Расчет внецентренно нагруженного фундамента

Обновлено: 03.05.2024

Определить размеры подошвы и рассчитать кон­струкцию фундамента под колонну промышленного здания разме­ром 40X80 см (рис. III.1). В основании фундамента залегает песок пылеватый, плотный, насыщенный водой, имеющий удельный вес =0,0185 МН/м 3 . Угол внутреннего трения и удельное сцепление, определенные на основе лабораторных испытаний образцов грунта, составляют соответственно =28° и сn =0,0037 МПа. Глубина за­ложения фундамента d=1,2 м. В проектируемом здании подвал отсутствует. На уровне спланированной отметки земли приложена вертикальная сила N'=1,0 МН и момент М'=0,6 МН·м (от нор­мативных нагрузок). Расчетные значения усилий составляют: N'= = 1,1 МН, момента М'=0,7 МН·м. Здание имеет длину L=84 м и высоту H = 20,5 м.

Решение. При действии внецентренно приложенной нагрузки форму подошвы фундамента целесообразно назначить в виде пря­моугольника. Зададимся соотношением длины подошвы фундамен­та к его ширине l/b=1,5.

В первом приближении определим площадь подошвы фунда­мента в предположении, что на него действует только вертикаль­ная центрально приложенная сила. Условное расчетное сопротивле­ние грунта основания составит R0=0,15 МПа. Тогда ориентировоч­ная площадь фундамента определяется по формуле:

=1,0/(0,15—1,2-0,02) = 7,81 м 2 .

Учитывая, что фундамент является внецентренно нагруженным, увеличиваем размеры фундамента на 20 %. Тогда ориентировочная площадь подошвы фундамента составит Аф = 9,4 м 2 .

При соотношении l/b=1,5 получим: b = = 2,5 м; l = 2,5·1,5=3,75 м.

Назначим размеры подошвы фундамента, выполненного из мо­нолитного железобетона, bXl=2,5Х4 м и высоту h'=0,8 м. Най­дем эксцентриситет, создаваемый моментом: е=0,6/1,0=0,6 м.

Вычислим значение 0,03lк=0,024 м. Значение е=0,6 м>0,03lк= 0,024 м, поэтому данный фундамент необходимо рассчитать, как внецентренно сжатый.

Для соотношения L/H=84/20,5=4,1 по табл. 1.15(Приложение I) найдем зна­чения коэффициентов условий работы = l.l и =l,0. Коэффи­циент k= 1,0.


Рис. III.1

Для прямоугольного фундамента шириной b=2,5 м найдем рас­четное сопротивление грунта основания, опреде­лив предварительно значения безразмерных коэффициентов (см. табл. 1.13 Приложение 1) =0,98, = 4,93 и = 7,40:

В соответствии с требованиями строительных норм, для вне­центренно нагруженных фундаментов максимальное краевое дав­ление под подошвой фундамента не должно превышать 1,2R = 0,24 МПа.

Найдем вес грунта, лежащего на обрезах фундамента:

Gгр= 0,0185 (2,5·4—1,6·1,2)0,4 = 0,06 МН.

Вес фундамента (см. рис. 2.17):

Gф = 0,024 (0,8·4·2,5+ 1,6·1,2·0,8) =0,238 МН.

Найдем максимальное и минимальное краевые давления под подошвой фундамента при внецентренном нагружении по форму­лам:

Проверим выполнение условий:

Условия выполняются, а недонапряжение по максимальному краевому давлению составляет 8,3 % < 10 %. Следовательно, фунда­мент запроектирован экономично.

Окончательно принимаем в качестве фундаментной подушки монолитную железобетонную плиту размером 2,5x4x0,8 м (см. рис. III.1).

ПРИЛОЖЕНИЕ IV.

Пример расчета осадки фундамента.

Определить методом элементарного суммирования, осадку фундамента под колонну каркаса здания. Ширина фундамента b=1,8 м, длина l=1,8 м, глубина зало­жения d=0,9 м. Среднее давление под подошвой фундамента pcp=0,352 МПа. Грунтовые условия строительной площадки приве­дены в таблице IV.1.

Таблица IV.1.

Название грунта Глубина подошвы слоя, м Пластичность Удельная масса, γs, кг/м 3 Объемная масса, γp, кг/м 3 Влажность, w,% Е, МПа е
wL wp
Песок средней плотности 3,5 22,0 25,0 0,663
Суглинок тугопластичный 6,5 32,0 19,0 25,0 12,0 0,805
Глина полутвердая 10,0 43,0 23,0 27,0 20,5 0,746

Решение. Воспользовавшись данными табл. IV.2, определяем удельный вес грунтов первого и третьего слоев, залега­ющих в основании фундамента: γ1= ρg = 2000·10=0,02 МН/м 3 , γ3 = 2000·10=0,02 МН/м 3 .

Удельный вес песка первого слоя и суглинка второго слоя с учетом взвешивающего действия воды найдем по формуле:

Грунт третьего слоя представляет собой глину полутвердую, ко­торая является водоупорным слоем, поэтому в ней взвешивающее действие воды проявляться не будет. Определим ординаты эпюры вертикальных напряжений от действия собственного веса грунта по формуле и вспомогательной эпюры 0,2 :




на поверхности земли:

на уровне подошвы фундамента:

σzg0 = 0,02·0,9 = 0,018 МПа; 0,2 σzg0 = 0,004 МПа;

в первом слое на уровне грунтовых вод:

σzg1 = 0,02·2,9 = 0,058 МПа; 0,2 σzg1 = 0,012 МПа;

на контакте первого и второго слоев с учетом взвешивающего действия воды:

σzg2 = 0,058 + 0,01·1=0,068 МПа; σzg2 = 0,014 МПа;

на подошве суглинка с учетом взвешивающего действия воды:

σzg3= 0,068+ 0,0094·4,3 = 0,108 МПа; 0,2 σzg2 = 0,022 МПа.

Ниже слоя суглинка залегает глина в полутвердом состоянии, являющаяся водоупорным слоем, поэтому к вертикальному напря­жению на кровлю глины добавятся:

гидростатическое давление столба воды, находящегося над гли­ной

σгидр= 0,01·5,3 = 0,053 МПа;

полное давление на кровлю глины:

σzg4= 0,053 + 0,108 = 0,161 МПа; 0,2 σzg4 = 0,032 МПа;

давление на подошве третьего слоя:

σzg5= 0,161 +0,02·3,3 = 0,228 МПа; 0,2 σzg5 = 0,045 МПа.

Полученные значения ординат природного напряжения и вспо­могательной эпюры перенесем на геологический разрез (рис. IV.1).


Рис. IV.1

1 — песок средней плотности (γ1=0,02 МН/м 3 , h1=3,9 м, E1=25 МПа); 2 — су­глинок тугопластичный (γ2=0.0094 МН/м 3 , h2=4,3 м, E2=12 МПа); 3 — глина полутвердая (γ3=0,02 МН/м 3 , h3=3,3 м, E3=20,5 МПа)

Найдем дополнительное давление по подошве фундамента:

Рд = 0,352 — 0,018 = 0,334 МПа.

Соотношение n=l/b—1,8/1,8= 1, Чтобы избежать интерполяции по табл. 1.16(Приложение I), зададимся соотношением m = 0,4, тогда высота элемен­тарного слоя грунта hi = 0,4·1,8/2 = 0,36 м.

Построим эпюру дополнительных напряжений (см. рис. IV.1) от внешней нагрузки в толще основания рассчитываемого фундамента, используя формулу σzp=αρдg и данные табл. 1.16 (Приложение 1). Вычисления предста­вим в табличной форме (табл. IV.2).

Таблица IV.2

Грунт z, м m=2z/b α σz=αρд, МПа Е, МПа
Песок средней плотности 0,36 0,72 1,08 1,44 1,8 2,16 2,52 2,88 0,4 0,8 1,2 1,6 2,0 2,4 2,8 3,2 1,0 0,96 0,8 0,606 0,449 0,336 0,257 0,201 0,16 0,334 0,325 0,271 0,205 0,152 0,114 0,087 0,068 0,054
Суглинок тугопластичный 3,24 3,6 3,96 4,32 4,68 5,04 5,4 5,76 3,6 4,0 4,4 4,8 5,2 5,6 6,0 6,4 0,13 0,108 0,091 0,077 0,066 0,058 0,051 0,045 0,044 0,037 0,031 0,026 0,022 0,02 0,017 0,015

Нижнюю границу сжимаемой толщи находим по точке пересе­чения вспомогательной эпюры с эпюрой дополнительного напряже­ния (см. рис. IV.1). По этому же рисунку определяем, что мощность сжимаемой толщи H=5,76 м.

Вычислим осадку фундамента, пре­небрегая различием значений модуля общей деформации на границе слоев грунта, приняв во внимание, что данное предположение не­значительно скажется на результатах расчета:

По табл. 1.17(Приложение IV) для здания данного типа находим предельно до­пустимую осадку

В нашем случае s=2,3su= 10 см. Следовательно, расчет осад­ки фундамента соответствует расчету по второй группе предельных состояний.

Заложение фундамента – важная часть любого строительства, без которой не обходится ни одно построение. К этому процессу стоит подойти со всей ответственностью, ведь фундамент в прямом смысле слова является основой дома, и от качества его заложения зависит все строение. Существует много различий в процессе заложения, различающиеся как по форме, так и по используемым материалам. Рассмотрим фундаменты мелкого заложения, отличающиеся некоторыми конструктивными особенностями от обычного процесса.

В этом виде фундаментов учитывается глубина заложения и придается большое значение конструкции всего дома. Кроме того, процесс будет зависеть от видов грунта. Поэтому, при выборе вида фундамента, нужно определиться с проектом дома, и тем, сколько этажей будет намечено, будет ли иметь место цокольный этаж или подвальное помещение, и еще другие факторы, так или иначе влияющие на конкретный выбор.

Фундаменты мелкого заложения специально разработаны для экономии лишних трудовых ресурсов. При таком заложении не требуется глубокая укладка, как при свайном фундаменте, не нужны огромные траты денежных средств, как при ленточном фундаменте.

Сферой применения фундамента с мелким заложением являются малоэтажные строения, заложения для устранения вспучивания грунтов, которые возникают в основном в холодных климатических зонах.

Внешний вид такого фундамента очень похож на обычные фундаменты, но отличия в глубине заложения есть. Глубина расположения подошвы фундамента 30-70 см, что меньше классических видов заложения. С внешней стороны подошвы расположена вертикальная изоляция, а для регионов с суровым климатом такая изоляция ставится в горизонтальном положении относительно подошвы, в виде «крыльев».

Технология заложения мелкого фундамента подразделяется на:

Составляющие компоненты фундамента могут быть разными материалами:

Особенности фундаментов с мелким заложением заключается в первую очередь в экономии всех видов ресурсов. Не нужно рыть глубоких ям и траншей, не требуется использование толстой подошвы, состоящей из гальки и щебня. Экономится при этом и бетон. Так по сравнению с ленточным фундаментом, экономия составляет 60-80%. А трудозатраты и общая стоимость уменьшаются примерно в 2 раза.

Малое заглубление означает и то, что фундамент находится в слоях почвы, замерзающих зимой почти полностью, отсюда следует, что его нужно бережно утеплять. Этого добиваются добавлением утеплителей типа пеноплекса.

Фундаменты с мелким заложением хорошо подходят под здания с отсутствием отопления. Но основное применение — это для строительства небольших кирпичных построек или деревянных домов.

Устойчивость кранов

Под устойчивостью крана понимается его способность противодействовать опрокидывающим моментам.

Расчет устойчивости крана производится при действии испытательной нагрузки, действии груза (грузовая устойчивость), отсутствии груза (собственная устойчивость), внезапном снятии нагрузки и монтаже (демонтаже).

Расчет устойчивости производится в соответствии с нормативными документами, например, РД 22-145-85 «Краны стреловые самоходные. Нормы расчета устойчивости против опрокидывания». Соотношение между восстанавливающим и опрокидывающим моментами определяет степень устойчивости крана против опрокидывания. Для разных положений крана значения опрокидывающих и восстанавливающих моментов различны, так как изменяются значения действующих сил, их плечи и положение центра тяжести крана. Устойчивость крана должна быть обеспечена для всех его положений при любых возможных комбинациях нагрузок. К этим нагрузкам для передвижного поворотного крана относятся:

- вес поднимаемого груза;

- инерционные силы при пуске или торможении механизмов крана;

- центробежные силы, возникающие при вращении поворотной части крана;

- сила давления ветра на груз и элементы крана.

Таким образом, различают грузовую устойчивость, то есть способность крана противодействовать опрокидывающим моментам, создаваемыми весом груза, силами инерции, ветровой нагрузкой рабочего состояния, и собственную устойчивость — способность крана противодействовать опрокидывающим моментам при нахождении крана в рабочем (в том числе без груза) и нерабочем состояниях.

Условия проверки грузовой устойчивости (рис. 3.26,а): кран стоит на наклонной местности, подвержен действию ветра (по нормам для рабочего состояния) и поворачивается, одновременно тормозится спускаемый груз; стрела установлена поперек пути (при установке стрелы вдоль пути может одновременно происходить и торможение движущегося крана); на кран действуют вес груза, силы инерции, возникающие при торможении спускаемого груза и движущегося крана, силы инерции от вращения крана, ветровая нагрузка. Расчет устойчивости производится для всех вылетов.


3.26. Схема расчета устойчивости стрелового крана

Условия проверки собственной устойчивости (рис. 3.26, б): кран стоит на наклонной местности, вылет стрелы минимальный; кран подвержен только действию ветра (по нормам для нерабочего состояния). Расчет производится только для минимального вылета. Величина запаса устойчивости характеризуется коэффициентом устойчивости и устанавливается нормативными документами.


Коэффициентом грузовой устойчивости называют отношение момента относительно ребра опрокидывания, создаваемого весом крана с учетом дополнительных нагрузок (ветровая нагрузка, силы инерции, возникающие при пуске или торможении механизмов подъема груза, поворота или передвижения крана) и влияния наибольшего допускаемого при работе крана уклона, к моменту, создаваемому рабочим грузом относительно того же ребра. Этот коэффициент должен быть не менее 1,15, то есть:

Ребром опрокидывания является линия, проходящая через точку контакта колеса и рельса, относительно которой кран стремится опрокинуться.

Коэффициентом собственной устойчивости называют отношение момента, создаваемого весом крана, с учетом уклона пути в сторону опрокидывания относительно ребра опрокидывания к моменту, создаваемому ветровой нагрузкой при нерабочем состоянии крана относительно того же ребра опрокиды­вания. Этот коэффициент также должен быть не менее 1,15.

Для определения числовых значений коэффициентов устойчивости необходимо определить силы, действующие на кран; плечи, на которых действуют эти силы и создаваемые ими моменты. На рис. 3.26, а показан железнодорожный кран в рабочем состоянии и действующие на него силы. Точка О представляет собой ребро опрокидывания, а точка цт — положение центра тяжести крана.

Силы, действующие на кран, и плечи этих сил следующие:


= Qcos — нормальная составляющая веса крана, действующая на плече (а+в) относительно ребра опрокидывания;


— составляющая веса крана, действующая параллельно плоскости вращения крана на плече h2;


— сила давления ветра, действующая на плече h1 на подветренную площадь крана Fk и зависящая от удельного давления ветра р при рабочем

W2 = pFг — сила давления ветра на подветренную площадь груза Fг, действующая на плече h3 при ветре рабочего состояния;

Gr — вес наибольшего рабочего груза, действующего на плече (L- в)cos + h3 sin ;


Gит— сила инерции груза при торможении, действующая на плече (L-в)cos+ + h3 sin ; величина этой силы равна:

где tт - время торможения, с;

vоп - скорость опускания груза, м/с, принимаемая как vоп=1,5 vп;

vп - скорость подъема груза, м/с;

Gив - центробежная сила груза, возникающая при вращении крана и действующая на плече h3 относительно ребра опрокидывания. Величина этой силы:

где ;

R – радиус вращения груза, м.


При вращении крана канат, на котором висит груз, под действием силы инерции отклонится от вертикали на угол . Следовательно, радиус вращения груза превысит вылет крана на некоторую величину с. Угол отклонения каната определится из равенства


откуда следует, что


а радиус вращения груза


Окружная скорость груза, м/с, составляет:

где n – скорость вращения крана, мин-1.

Теперь легко получить значение силы Gив:


Подставляя в исходную формулу центробежной силы полученные выражения легко убедиться, что:

Суммарный восстанавливающий момент равен сумме моментов, создаваемых силами Q, Gит, Gив, W1 и W2. Опрокидывающий момент создается силой Gг. Тогда коэффициент грузовой устойчивости может быть вычислен по формуле:


Угол наклона принимают равным для башенных строительных кранов примерно 1,5°, для железнодорожных, пневмоколесных, гусеничных, автомобильных и других подобных кранов, работающих без выносных опор, примерно 3°, при работе на выносных опорах — 1,5°.Нормами предусмотрена проверка коэффициента грузовой статической устойчивости, то есть устойчивости крана, находящегося только под воздействием весовых нагрузок (без учета дополнительных сил и уклона площади):



Коэффициент собственной устойчивости крана

где MQ — момент, создаваемый весом крана с учетом уклона пути в сторону опрокидывания;

Мв — момент ветровой нагрузки при нерабочем состоянии крана относительно ребра опрокидывания.

13. Расчет устойчивости против плоского сдвига производится по формуле:



где - сила трения, возникающая при давлении на грунт вертикальных нагрузок.


где Ктр- коэффициент трения, зависящий от угла внутреннего трения грунта, в котором находится фундамент.




- сумма сдвигающих горизонтальных сил, действующих на фундамент. В данном случае на фундамент действует одновременно 2 горизонтальные нагрузки Т и R. Поэтому необходимо определить их геометрическую сумму:




Фундамент устойчив против плоского сдвига.

Расчет фундаментов на устойчивость против глубинного сдвига производится по методу кругло-цилиндрических поверхностей скольжения. Для этого через угол подошвы фундамента проводят наиболее вероятную дугу кривой скольжения, затем полученную призму грунта разбивают на ряд отсеков, имеющих в полученном вертикальном сечении вид простых фигур: треугольников, трапеций. После этого находят вес каждого отсека и сносят векторы веса на кривую скольжения. Разложив каждый из этих векторов на составляющие: нормальную и касательную, определяют силы трения. Аналогично поступают и с вектором веса сооружения.

Затем определяют силы сцепления как произведение длины дуги L в глинистом грунте на величину сцепления С.

Получив значение сил, действующих на систему "грунт-сооружение", составляют выражение условия устойчивости по формуле

К= 1,5,


где М - момент сил, удерживающих систему против сдвига;


М - момент сил, сдвигающих систему "грунт-сооружение".


Устойчивость сооружения против глубокою сдвига считается обеспеченной, если при наиболее невыгодной поверхности скольжения соблюдается условие К 1,5. Для этого задаются другими положениями поверхностей скольжения, проводя из новых центров О1, О2 дуги, проходящие на чертеже через угол подошвы фундамента.

Проводим дугу поверхности скольжения с центра О1 :

М = ·R+ =220,67*9+0,017*14,8=1986,28 кНм;

М =∑ ·R+ =33,377*9+636*1,5=1254,393кН·м,


К1= > 1,5.

В первом случае условие устойчивости фундамента против глубинного сдвига выполняется.

Схема к расчету фундамента на глубинный сдвиг изображена на рис.1.7.1

Проводим дугу поверхности скольжения с центра О2 :

М = ·R+ =478,4*10,9+19,1*0,017=5214,56 кНм;

М =∑ ·R+ =8,93*10,9+636*2,4=1623,74кН·м,


К= > 1,5.

Во втором случае условие устойчивости фундамента против глубинного сдвига выполняется.

ВНЕЦЕНТРЕННО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ

Размеры внецентренно нагруженных фундаментов определяются исходя из условий:

где р — среднее давление под подошвой фундамента от нагрузок для расчета оснований по деформациям; pmax — максимальное краевое давление под подошвой фундамента; рcmax — то же, в угловой точке при действии моментов сил в двух направлениях; R — расчетное сопротивление грунта основания.


Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил относительно одной из главных осей инерции площади подошвы определяется по формуле (5.53)

где N — суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его обрезах, кН; A — площадь подошвы фундамента, м2; Мх — момент сил относительно центра подошвы фундамента, кН·м; y — расстояние от главной оси инерции, перпендикулярной плоскости действия момента сил, до наиболее удаленных точек подошвы фундамента, м; Ix — момент инерции площади подошвы фундамента относительно той же оси, м4.

Для прямоугольных фундаментов формула (5.53) приводится к виду


,(5.54)

где Wx — момент сопротивления подошвы, м3; ex = Mx/N — эксцентриситет равнодействующей вертикальной нагрузки относительно центра подошвы фундамента, м; l — размер подошвы фундамента в направлении действия момента, м.

При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента определяется по формуле


(5.55)


или для прямоугольной подошвы ,(5.56)

где Мх, My, Iх, Iy, ex, ey, x, у — моменты сил, моменты инерции подошвы эксцентриситеты и координаты рассматриваемой точки относительно соответствующих осей; l и b — размеры подошвы фундамента.

Условия (5.50)—(5.52) обычно проверяются для двух сочетаний нагрузок, соответствующих максимальным значениям нормальной силы или момента.

Относительный эксцентриситет вертикальной нагрузки на фундамент ε = е/l рекомендуется ограничивать следующими значениями:

εu = 1/10 — для фундаментов под колонны производственных зданий с мостовыми кранами грузоподъемностью 75 т и выше и открытых крановых эстакад с кранами грузоподъемностью более 15 т, для высоких сооружений (трубы, здания башенного типа и т.п.), а также во всех случаях, когда расчетное сопротивление грунтов основания R < 150 кПа;

εu = 1/6 — для остальных производственных зданий с мостовыми кранами и открытых крановых эстакад;

εu = 1/4 — для бескрановых зданий, а также производственных зданий с подвесным крановым оборудованием.

Форма эпюры контактных давлений под подошвой фундамента зависит от относительного эксцентриситета (рис. 5.25): при ε < 1/6 — трапециевидная (если ε = 1/10, соотношение краевых давлений pmin/pmax = 0,25), при ε = 1/6 — треугольная с нулевой ординатой у менее загруженной грани подошвы, при ε >1/6 — треугольная с нулевой ординатой в пределах подошвы, т.е. при этом происходит частичный отрыв подошвы.


Рис. 5.25. Эпюры давлений под подошвой фундамента при действии центральной и внецентренной нагрузки

В последнем случае максимальное краевое давление определяется по формуле


, (5.57)

где b — ширина подошвы фундамента; l0 = l/2 – e — длина зоны отрыва подошвы (при ε = 1/4, l0 = 1,4).

Следует отметить, что при отрыве подошвы крен фундамента нелинейно зависит от момента.

Распределение давлений по подошве фундаментов, имеющих относительное заглубление λ = d/l > 1, рекомендуется находить с учетом бокового отпора грунта, расположенного выше подошвы фундамента. При этом допускается применять расчетную схему основания, характеризуемую коэффициентом постели (коэффициентом жесткости). В этом случае краевые давления под подошвой вычисляются по формуле


,(5.58)

где id — крен заглубленного фундамента; ci — коэффициент неравномерного сжатия.

Расчет фундамента мелкого заложения начинают с предварительного выбора его конструкции и основных размеров, к которым относятся глубина заложения фундамента, размеры и форма подошвы. Затем для принятых размеров фундамента производят расчеты основания по предельным состояниям.

Определение глубины заложения фундамента. Очевидно, что чем меньше глубина заложения фундамента, тем меньше объем затрачиваемого материала и ниже стоимость его возведения, поэтому естественно стремление принять глубину заложения как можно меньшей.

Рис. Схемы напластований грунтов с вариантами устройства фундаментов: 1- прочный грунт; 2-более прочный грунт; 3-слабый грунт; 4-песчанная подушка; 5-зона закрепления

- минимальная глубина заложения фундаментов принимается не менее 0,5 м от спланированной поверхности территории; глубина заложения фундамента в несущий слой грунта должна быть не менее 10. 15 см.

Глубина сезонного промерзания грунтов. df=khdfn, где kh – коэффициент, учитывающий влияние теплового режима сооружения, dfn - нормативная глубина сезонного промерзания грунтов, м.


Определение формы и размеров подошвы фундаментов. Форма подошвы фундамента во многом определяется конфигурацией. При расчетах фундаментов мелкого заложения по второму предельному состоянию (по деформациям) площадь подошвы предварительно может быть определена из условия pП≤R, где pП – среднее давление по подошве фундамента, R – расчетное сопротивление грунта основания.

Центрально нагруженный фундамент. Центрально нагруженным считают фундамент, у которого равнодействующая внешних нагрузок проходит через центр площади его подошвы. Реактивное давление грунта по подошве жесткого центрально нагруженного фундамента принимается равномерно распределенным pII=(NoII+GfII+GgII)/A, где NoII - расчетная вертикальная нагрузка на уровне обреза фундамента; GfIIи GgII - расчетные значения веса фундамента и грунта на его уступах; А - площадь подошвы фундамента. В предварительных расчетах вес грунта и фундамента в объеме параллелепипеда АВСD, в основании которого лежит неизвестная площадь подошвы А, определяется приближенно из выражения GfII+GgIImAd где γm - среднее значение удельного веса фундамента и грунта на его уступах, d – глубина заложения фундамента, м.


А=NoII/(R-γmd). Рассчитав площадь подошвы фундамента, находят его ширину b. Ширину ленточного фундамента, для которого нагрузки определяют на 1 м длины. После вычисления значения b принимают размеры фундамента с учетом модульности и унификации конструкций и проверяют давление. Найденная величина рII должна быть по возможности близка к значению расчетного R.

Внецентренно нагруженный фундамент. Внецентренно нагруженным считают фундамент, у которого равнодействующая внешних нагрузок не проходит через центр тяжести площади его подошвы. При расчете давление по подошве внецентренно нагруженного фундамента принимают изменяющимся по линейному закону, а его краевые значения при действии момента сил относительно одной из главных осей. рmax=(NII/A)(1±6e/b), где NII - суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его уступах; А — площадь подошвы фундамента; е — эксцентриситет равнодействующей относительно центра тяжести подошвы; b — размер подошвы фундамента в плоскости действия момента.

Поскольку при внецентренном нагружении относительно одной из центральных осей максимальное давление на основание действует только под краем фундамента, при подборе размеров подошвы; фундамента его допускается принимать на 20% больше расчетного и сопротивления грунта, т.е. рmax≤1,2R Одновременно среднее давление по подошве фундамента, определяемое как рII=NII/A должна удовлетворять условию pII≤R.

В тех случаях, когда точка приложения равнодействующей внешних сил смещена относительно обеих осей инерции прямоугольной подошвы фундамента, давление под ее угловыми точками находят по формуле. р с max=(NII/A)(1±6ex/l±6ey/b).

Поскольку в этом случае максимальное давление действует только в одной точке подошвы фундамента, допускается, чтобы его значение, удовлетворяло условию р с max≤1,5R.

Проверка давления на подстилающий слой слабого грунта. При наличии и в пределах сжимаемой толщи основания слабых грунтов •или грунтов с расчетным сопротивлением меньшим, чем давление на несущий слой, необходимо проверить давление на них, чтобы уточнить возможность применения при расчете основания теории линейной деформируемости грунтов. Последнее требует, чтобы полное давление на кровлю подстилающего слоя не превышало его расчетного сопротивления, т.е. σzp+ σzg≤Rz




Где σzp и σzg - вертикальные напряжения в грунте на глубине z от подошвы фундамента (соответственно дополнительное от нагрузки фундамент и от собственного веса грунта); Rz - расчетное сопротивление грунта на глубине кровли слабого слоя, величину Rz определяют как для условного фундамента шириной bz, и глубиной заложения dz. Коэффициенты условий работы γС1, γС2 и надежности k, а также коэффициенты Мq, Mc находят применительно к слою слабого грунта. Ширину условного фундамента назначают с учетом рассеивания напряжений в пределах слоя толщиной z. Если принять, что давление действует по подошве условного фундамента АВ, то площадь его подошвы должна составлять Az=NoIIzp, Зная Аz найдем ширину условного прямоугольного фундамента bz=(√Az+a 2 )-a, где а=(1-b)/2 (1 и b длина на и ширина подошвы проектируемого фундамента. Для ленточных фундаментов bzz/1.

Центрально нагруженный фундамент. Центрально нагру­женным считают фундамент, у которого равнодействующая внеш­них нагрузок проходит через центр площади его подошвы, реактив­ное давление грунта по подошве жесткого центрально нагружен­ного фундамента принимается равномерно распределенным интен­сивностью


Pn=(NoIi+GflI+GgII)/A


где — расчетная верти-


кальная нагрузка на уровце обреза фундамента; и


— расчетные значения веса фундамента и грунта на его уступах (рис. 10.12); А — площадь подошвы фундаме­нта.

В предварительных расче­тах вес грунта и фундамента в объеме параллелепипеда ABCD, в основании которого лежит неизвестная площадь подошвы А9 определяется приближенно из выражения


(10.5)


где — среднее значение удельного веса фундамента и грунта на его уступах, принимаемое обычно равным 20 кН/м 3 ; d—глубина заложения фундамента, м.


Приняв и учтя (10.5), из уравнения (10.4) получим фор-

мулу для определения необходимой площади подошвы фундамента


(10.6)

Рассчитав площадь подошвы фундамента, находят его ширину Ь. Ширину ленточного фундамента, для которого нагрузки определя­ют на 1 м длины, находят как b—Ajl. У фундаментов с прямоуголь­ной подошвой задаются отношением сторон n — 1/b, тогда ширина

подошвы , для фундаментов с круглой подошвой


Поскольку значение R в формуле (10.6) также неизвестно, ис­комую величину А находят из совместного решения уравнений (9.5) и (10.4) аналитическим или графическим методом. При решении графическим методом формулу (10.4) записывают в виде зависимо­сти , которая в общем случае является гиперболой:

(10.7)


Формула (9.5) является уравнением прямой

Если построить графики по этим формулам, то пересечение
полученной кривой и прямой даст искомое значение Ь, соответст­
вующее расчетному давлению. Соответствующие расчеты и постро­
ения будут показаны ниже в примере 10.1. _

После вычисления значения Ь принимают размеры фундамента с учетом модульности и унификации конструкций и проверяют давление по его подошве по формуле (10.4). Найденная величина рп

должна не только удовлетворять условию (10.3), но и быть по возможности близка к значению расчетного сопротивления грунта Л. Наиболее экономичное решение будет в случае их равенства.

Внецентренно нагруженный фундамент. Внецентренно на­груженным считают фундамент, у которого равнодействующая внешних нагрузок не проходит через центр тяжести площади его подошвы. Такое нагружение фундамента является следствием пе­редачи на него момента или горизонтальной составляющей нагруз­ки либо результатом одностороннего давления грунта на его боко­вую поверхность, как, например, у фундамента под наружную стену заглубленного помещения.

При расчете давление по подошве внецентренно нагруженного фундамента принимают изменяющимся по линейному закону, а его краевые значения при действии момента сил относительно одной из главных осей определяют по формуле (5.7), как для случая внецент-ренного сжатия. Подстановкой значений A — lb> W-b 2 lj6 и M=Nne формула (5.7) приводится к следующему более удобному для рас­чета виду:


(10.8)

где Nn —- суммарная вертикальная нагрузка на основание, включая

вес фундамента и грунта на его уступах; А — площадь подошвы фундамента; е — эксцентриситет равнодействующей относительно центра тяжести подошвы; Ъ — размер подошвы фундамента в плоскости действия момента,

Эпюра давления грунта, рас­считанная по формуле (10.8), мо­жет быть однозначной и двузнач-.ной, как это показано на рис. 10.13. Как правило, размеры по­дошвы фундамента стараются по­добрать таким образом, чтобы эпюра была однозначной, т. е. чтобы не было отрыва подошвы фундамента от основания. В про­тивном случае в зазор между по­дошвой и грунтом может проник­нуть вода, что нежелательно, по­скольку это может привести к ухудшению свойств грунтов ос­нования. Исключение допускается для фундаментов в стесненных


условиях, когда отсутствует возможность развить их в нужном направлении, и для фундаментов, нагруженных знакопеременными момента­ми, когда нельзя подобрать размеры и форму подошвы, по которой действовали бы толь­ко сжимающие напряжения.

Поскольку при внецентрен-ном нагружении относительно одной из центральных осей ма­ксимальное давление на осно­ вание действует только под краем фундамента, при подборе раз­меров подошвы фундамента его допускается принимать на 20% больше расчетного сопротивления грунта, т. е.





(10.9)

Одновременно среднее давление по подошве фундамента, опре­деляемое к&крии1А, должно удовлетворять условию (10.3).

В тех случаях, когда точка приложения равнодействующей внеш­них сил смещена относительно обеих осей инерции прямоугольной подошвы фундамента, как это показано на рис. 10.14, давление под ее угловыми точками находят по формуле


(10.10)

Поскольку в этом случае максимальное давление действует то­лько в одной точке подошвы фундамента, допускается, чтобы его значение, найденное по формуле (10.10), удовлетворяло условию


(10.11)

Одновременно проверяются и условия.(10.3) и (10.9).

На практике задачу подбора размеров подошвы внецентренно нагруженного фундамента решают следующим образом. Сначала принимают, что действующая нагрузка приложена центрально, подбирают соответствующие размеры подошвы из условия (10.3), а затем уточняют их расчетом на внецентренную нагрузку, со­блюдая изложенные выше требования и добиваясь удовлетворения условий (10.9) и (10.11). При этом иногда смещают подошву фун­дамента в сторону эксцентриситета так, чтобы точка приложения равнодействующей всех сил совпадала с центром тяжести подошвы фундамента (рис. 10.14, б).

Размеры внецентренно нагруженных фундаментов определяются исходя из условий:


(5.50)


(5.51)


(5.52)

где р — среднее давление под подошвой фундамента от нагрузок для расчета оснований по деформациям; pmax — максимальное краевое давление под подошвой фундамента; р c max — то же, в угловой точке при действии моментов сил в двух направлениях; R — расчетное сопротивление грунта основания.

Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил относительно одной из главных осей инерции площади подошвы определяется по формуле

Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил

,


(5.53)

где N — суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его обрезах, кН; A — площадь подошвы фундамента, м 2 ; Мх — момент сил относительно центра подошвы фундамента, кН·м; y — расстояние от главной оси инерции, перпендикулярной плоскости действия момента сил, до наиболее удаленных точек подошвы фундамента, м; Ix — момент инерции площади подошвы фундамента относительно той же оси, м 4 .

Для прямоугольных фундаментов формула (5.53) приводится к виду

Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил

,


(5.54)

где Wx — момент сопротивления подошвы, м 3 ; ex = Mx/N — эксцентриситет равнодействующей вертикальной нагрузки относительно центра подошвы фундамента, м; l — размер подошвы фундамента в направлении действия момента, м.

При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента определяется по формуле

При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента


(5.55)

или для прямоугольной подошвы

При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента

,


(5.56)

где Мх, My, Iх, Iy, ex, ey, x, у — моменты сил, моменты инерции подошвы эксцентриситеты и координаты рассматриваемой точки относительно соответствующих осей; l и b — размеры подошвы фундамента.

Условия (5.50)—(5.52) обычно проверяются для двух сочетаний нагрузок, соответствующих максимальным значениям нормальной силы или момента.

Относительный эксцентриситет вертикальной нагрузки на фундамент ε = е/l рекомендуется ограничивать следующими значениями:

εu = 1/10 — для фундаментов под колонны производственных зданий с мостовыми кранами грузоподъемностью 75 т и выше и открытых крановых эстакад с кранами грузоподъемностью более 15 т, для высоких сооружений (трубы, здания башенного типа и т.п.), а также во всех случаях, когда расчетное сопротивление грунтов основания R < 150 кПа;

εu = 1/6 — для остальных производственных зданий с мостовыми кранами и открытых крановых эстакад;

εu = 1/4 — для бескрановых зданий, а также производственных зданий с подвесным крановым оборудованием.

Форма эпюры контактных давлений под подошвой фундамента зависит от относительного эксцентриситета (рис. 5.25): при ε < 1/6 — трапециевидная (если ε = 1/10, соотношение краевых давлений pmin/pmax = 0,25), при ε = 1/6 — треугольная с нулевой ординатой у менее загруженной грани подошвы, при ε > 1/6 — треугольная с нулевой ординатой в пределах подошвы, т.е. при этом происходит частичный отрыв подошвы.

Эпюры давлений под подошвой фундамента

В последнем случае максимальное краевое давление определяется по формуле

,


(5.57)

где b — ширина подошвы фундамента; l0 = l /2 – e — длина зоны отрыва подошвы (при ε = 1/4, l0 = 1,4).

Следует отметить, что при отрыве подошвы крен фундамента нелинейно зависит от момента.

Распределение давлений по подошве фундаментов, имеющих относительное заглубление λ = d/l > 1, рекомендуется находить с учетом бокового отпора грунта, расположенного выше подошвы фундамента. При этом допускается применять расчетную схему основания, характеризуемую коэффициентом постели (коэффициентом жесткости). В этом случае краевые давления под подошвой вычисляются по формуле

,


(5.58)

где id — крен заглубленного фундамента; ci — коэффициент неравномерного сжатия.

Пример 5.11. Определить размеры фундамента для здания гибкой конструктивной схемы без подвала, если вертикальная нагрузка на верхний обрез фундамента N = 10 МН, момент M = 8 МН·м, глубина заложения d = 2 м. Грунт — песок средней крупности со следующими характеристиками, полученными по испытаниям: е = 0,52; φII = 37°; cII = 4 кПа; γ = 19,2 кН/м 3 . Предельное значение относительного эксцентриситета εu = е/l = 1/6.

Решение. По табл. 5.13 R0 = 500 кПа. Предварительные размеры подошвы фундамента определим исходя из требуемой площади:


м 2 .

Принимаем b · l = 4,2 · 5,4 м ( A = 22,68 м 2 ).

Расчетное сопротивление грунта по формуле (5.29) R = 752 кПа. Максимальное давление под подошвой


кПа < 1,2 R = 900 кПа.

Эксцентриситет вертикальной нагрузки


м,

т.е. ε = e/l = 0,733/5,4 = 0,135 < εu = 0,167.

Таким образом, принятые размеры фундамента удовлетворяют условиям, ограничивающим краевое давление и относительный эксцентриситет нагрузки.

Читайте также: