклянные трубки с нанесенными делениями, соединенные между собой гибким шлангом, называют:

а) гидравлический уровень; б) отвес;

в) рулетка; г) строительный уровень.

4. Систему, закрепленную специальными знаками точек земной поверхности, называют:

а) топографическая карта; б) топографический план;

в) геодезические знаки; г) геодезическая сеть.

5. На нивелирной рейке написанные цифры выражены в:

а) миллиметрах; б) сантиметрах;

в) дециметрах; г) метрах.

6. Превышение (высота) точки, выраженное в миллиметрах, относительно уровня Балтийского моря, называют:

а) абсолютная отметка; б) относительная отметка;

в) условная отметка; г) монтажный горизонт.

7. При возведении подземных частей здания для закрепления разбивочных осей устраивают:

а) красные линии; б) грунтовые знаки;

в) деревянный забор; г) обноску.

8. Плоскость, проходящую через точки с нулевыми отметками, как правило, на уровне чистого пола первого этажа, называют:

Исходными данными для оценки грунтов основания служат материалы инженерно-геологических изысканий: топографический план строительной площадки с расположением скважин и других горных выработок; геолого-литологические колонки выработок и инженерно-геологические разрезы по различным сечениям строительной площадки; геологические характеристики грунтов, залегающих в основании сооружения; сведения о развитии геологических процессов в районе строительства; результаты полевых и лабораторных определений физических и механических характеристик грунтов; сведения о подземных водах.

Оценку грунтов основания выполняем послойно сверху вниз, используя сводную геолого-литологическую колонку, построенную по оси проектируемого фундамента, на которой указаны средние мощности слоев грунта.


Выбор отметки обреза и глубины заложения фундамента. Зависимость глубины заложения от геологического строения и свойств грунтов основания, глубины промерзания пучинистых грунтов, конструктивных особенностей сооружения.

Верхняя плоскость фундамента, на ко­торой располагаются надземные части здания, называют поверхностью фунда­мента или обрезом, а нижнюю его пло­скость, непосредственно соприкасающую­ся с основанием, — подошвой фундамен­та.
Расстояние от спланированной поверх­ности грунта до уровня подошвы назы­вают глубиной заложения фундамента, которая должна соответствовать глубине залегания слоя основания. При этом не­обходимо учитывать глубину промерза­ния грунта (рис, 4.4).

Глубина заложения фундамента из условия промерзания грунтов назначается в зависимости от их вида, состояния, начальной влажности и уровня подземных вод в период промерзания. Промерзание водонасыщенных грунтов сопровождается образованием в них прослоек льда, толщина которых увеличивается по мере миграции воды из слоев, расположенных ниже уровня подземных вод. Это приводит к возникновению сил пучения по подошве фундамента, которые могут вызвать подъем сооружения. Последующее оттаивание таких грунтов приводит к резкому снижению их несущей способности и просадкам сооружения.

Наибольшему пучению подвержены грунты, содержащие пылеватые и глинистые частицы. Крупнообломочные грунты с песчаным заполнителем, пески гравелистые, крупные и средней крупности, относятся к непучинистым грунтам, глубина заложения фундаментов в них не зависит от глубины промерзания в любых условиях. Практикой установлено, что, если уровень подземных вод во время промерзания находится от спланированной отметки земли на глубине, равной расчетной глубине промерзания плюс 2 м, в песках мелких и пылеватых с любой влажностью и в супесях твердой консистенции, глубина заложения фундаментов наружных стен и колонн назначается без учета промерзания грунта. Это связано с высотой капиллярного поднятия подземных вод. Во всех остальных грунтовых условиях глубина заложения наружных фундаментов назначается не менее расчетной глубины промерзания. Исключение составляют площадки, сложенные суглинками, глинами, а также крупнообломочными грунтами с глинистым заполнителем при показателе текучести глинистого грунта или заполнителя IL < 0,25. В этих условиях глубину заложения фундаментов можно назначать не менее 0,5 расчетной глубины промерзания от спланированной отметки земли.

Глубина заложения внутренних фундаментов отапливаемых зданий назначается независимо от глубины промерзания, если во время строительства и эксплуатации возле фундаментов исключено промерзание грунтов. В неотапливаемых зданиях глубина заложения фундаментов для пучинистых грунтов принимается не менее расчетной глубины промерзания.

Основными конструктивными особенностями возводимого сооружения, влияющими на глубину заложения его фундамента, являются: наличие и размеры подвальных помещений, приямков или фундаментов под оборудование; глубина заложения фундаментов примыкающих сооружений; наличие и глубина прокладки подземных коммуникаций и конструкций самого фундамента.

В зданиях с подвалом и полуподвалом, а также около приямков или каналов, примыкающих к фундаментам, глубина заложения фундамента принимается на 0,2-0,5 м ниже отметки пола в этих помещениях, что предусматривает запас на высоту фундаментного блока или конструкции приямка. Фундаменты сооружения или его отсека стремятся закладывать на одном уровне. При необходимости заложения смежных отсеков на разных отметках требуется выполнение следующего условия.




Фундаменты проектируемого сооружения, непосредственно примыкающие к фундаментам существующего, рекомендуется закладывать на одном уровне. При наличии коммуникаций (трубы водопровода, канализации и т. д.) подошва фундамента должна быть заложена ниже их ввода. При этом условии трубы не будут подвержены дополнительному давлению от фундамента, а фундаменты не опираются на насыпной грунт траншей, вырытых для прокладки труб. Кроме того, в случае аварии уменьшается зона замачивания грунта, а при необходимости замены труб не будут нарушены грунты основания.

Переход от одной отметки заложения ленточного фундамента к другой осуществляется ступенями. Высота уступа в случае сборного фундамента принимается равной высоте стенового блока. При устройстве монолитного ленточного фундамента соотношение высоты ступени к ее длине должно быть: для связных грунтов - 1 : 2, для несвязных -1:3, при этом высота уступа (ступени) не должна превышать 0,5-0,6 м.




Рис. 4.4. Определение глубины заложения фундаментов:
а — схема:1 — подошва фундамента. 2 — тело фун­дамента, 3 — отметка глубины заложения фундамен­та, 4 — отметка глубины промерзания грунта, 5 — отметка уровня грунтовых вод, 6 — планировочная отметка, 7 — стена, 8 — уровень пола 1 этажа, 9 — обрез фундамента. hф — глубина заложения фунда­мента, b — ширина подошвы фундамента, б — карта нормативных глубин промерзания суглинистых грунтов
по СП 22.13330.2011

. Взаимное расположение фундаментов с различной глубиной заливки

7.Определение размеров подошв фундаментов мелкого заложения расчетами по 2-ой группе предельных состояний \ по деформациям \. Общие положения.

Основной целью расчета оснований по второй группепредельных состояний (по деформациям) является ограничение перемещений фундаментов такими предельными значениями, которые гapaнтируют нормальную эксплуатацию и требуемую долговечность зданий и сооружений, исключая возможность, проявления значительных неравномерностей осадок связанных с появлением кренов, изменения проектных отметок и положений конструкций и их соединений.

Расчет оснований по деформациям предполагает, что прочность и трещиностойкость самих фундаментов и фундаментных конструкций должны быть проверены по результатам дополнительных рас­четов.

Так как проектирование оснований начинают с назначения глубины заложения фундамента, то ограничение осадки последнего производят, назначением определенных размеров подошвы, то ограничение возможных неравномерностей осадок часто, добиваются за счет варьирования размерами подошвы, тем самым уменьшая или увеличивая давление в грунте основания, что позволяет регулировать осадки отдельных фундаментов.

Расчетная глубина сезонного промерзания грунта:

где kh - коэффициент, учитывающий влияние теплового режима сооружения, принимаемый для наружных фундаментов отапливаемых сооружений по табл. 10.2, а для наружных и внутренних фундаментов неотапливаемых сооружений—равным 1,1, кроме районов с отрицательной среднегодовой температурой, для которых расчетная глубина промерзания грунта определяется по теплотехническим расчетам; dfn — нормативная глубина сезонного промерзания грунта,м.

При расчетах фундаментов мелкого заложения по второму предельному состоянию (по деформациям) площадь подошвы предварительно может быть определена из условия

Где PII — среднее давление по подошве фундамента от основного сочетания расчетных нагрузок при расчете по деформациям; R — расчетное сопротивление грунта основания.

Рассчитав площадь подошвы фундамента, находят его ширину b Ширину ленточного фундамента, для которого нагрузки определяют на 1 м длины, находят как b=А/1. У фундаментов с прямоугольной подошвой задаются отношением сторон п=1/Ь, тогда ширина подошвы , для фундаментов с круглой подошвой D=2

Расчет оснований по деформациям требует выполнения следующего условия: S≤SU

где s – деформация основания, определяемая по результатам совместной работы основания и сооружения; SU - предельное значение совместной деформации основания и сооружения. Предельно допустимые деформации определяются в основном эксплуатационными требованиями, предъявляемыми к сооружению. По СП 22.13330.2011 рекомендуется ограничивать давление по подошве фундамента расчетным сопротивлением грунта основания: p≤R.

Расчетное сопротивление грунта основания под подошвой фундамента определяется по формуле Пузыревского:


γc1, γc1- коэффициенты, зависящие от инженерно-геологических условий

сII- удельное сцепление грунта

γII- удельный вес грунта над подошвой фундамента

γ , II- удельный вес грунта под подошвой фундамента

Мq, Мγ Мс- коэффициенты принимаемые от угла внутреннего трения

В идеальном мире Заказчик, который платит за возведение фундамента, не должен беспокоиться за его конечное качество, однако реальность такова, что даже высокая цена не дает гарантии качественно сделанного фундамента, поэтому он должен сам ответственно проходить к вопросу приемки работ и проверять фундамент на всех этапах строительно-монтажных работ. У заказчиков промышленно-гражданского строительства для этого существуют отдельные службы технического надзора, ведь ответственность здесь крайне высокая.

Для малоэтажного строительства действуют все те же строительные нормы и правила. Если вы плохо разбираетесь в строительстве, то крайне рекомендуется перед началом строительства либо проконсультироваться со строительным экспертом, либо изучить действующие СНиП и СП на предмет установленных требований к фундаменту, допусков и отклонений.

Проверка фундамента заключается в правильности выполнения всех СМР фундамента.

1. Геология и выбор фундамента.

Строительство должно вестись по специально разработанному проекту дома. В целях экономии многие заказчики покупают готовый типовой проект. Этот вариант приемлем, однако фундамент здания должен быть адаптирован под ваши геологические условия, иначе в дальнейшем вы можете получить осадку фундамента и осадочные трещины по стенам. Для адаптации нужно:

  • Исследовать геологию на объекте, либо воспользоваться архивным отчетом по геологии.
  • Выполнить расчет фундамента, с учетом геологии и климатического района, на необходимую несущую способность, скорректировать конструкцию фундамента. Расчет должен выполнять квалифицированный инженер-конструктор.

Бывает также, что и строительные фирмы заключают договор на строительство типового дома и выполняют его абсолютно без проекта, по эскизу. Скорее всего, рабочие на каких-то этапах (если не на всех) будут делать работу халтурно, ведь они строят не по однозначно разработанным чертежам, а так, как умеют.

2. Мониторинг скрытых работ

Очень важным моментом является приемка скрытых работ. Это такие работы, качество выполнения которых в дальнейшем проверить будет либо сильно затруднительно, либо вовсе невозможно, потому что последующие работы будут их закрывать.

Например, Для ленточного фундамента это устройство котлована (правильная ли глубина, уровень, тромбовка), правильная ли геометрия разбивки осей, устройство подстилающих слоев (толщины слоев, проектные ли материалы — песок, ПГС, бетонная подготовка), устройство армирования (диаметр и шаг арматуры, отсутствие коррозии, надежная вязка), устройство опалубки (горизонтальный и вертикальный уровень, размеры, надежность крепления, толщина защитного слоя), устройство бетонных работ (плавное ли заполнение опалубки бетонной смесью и без перебоев, равномерное вибрирование смеси глубинными вибраторами, последующее измерение геометрии фундамента, испытания прочности бетона на 7 и на 28 суток), соблюдение качественного устройства гидроизоляции, обратная засыпка без мусора.

3. Геометрия, проверка прочности фундамента.

Вам нужно осуществлять проверку геометрических размеров и качества поставляемых материалов на соответствие проекту (при условии, что он сделан в соответствии с требованиями СНиП, СП, ГОСТ и правильными расчетами конструкций). Если вы выявляете отклонения от проекта, сверьтесь со СНиП и СП — в пределах ли они допустимых значений. Если нет, то нужно исправлять, пока это возможно.

Проверки геометрии и уровня можно выполнять рулетками, нивелиром, лазерными уровнями. Для проверки прочности бетона уже нужно специализированное оборудование. Минимально дешевое и доступное, что можно приобрести, это склерометр, однако его точность не слишком высока, поэтому оценку прочности бетона лучше, все же, заказывать в специализированной организации, с необходимым оборудованием (наиболее точными методами считаются отрыв со скалыванием, выбуривание кернов и испытание их на прессе).

Если подрядная организация отказывается исправлять дефекты.

Если вы ответственно отнеслись к проверке качества работ, Вы уже будете понимать, качественно ли работает бригада. Добросовестные работники исправят свои недочеты сразу. Но бывает, что фирма, мало того, что делает откровенную «халтуру», так и ничего не желая исправлять, требует свои деньги. В данном варианте необходимо добиваться справедливости только через суд. Вам нужно остановить все работы, заказать строительную экспертизу, если есть серьезные нарушения, подсчитать сумму ремонтно-восстановительных работ. Далее нужно предъявить заключение экспертной организации подрядчику и попробовать договориться о компенсации мирным путем, либо продавать иск в суд, если это ни к чему не приведет.

По имеющимся размерам фундамента в плане, глубине заложения, размеру сечения колонн в плане подбирается конструкция фундамента.

Отметка верхнего обреза фундамента назначается на 0,15 м ниже условной отметки пола первого этажа, принимаемой за - 0,0. Высота фундамента дополнительно корректируется условием заделки колонны в стакан.

Глубина заделки колонны в стакан h3 принимается равной hk для центрально нагруженных квадратных фундаментов, а также для прямоугольных внецентренно нагруженных фундаментов с эксцентриситетом , е≤2hk. Для прямоугольных фундаментов с эксцентриситетом еk3≤1.4hk

Глубина заделки колонны в стакан дополнительно должна удовлетворять требованию заделки рабочей арматуры колонны, которая принимается равной:

для колонн прямоугольного сечения с рабочей арматурой класса A-II для проектной марки бетона В15 для бетона класса В15

для колонн с рабочей аркатурой класса А-Ш для бетона класса В15 для класса марки бетона В15

Глубина заделки двухветвевых колонн определяется из условия:

где - расстояние между наружными гранями ветвей колонны (м).

При глубине заделки двухветвевых колонн в фундамент принимается равной 1,2 м.

Под сборные двухветвевые колонны с расстоянием между наружными гранями ветвей колонны рекомендуется выполнять устройство отдельных стаканов под каждую ветвь с заделкой каждой ветви на величину .

Толщина стенок неармированного стакана поверху принимается не менее 0,75 глубины стакана и не менее 200 мм.

Толщина армированной стаканной части принимается по расчету согласно СНиП 2.03.01.-84, но не менее 200 мм.

Зазоры между стенками стакана и колонны должна приниматься равными 75 мм поверху и 50 мм понизу. Бетон для замоноличивания колонны в стакане фундамента принимается класса не менее В15.

Толщина дна стакана принимается по расчету на раскалывание, но не менее 200 мм.


В тех случаях, когда высота фундамента с учетом всех факторов (глубины заложения, отметки верха стакана, глубины стакана, толщины дна стакана) получается большой, то высоту фундамента следует увеличивать за счет подколонника. При этом фундамент по высоте разделяется на плитную часть и подколонник. Если размеры фундамента в плане не превышают соответственно , то фундамент конструируется с повышенной стаканной частью (подколонником). В остальных случаях фундамент выполняется без повышенной стаканной части (рис.3.3).

Рис. 3.3. Схема конструирования фундамента с повышенной стаканной частью (подколонником).

а - жёсткий фундамент; б - фундамент с подколонником.

Требуемая высота отдельно стоящего фундамента или его плитной части для фундаментов с повышенной стаканной частью вычисляется из условия прочности на продавливание по формуле:

а) для прямоугольных фундаментов

б) для квадратных в плане фундаментов

в) для круглых в плане фундаментов

Необходимая высота Н0 ленточных фундаментов устанавливается из условия прочности та срез:

В формулах (3.24) - (3.26) приняты обозначения:

- соответственно меньшая и большая сторона сечения колоны или подколонника ( );

- коэффициент, характеризующий отношение расчетного сопротивления бетона растяжению RР (по табл.13 СНиП 2.03.01.-84), к среднему давлению грунта под подошвой фундамента;

- коэффициент, характеризующий отношение ширины фундамента к меньшей стороне колонны (или подколонника );

- то же, площади фундамента F к площади сечения колонны FК

(или подколонника Fn).

За расчетную высоту фундамента или его плитной части, принимают большее значение, из вычисленных, то формулам (3.24.) - (3.26.) и корректируют его с учетом модульных размеров, кратных 300 мм.

Высоту ступеней рекомендуемся назначать равной 300, 450 и при большей высоте плитной части 600 мм (табл.3.3.). Вынос ступеней фундамента назначается из расчета их прочности на срез ина продавливание, рекомендуемся принимать по табл.З.4.




где - окончательные размеры подошвы фундамента.

- размер колонны (сооружения) понизу, м;

- высота фундамента, м;

- угол распределения напряжений в материале фундамента (или угол жесткости), принимаемый равным 45 0 для железобетонных и неармированных фундаментов при бетоне марки 200 и выше.


Рис. 3.3. Схема работы жесткого и гибкого фундаментов.


Рис. 3.4. Схема расчета фундамента на продавливание.

Если условие (3.27) выполняется, то фундамент является жестким и его армирование выполняется по минимальному проценту армирования (иногда конструктивно). Когда условие (3.27.) не выполняется, то фундамент считается либо фундаментом конечной жесткости, либо гибким, и тогда расчет его конструкции необходимо производить согласно СНиП 2.03.01-84 "Железобетонные конструкции" или по соответствующим учебникам и справочной литературе.

Для ленточных фундаментов вместо условия (3.27) - (3.28.) устанавливают показатель гибкости в продольном и поперечном направлениях, по значениям которого определяют вид фундамента:жесткий, конечной длины или бесконечно длинная полоса.

где - модуль деформации грунта основания, кН/м 2 ;

- полудлина ленточного фундамента (балки), м;

- модуль деформации бетона, кН/м 2 ;

- высота плитной части фундамента или балки, м;

Если - полоса или балка считается абсолютно жесткой и относится к категории жестких полос; при полосу рассчитывают как имеющую конечную жесткость и длину и относят к категории коротких; при - полосу считают бесконечно длинной и относят к категории длинных полос.

Для ленточных фундаментов, загруженных равномерно распределенной нагрузкой (стена здания) пределы имеют другие значения: при фундаменты относятся к категорий жестких полос, а при - к категории длинных полос.

Усилия в конструкциях указанных видов балок (полос) определяется методами Горбунова-Посадова (см. И.И.Горбунов-Посадов., Расчет конструкций на упругом основании M-I953 г.; М-1973 г.). По найденным усилиям фундамент рассчитывается по требованиям СНиП 2.03.01-83.

Показатель гибкости в поперечном направлении определяется по формуле:

где - модуль деформации грунта основания, кН/м 2 ;

- полудлина ленточного фундамента (балки), м;

- модуль деформации бетона, кН/м 2 ;

- полуширина ленточного фундамента;

При балки относятся к абсолютно жестким, и расчитывают­ся только в продольном направлении.

Высота фундамента проверяется из условия прочности его на продавливание по поверхности усеченной пирамиды, верхним основанием ко­торой является нижнее сечение колонны (или сооружения), а грани накло­нены под углом жесткости .

Расчет на продавливание центрально и внецентренно нагруженных стаканных фундаментов квадратных и прямоугольных в плане производит­ся на действие расчетной нормальной силы N, действующей в сечении колонны у обреза фундамента.

Проверка фундамента по прочности на действие только нормальной силы N производится:

а) на продавливание фундамента колонной от дна стакана;

б) на раскалывание фундамента колонной.

Проверка фундамента по прочности на продавливание колонной производится от дна стакана (рис. 3.4.) только для монтажных нагрузок по формуле:

где - расчетная нормальная сила в сечении колонны у обреза фундамента;

- рабочая высота дна стакана, принимаемая от дна стакана до плоскости расположения растянутой арматуры;

- размеры меньшей и большей сторон дна стакана;

Проверка фундамента по прочности на раскалывание от действия нормальной силы N производится из условий

где - коэффициент трения бетона по бетону, принимаемый равным 0,75;

k - коэффициент условий работы фундамента в грунте, принимаемый и равным 1,3 ;

- площади вертикальных сечений фундамента в плоскостях, проходящих по осям сечения колонны, параллельно соответственно сторонам l и b подошвы фундамента за вычетом стакана фундамента (рис. 3.5).


Рис. 3.5. Схема расчета фундамента по прочности на раскалывание

При расчёт ведётся по формуле (3.33).

При по формуле (3.34).

При расчете по формуле (3.33) величина не должна принимать­ся менее 0,4, а по формуле (3.34) величина не должна быть более 2,5. По результатам расчетов на продавливание и раскалывание принимается большая величина несущей способности фундамента.

Проверка на продавливание и раскалывание не производится при высоте фундамента от подошвы до дна стакана (рис. 3.6), соответствую­щей


Рис. 3.6. Схема фундамента при проверке на продавливание и раскалывание.

Высота фундамента без стакана (рис.3.7) проверяется из усло­вия прочности его на продавливание по поверхности усеченной пира­миды, верхним основанием которой является нижнее сечение колонны или сооружения, а грани наклонены под углом жесткости

Расчет на продавливание производится из условия

Отсюда необходимая высота

где F0 - площадь многоугольника a, b, c, d, e, g (рис.3.7), опре­деляемая по формуле:

Рис.3.7. Схема фундамента при определении его высоты без стакана из условия прочнос­ти на продавливание.

Высота ступеней (рис.3,8) назначаются в зависимости от полной высоты полной части фундамента в соответствии с табл. 3.3.

Высота ступеней плитной части фундамента

Высота плитной части фундамен­та h, см Высота ступени, см
h1 h2 h3
- _
-
-
-

Вынос нижней ступени фундамента можно определять по табл.3.4. (из условия прочности ступени на срез).

Вынос нижней ступени фундамента С1

Pг кПа Вынос ступени С1 при классах бетона
В12,5 В15 В20
2,5 h1 2,5 h1 2,5 h1
2,1 h1 2,4 h1 2,5 h1
1,9 h1 2,1 h1 2,5 h1
1,7 h1 1,9 h1 2,3 h1
1,6 h1 1,7 h1 2,1 h1
1,5 h1 1,6 h1 2.0 h1
1,4 h1 1,5 h1 1,9 h1

Минимальные размеры остальных ступеней в плане определяются после установления выноса нижней ступени С1 пересечениями ли­нии АВ (рис.3.8) с линиями, ограничивающими высоты ступеней.


Рис.3.8. Схема фундамента при определении размеров его ступеней.

3.2.5. Определение сечения арматуры по подошве фундамента

Сечение рабочей арматуры по подошве фундамента определяется, но расчета на изгиб консольного выступа фундамента в сечениях по грани колонны и по граням ступеней фундамента. Изгибающий момент возникает от реактивного давления грунта под подошвой фундамента.

Сечение арматуры параллельной стороне фундамента , в сечении по грани колонны 1-1 (рис.3.9) на 1 м ширины фундамента оп­ределяется по формуле

где hо - рабочая высота фундамента;

Rа - расчетное сопротивление арматуры;

М1-1 - изгибающий момент в сечении 1-1, определяется по форму­ле

По граням ступеней в сечениях 2-2 и 3-3 сечение арматуры на 1 м ширины фундамента и расчетные изгибающие моменты определяется по аналогичным формулам:

Давление на грунт P2 вычисляется по формуле (3.17).

Давление на грунт P3 определяется по формуле:

где К - коэффициент, вычисляемый для сечения 1-1 как для 2-2 а для сечения 3-3 -

Сечение арматуры, параллельной стороне b, в сечении по гра­ням колоны 4-4 на 1 м длины фундамента определяется по формуле

По граням ступеней в сечениях 5-5 и 6-6 Fb и М определяется по формулам:

Давление на грунт Р1 вычисляется по формуле (3.17).

Количество стержней и их диаметр определяется из условия принимаемого расстояния между стержнями.

Читайте также: