Расчет снеговой нагрузки на крышу

Обновлено: 19.04.2024

Прежде всего необходимо определить что такое нормативная снеговая нагрузка и что такое расчетная снеговая нагрузка.

Нормативная нагрузка — это наибольшая нагрузка, отвечающая нормальным условиям эксплуатации, учитываемая при расчетах на 2-е предельное состояние (по деформации). Нормативную нагрузку учитывают при расчетах на прогибы балок, при расчетах по раскрытию трещин в ж.б. балках (когда не применяется требование по водонепроницаемости).

Расчетная нагрузка — это произведение нормативной нагрузки на коэффициент надежности по нагрузке. Данный коэффициент учитывает возможное отклонение нормативной нагрузки в сторону увеличения при неблагоприятном стечении обстоятельств. Для снеговой нагрузки коэффициент надежности по нагрузке равен 1,4 ( п.10.12 СП 20.13330.2016) т.е. расчетная нагрузка на 40% больше нормативной. Расчетную нагрузку учитывают при расчетах по 1-му предельному состоянию (на прочность). В расчетных программах, как правило, учитывают именно расчетную нагрузку.

Определение расчетной нагрузки

Расчетная снеговая нагрузка определяется по формуле 10.1 СП 20.13330.2016:

Вес снегового покрова Sg

Sg в формуле — это нормативное значение веса снегового покрова на 1 м² горизонтальной поверхности земли, принимаемое в соответствии по данным таблицы 10.1 СП 20.13330.2016 в зависимости от района строительства

Снеговые районы (принимаются по карте 1 Приложения Е)IIIIIIIVVVIVIIVIII
Sg, кПа0,51,01,52,02,53,03,54,0

Снеговой район определяем по карте 1 приложения Е (карта с нового СП отличается от предыдущего, будьте внимательны при назначении снегового района).

Карту в высоком разрешении можно скачать на сайте Минстроя.

Также есть интерактивная карта, которую можно посмотреть по Этой ссылке.


Снеговая нагрузка на Сахалине определяется по карте 1а СП 20.13330.2016


По Сахалину в СП занижены снеговые нагрузки для некоторых районов. В частности там есть районы, снеговая нагрузка в которых достигает 1000 кг/м². Чтобы узнать вес снегового покрова на о. Сахалин нужно заглянуть в «Рекомендации по расчету снеговых нагрузок на сооружения в Сахалинской области» .

В следующей таблице приведены рекомендуемые нагрузки снега для о. Сахалин

snowinsahalin

Как видим некоторые снеговые нагрузки отличаются от СП, сравнивайте и берите наибольшее.

Вот пара фотографий с острова Сахалин, для тех кто не верит что могут быть такие снеговые нагрузки

snow010

snow020

Кроме того данные по снеговой нагрузке вы можете найти в ТСН (Территориальные строительные нормы).

Бывает, что в территориальных нормах требования по снеговой нагрузке меньше чем в СП, но хочу отметить один важный момент: ТСН носит рекомендательный характер, СП обязательный, т.е. если в ТСН снеговая нагрузка ниже чем в СП, то нужно пользоваться данным по СП. Например есть ТСН по нагрузкам для Краснодарского края (ТСН 20-302-2002), в нём приведена карта районирования веса снегового покрова. Часть территории Краснодарского края отмечена как 1-ый снеговой район, тогда как в СНиП это 2-ой снеговой район (т.е. нагрузка по СП выше). Если вы строите коттедж или другой объект, не подлежащий экспертизе, то по согласованию с заказчиком вы можете снизить снеговые нагрузку в этих районах до 1-го. Но если объект подлежит экспертизе, то снеговая нагрузка должна приниматься по СП если в ТСН она не будет выше.

Снеговая нагрузка для Крыма

Естественно не могли упустить и Крым, теперь Карта снеговых районов есть и для Крыма. Для определения снегового района для республики Крым смотрите карту 1б СП 20.13330.2016


Коэффициент μ

μ — это коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, рассчитываемый согласно приложению Б СП 20.13330.2016. Этот коэффициент отражает форму кровли. Промежуточные значения коэффициента μ определяются линейной интерполяцией.

Для плоской кровли этот коэффициент равен единице. В местах выступов (зенитные фонари, парапеты, примыкание к стене) образуются снеговые мешки, что и отражается в коэффициенте μ, но это тема для отдельной статьи.

Для двухскатной кровли коэффициент μ зависит от уровня уклона:

1) при угле наклона до 30° коэффициент μ равен единице (согласно СНиП 2.01.07-85* до 25°, согласно СП 20.13330.2011 до 30°, лучше принимать до 30° μ=1 т.к. это будет в запас);

2)при угле наклона кровли от 20° до 30° коэффициент μ равен для одной стороны ската 0,75, для другой 1,25;

sneg031

3) при угле наклона кровли от 10° до 30° и наличии аэрационных устройств по коньку покрытия коэффициент μ принимается по следующей схеме:

sneg040

4) при угле наклона кровли в промежутке от 10° до 30° считаются по нескольким вариантам, которые приведены выше, в том числе и с μ=1 и принимается наихудший вариант;

5) при угле выше 60° коэффициент μ принимается равным нулю, т.е. снеговая нагрузка не действует на кровлю со слишком большим углом наклона;

6) промежуточные значения следует определять методом линейной интерполяции, т.е. для угла 45° коэффициент μ будет равен 0,5 (30°=1, 60°=0).

Особенно стоит обратить внимание на коэффициент μ при расчете снеговой нагрузки на ступенчатой кровле. Возле стены образуется снеговой мешок, а с верхнего ската снег сбрасывается на нижнюю и здесь μ может быть равен даже 6.

Также для прогонов необходимо ещё дополнительно увеличивать нагрузку на 10% (п.10.4 СП 20.13330.2016), не забываем про это.

Я не буду расписывать здесь остальные варианты, посмотрите их в приложении Б СП 22.13330.2016, а некоторые особенно актуальные мы рассмотрим позже.

Коэффициент Ce

Это коэффициент учитывающий снос снега с покрытий зданий под давлением ветра (Ce), принимаемый согласно п.10.5-10.9 СП 20.13330.2016.

Для покрытий, защищённых от прямого воздействия ветра, в том числе более высокими зданиями, а также для городской застройки Се=1,0 (п.10.6 СП 20.13330.2016).

Коэффициент Ce учитывающий снос снега с покрытий зданий под давлением ветра для райнов типа А и Б учитывается для плоских (с уклонами до 12% или 6°) кровель однопролетных или многопролетных зданий без зенитных фонарей или других выступающих частей кровли, если здание строится в районах со средней скоростью ветра за три наиболее холодных месяца более чем 2 м/с по формуле 10.2 СП 20.13330.2016


k — коэффициент учитывающий изменение ветрового давления по высоте, принимаемый по таблице 11.2 СП 20.13330.2016 для типов местности А или Б;

lc=(2b-b²/l) — характерный размер покрытия, принимаемый не более 100 м;

b — наименьший размер покрытия;

l — наибольший размер покрытия.

Коэффициент k определяется по таблице 11.2 СП 20.13330.2016 в зависимости от типа местности:

А — открытые побережья морей, озер и водохранилищ, пустыни, степи, лесостепи, тундра;

B — городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;

C — городские районы с застройкой зданиями высотой более 25м (для городских райнов Се=1,0).

Сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны на расстоянии 30h (h — высота здания) — при высоте здания до 60 м и 2 км — при большей высоте.

Высота ze, м Коэффициент k для типов местности
A B C
≤ 5 0,75 0,5 0,4
10 1,0 0,65 0,4
20 1,25 0,85 0,55
40 1,5 1,1 0,8
60 1,7 1,3 1,0
80 1,85 1,45 1,15
100 2,0 1,6 1,25
150 2,25 1,9 1,55
200 2,45 2,1 1,8
250 2,65 2,3 2,0
300 2,75 2,5 2,2

z в данной таблице это высота здания до уровня рассматриваемой кровли.

Для покрытий с уклонами от 12 до 20% (от 6° до 11°) однопролетных и многопролетных зданий без фонарей, проектируемых на местности типа А и Б, Ce=0.85 (п.10.7 СП 20.13330.2016).

Снижение нагрузки, учитывающее снос снега, не предусматривается (п.10.9 СП 20.13330.2016):

1) на покрытия зданий в районах со среднемесячной температурой воздуха в январе выше минус 5°С (см.таблицу 5.1 СП 131.13330);

3) как было уже сказано для городской застройки Се=1,0.

Думаю нужно также учесть и застройку территории в будущем т.к. если рядом с вашим зданием построят более высокое, то снос снега уменьшится. Я рекомендую использовать коэффициент Ce равным единице, т.к. не факт, что со временем здание не закроет более высокое.

Коэффициент Ct

Для неутепленных покрытий цехов с повышенными тепловыделениями при уклонах выше 3% коэффициент Ct=0.8.

Но я рекомендую всегда брать его равным единице т.к. производство может остановиться на переоборудование или просто временно остановить производство (например на каникулы) и в этом случае снег таять не будет.

Литература

Новый СП 20.13330.2016 можно найти по ссылке СП 20.13330.2016 Нагрузки и воздействия

Интерактивная карта, которую можно посмотреть по Этой ссылке.

Статья про снеговые нагрузки на о. Сахалин ( в формате pdf )

This article has 4 Comments

Спасибо за статью. 2 замечания
S в формуле 10.1 это не расчётная нагрузка
Пункты 10.? СП носят необязательный характер в соотв.
Перечень национальных стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона «Технический регламент о безопасности зданий и сооружений»,
поскольку туда они не попали

Формула коэффициента сноса снега с покрытий зданий написана не правильно в СП 20.13330.2016 первая цифра 1.4, а у вас 1.2 из СП за 2011 год.

Это учтено в Изменениях №3 к СП, но они вступают в силу с 01.07.2021г.

Все верно но эти деятели же не написали что S нулевое это расчетная нагрузка а вы пишете расчетная. Читаю СП так и не понял как найти РАСЧЕТНУЮ снеговую нагрузку!

Как правильно сделать расчеты снеговой нагрузки на кровлю

Перед строительством любого здания необходимо заранее проанализировать и просчитать все факторы, которые будут влиять на кровлю. Одним из самых важных учитываемых параметров выступает снеговая нагрузка. От того, какое количество осадков в среднем выпадает в регионе зимой, будет зависеть насколько серьезно придется укрепить стропильную систему. Рассмотрим, какие факторы влияют на вес снежной шапки и как правильно рассчитать допустимую нагрузку.

Влияние снега на крышу

Наблюдая за падением снежинок, трудно поверить, что они имеют вес. Пушистые кристаллики, казалось бы, сотканы из самого воздуха. А между тем, накрывая поверхность земли много сантиметровым слоем, снежный покров может достигать очень значительной массы. И при критических снегопадах она даже исчисляется тоннами.

Такой избыток снега на крыше здания создает нешуточное давление. И если стропильная система сделана без учета этого фактора, то она может не выдержать и обрушиться. Авария также может произойти, если перекрытия сильно ослабели с течением продолжительного времени. То есть сама постройка очень старая.

Причем проблема заключается в том, снежный покров никогда не бывает статичным. Он сползает по скату и накапливается на свесях. А больше всего при обильном снегопаде могут пострадать кровли нестандартных конфигураций. К тому же снег попадает в водостоки и его большое количество может обрушить их.

Любой грамотный застройщик при планировании дома обязательно поинтересуется средним выпадением зимних осадков у себя в регионе. Для этого достаточно найти в интернете сайт Минстроя и посмотреть на нем интерактивную карту. Вся территория страны разбита на районы с указанием средней снеговой нагрузки на 1 м 2 в килограммах.

А главным официальным документом, где прописаны все нормы, является Свод Правил (СП) 20.13330. Нужный регламент находится в главе «Нагрузки и воздействия». Существует две редакции данного документа. А руководствоваться нужно вариантом, опубликованным в 2016 году. Поскольку форма от 2011 года уже устарела.

Можно посмотреть снеговую нагрузку по СНиП 2.01.07-85. Но этот формуляр не переделывали с 1985 года и все нормы там уже не действительны. А самым разумным решением будет обратится в районную строительную компанию. В местной организации предоставят самые точные и свежие данные.

Откуда приходит опасность

Покров снега на поверхности не может иметь постоянной массы. Когда он выпадает в сухую и морозную погоду, то покров получается рыхлым. При -10 °C его вес на один кубометр составляет всего лишь 10 кг. Но пушистым он остается не долго.


На первый слой ложатся последующие. Нижние массы проседают и слеживаются. И вот уже в кубометре получается килограмм шестьдесят. К тому же рыхлый снег подобен пористому материалу. Он сразу же начинает впитывать воду при первой же оттепели. И вес снегового покрова увеличивается в несколько раз.

А если после кратковременного тепла снова ударят морозы, то вся эта мокрая масса превращается в лед. При этом вес покрова также повышается. Отсюда можно сделать вывод, что тяжесть снега напрямую зависит от его плотности. Если зима в регионе была без оттепелей, а выпадение осадков не превышало нормы, то ближе к весне вес одного кубометра снега составит от 200 до 400 килограммов.

Но уже весной этот объем будет весить до 700 кг. А при влажном климате в некоторых регионах может набраться и целая тонна. При этом плотность обычно приводит к ошибочным выводам. Например, первый покров рыхлого снега составил 30 сантиметров. Больше осадков не было и временного тепла также не наступало. Через месяц снег слежался, и толщина его слоя уменьшилась в 2 раза. Но в пятнадцати сантиметрах плотной массы остались все те же килограммы, что и были в самом начале. Без изменений.

Поэтому хозяин дома может заблуждаться, что снега к концу зимы на его крыше стало меньше. И поэтому никакой опасности не существует. А самой большой угрозой для кровли является «снеговой мешок». Это скопления снега, высота которых на глаз превышает полметра.

Мешок образуется на безветренных частях крыши. Его как раз и наносит в метель. При этом, при перебрасывании снега воздушными потоками с места на место, его удельная масса возрастает минимум в 2 раза. Затем верхние слои начинают подтаивать на солнце, а нижние – вбирать влагу и превращаться в лед.


Как избежать критической нагрузки на крышу

Сначала следует определится с понятиями. Есть нормативная снеговая нагрузка. При этом в расчетах учитывают состояние по деформации. То есть это сухая теория и ее применяют, чтобы подсчитать возможный прогиб балки.

А расчетная снеговая нагрузка учитывает состояние по прочности. И это уже практика. Поэтому всегда предполагается, что неблагоприятные обстоятельства будут максимальными. А эту разницу от нормы называют коэффициентом надежности. Для снежной нагрузки он равен 1,4. На это значение умножают просчитанную нормативную нагрузку. И получается, что расчетные величины всегда на 40 % больше нормативных.

Решают проблему с накоплением снега на крыше по-разному:

  • Регулярно счищают наносы вручную.
  • Устанавливают на кровле снегозадержатели.
  • Монтируют систему подогрева.
  • Увеличивают наклон ската.
  • Усиливают стропильную систему.

Сбрасывать снег с крыши даже при самой благоприятной погоде очень трудоемко и крайне опасно. Велика вероятность падения с большой высоты с плачевными последствиями. Поэтому разумнее смонтировать на готовой кровле систему снегозадержания.

Скат разделяют на участки в шахматном порядке специальными снегорезами. Они разобьют снежную массу на части и каждая из них будет задержана отдельной наклонной планкой. Таким образом снег не будет сползать и накапливаться в одном месте, а частями равномерно распределится по всей площади крыши.

Критической нагрузки уже не будет, а весной все растопит солнце. Но можно и не ждать потепления. Если по кромке карниза смонтировать нагревательный кабель, то периодическими включениями системы можно регулярно избавляться от больших наносов.

Можно еще при строительстве дома увеличить угол наклона ската до 45-60 градусов. На такой поверхности снег просто не сможет задерживаться и под своей тяжестью будет сползать и падать с крыши. Но слишком островерхая крыша создает большую парусность. А в районах с преобладанием сильных ветров это опасно.

Если вложить достаточно средств еще на этапе возведения крыши, то можно спать спокойно при любом снегопаде. Как правило, действуют в одном из направлений. Либо серьезно усиливают всю стропильную систему. Либо устанавливают двойную обрешетку.


Расчет снеговой нагрузки

Нормативное значение веса снегового покрова рассчитывается следующим образом. В таблице Свода Правил выбирается свой регион и находится средняя величина выпадения в нем осадков. Эта цифра даст примерный вес, которым снег будет давить на 1 квадратный метр площади. Затем ее перемножают на коэффициент угла наклона ската. При 25 градусах он будет равен единице. До 60 – 0,7. А если угол больше последней величины, то коэффициент вообще не учитывается.

Расчетное значение веса снегового покрова получают, когда найденный нормативный показатель умножают на коэффициент надежности. Но при этом еще нужно избежать распространенной ошибки. Многие забывают, что сам кровельный материал также имеет вес. Плюс к этому на крыше может находится много чего другого. Например, утеплитель, обрешетка или человек, выполняющий какую-нибудь работу.

Поэтому необходимо сначала суммировать все нагрузки, а уже затем перемножать полученный результат на 1,4. Только так можно правильно рассчитать требуемый шаг стропильной системы. Иначе она будет служить на пределе своих возможностей. А ее ремонт чрезвычайно трудоемок и дорог.

Видео описание

Видео объяснит, как правильно рассчитать нормативное значение снеговой нагрузки:


Коротко о главном

Подбирая конструкцию стропильной системы для крыши своего дома необходимо обязательно учитывать снеговую нагрузку. Для этого нужно обратится к нормативным документам и узнать из них, сколько осадков в среднем выпадает в данном регионе. Найденная цифра укажет, какой вес может приходится на 1 квадратный метр площади кровли.

После этого нужно проанализировать, какие еще силы будет действовать на крышу. Включая нахождение на ней самого человека. Все найденные нагрузки суммируются и перемножаются на специальный коэффициент надежности. Так находится реальный вес (с запасом), который должны выдерживать перекрытия.

Самостоятельный расчет снеговой нагрузки на кровлю – насколько точным должен быть расчет

Вес снега в зимний период создает значительную нагрузку на стропильную систему крыши, а через нее – на фундамент здания. Расчет снеговой нагрузки на кровлю необходим как для определения параметров конструкции крыши, так и при проектировании основания, где важным значением является полный вес дома. В этой статье рассматриваются методики определения веса снежного покрова на крыше дома, определяется, какую угрозу он несет людям и конструкциям жилища. Информация будет полезна всем людям, проживающим в регионах со снежными и длительными зимами, планирующим строить частный дом.

Типы нагрузок на кровлю

Основными нагрузками, воздействующими на кровлю, являются:

Они имеют разную степень и характер воздействия на кровлю и стропильную систему в целом. Снеговая нагрузка более статична, все изменения происходят относительно медленно и плавно. Исключением может быть только лавинообразный сход больших сугробов, характерный для современных видов металлических кровельных покрытий. Кроме того, снег лежит в течение нескольких месяцев, в летнее время нагрузки отсутствуют.

Для ветра время года значения не имеет, он способен подниматься и зимой, и летом. Ветер опасен своей непредсказуемостью, его невозможно предвидеть и как-то подготовиться. Чаще всего, сильные ветра длятся недолго, но последствия бывают весьма плачевными. При этом, сильные порывы, создающие заметное давление на конструкции дома, случаются относительно редко.

В большинстве случаев ветровая нагрузка минимальна и не имеет постоянного значения. Эпизодический характер и неравномерность ветровых проявлений создают существенные сложности при определении реальной нагрузки на конструкции дома, поэтому принято учитывать максимальные табличные величины для данного региона.

Зависимость нагрузок от угла наклона крыши

Снеговая и ветровая нагрузки имеют обратную зависимость от угла наклона крыши. Ветер направлен параллельно поверхности земли, для него являются помехой любые вертикальные объекты. Снег ложится на плоскость и давит на нее в направлении сверху-вниз. Поэтому, чем круче угол наклона скатов крыши, тем значительнее ветровые нагрузки и, наоборот, слабее давление снежных сугробов. Поэтому для снижения ветровых нагрузок надо уменьшать угол наклона, а для снижения нагрузок снеговых – увеличивать.

Такое несоответствие требует от проектировщика точного знания о величине снегового покрова и силе преобладающих в регионе ветров, возможности и частоте шквалистых порывов. Иначе можно получить чрезмерно крутую кровлю, образующую сильный парус, или слишком плоскую, не позволяющую снегу скатываться вниз по наклонной плоскости.

Чем опасны снеговые нагрузки

Высокие снеговые нагрузки опасны по нескольким позициям:

  • Создание чрезмерного давления на стропильную систему, вызывающего прогиб, провисание покрытия или разрушение несущих элементов крыши.
  • Появление дополнительной нагрузки на стены дома, а через них – на фундамент.
  • Большой вес снега опасен при внезапном сходе сугробов с крыши, так как могут пострадать оказавшиеся внизу люди, автомобили или иное имущество.

Кроме того, большое количество снега при повышении температуры начинает подтаивать, образуя на поверхности кровли слой льда. Он плотный и тяжелый, хорошо удерживается на поверхности, постепенно увеличивая свою толщину. Во время оттепелей этот лед скатывается вниз и причиняет сильный ущерб всем предметам, на которые упадет. Необходимо помнить, что относительно тонкий слой льда в 5 см на поверхности ската площадью 20 м 2 весит около тонны.

Расчет снеговой нагрузки на плоскую кровлю показывает величину воздействия снега на горизонтальную плоскость. Угол наклона скатов учитывается специальными коэффициентами. Считается, что при наклоне более 75° снеговая нагрузка отсутствует, хотя на практике случается налипание мокрого снега и на вертикальные плоскости. В этом таится еще одна опасность, когда конструкции дома оказываются неподготовленными для приема значительного давления.


Особенности распределения снеговой нагрузки на поверхности крыши

Снеговая нагрузка распределяется на поверхности кровли по-разному, равномерно по всей площади, или с заметным перекосом в подветренную сторону. Иногда на склонах нарастают огромные свисающие пласты, которые создают соответствующее давление на карнизную часть кровли.

Такие перекосы способны деформировать или разрушить конструкции стропил, создать значительное давление на фундамент. Необходимо понимать, что и равномерная нагрузка от веса снега воздействует на конструкции дома крайне неблагоприятным образом. Существуют регионы, где толщина снежного покрова превышает 2 м. В таких условиях крайне важно принимать правильные углы наклона скатов, чтобы снеговые массы могли скатываться с них, не достигая чрезмерной толщины и не создавая непосильной нагрузки для опорных конструкций.

Определение давления снега на кровлю по СНиП

При появлении необходимости определить, какая нагрузка от снега на крышу существует в данном регионе, сразу возникает масса вопросов. Прежде всего, каким образом можно узнать величину снежного покрова? Прямое измерение линейкой полезной информации не даст – каждая зима имеет свои особенности, бывают малоснежные сезоны, когда уровень осадков меньше обычного.

Величина снегового воздействия может быть определена с помощью приложений СНиП. Существует карта РФ, в которой очерчены и пронумерованы все регионы, имеющие одинаковую величину снежного покрова. Рассмотрим актуальную на сегодня редакцию этого приложения:

Для определения снегового давления на кровлю надо отыскать интересующую точку на карте и выяснить, к какому снеговому району она принадлежит. Затем используем таблицу:

Если площадь крыши известна, то определить вес снега не составит труда – надо просто разделить ее на табличное значение для данного региона. Но полученное значение показывает нагрузку на горизонтальную плоскость. Для учета угла наклона используется поправочный коэффициент. Он найден опытным путем и имеет следующие значения:

  • При угле наклона до 25° – 1.
  • При угле наклона от 25 до 60° – 0,7.
  • При угле наклона более 75° – 0.

Нулевое значение поправочного коэффициента принято потому, что считается, что такой наклон обеспечивает самостоятельный сход снега со скатов, и давление отсутствует. Для таких крыш нередко используют снегозадержатели, препятствующие слишком массированному сходу снега.

Расчет снеговой нагрузки онлайн калькулятор

Для расчета веса снега на крыше существует еще один способ. Это – применение онлайн-калькулятора, специализированного ресурса, автоматически выполняющего расчеты по исходным данным пользователя. Споры о пользе онлайн-калькуляторов ведутся с самого первого дня их появления. Большинство пользователей убеждено, что, при необходимости выполнить качественный расчет снеговой нагрузки на кровлю, калькулятор бесполезен.

Полагаться на неизвестный алгоритм в таком ответственном вопросе опасно. Сторонники использования этих ресурсов утверждают, что критерием качества работы подобных ресурсов может служить дублирование расчета на других калькуляторах. Сложно сказать определенно, кто из них прав. Однако, учитывая относительную простоту самостоятельного расчета, гораздо правильнее совершить эти несколько арифметических действий самостоятельно.


Расчёт снеговой нагрузки на крышу в Московской области

В качестве примера рассмотрим, как рассчитывается снеговая нагрузка на кровлю в Московской области. Исходные данные:

  • Дом с двумя скатами, общая площадь кровли 64 м 2 .
  • Угол наклона скатов составляет 36°.

По карте снеговых районов определяем, к какому из них принадлежит Московская область. Это 3 район. По таблице получаем удельную величину нагрузки, равную 180 мг/м 2 .

64 × 180 = 11520 кг.

Полученное значение надо умножить на коэффициент уклона. В рассматриваемом случае он равен 0,7. Тогда получаем:

11520 × 0,7 = 8064 кг.

Вес снега будет составлять 8т и 64 кг. Как можно видеть, никакой сложности этот расчет не представляет, требуется выполнить буквально 2 действия.

Видео описание

В видеоуроке проводится ликбез по предмету сопромат. В доступной форме излагается материал для расчета конструкций дома с учетом снеговой нагрузки:

Онлайн калькулятор кровли

Чтобы узнать примерную стоимость кровли различных типов, воспользуйтесь следующим калькулятором:


В заключение

Следует еще раз напомнить о важности и ответственности подобных расчетов. Они понадобятся в нескольких ситуациях, будут влиять на несущую способность фундамента и стропил. Забывать или пренебрегать величиной снеговой нагрузки не следует – только что рассматриваемый расчет показал, что на кровле небольшого дома в относительно малоснежной Московской области лежит 8 т снега. Если количество осадков в регионе больше, как и площадь крыши, воздействие будет гораздо интенсивнее, что может привести к разрушению. Рисковать нет смысла, лучше выполнить все необходимые расчеты вовремя.

снеговой покров на крыше

При строительстве крыши одним из важных технических решений является расчет максимальной снеговой нагрузки, определяющий конструкцию стропильной системы, толщину элементов несущей конструкции. Для России нормативное значение снеговой нагрузки находится по специальной формуле с учетом района местонахождения дома и норм СНиП. Для снижения вероятности последствий от чрезмерного веса снежной массы, при проектировании кровли обязательно выполняют расчет значения нагрузки. Особое внимание уделяется необходимости установки снегозадержателей, препятствующих схождению снега со свеса крыши.

Кроме оказания чрезмерной нагрузки на крышу, снежная масса, иногда, является причиной протечек в кровле. Так, при образовании полосы наледи, свободный сток воды становится невозможным и талый снег вероятней всего попадет в подкровельное пространство. Самые большие снегопады приходятся на долю горных районов, где снежный покров достигает нескольких метров в высоту. Но, наиболее негативные последствия от нагрузки происходят при периодическом оттаивании, наледи и промерзании. При этом возможны деформации кровельных материалов, неправильная работа водосточной системы и лавинообразный поток снега с крыши дома.

Факторы влияния снеговой нагрузки

При расчете нагрузки от снежных масс на скатную кровлю следует учитывать тот факт, что до 5% массы снега испаряется в течение суток. В это время он может сползать, сдуваться ветром, покрываться настом. Вследствие этих трансформаций возникают следующие негативные последствия:

  • нагрузка от слоя снега на несущую конструкцию кровли имеет свойство возрастать в несколько раз при резком потеплении с последующим морозом; это вызывает превышение нагрузки, расчет которой выполнялся некорректно; стропильная система, гидроизоляция и теплоизоляция при этом подвергаются деформациям;
  • кровля сложной формы с многочисленными примыканиями, переломами и другими архитектурными особенностями, имеет свойство собирать снег; это способствует неравномерной нагрузке, что не всегда учитывается при расчете;

крыша сложной формы

Способы очистки крыши от снега

система кабельного обогрева кровли

Целесообразным выходом из ситуации является ручная очистка. Но, исходя из безопасности для человека, выполнять подобные работы крайне опасно. По этой причине расчет нагрузки оказывает значительное влияние на конструкцию кровли, стропильной системы и других элементов крыши. Давно известно, что чем круче скаты, тем меньше снега задержится на крыше. В регионах с большим количеством осадков в зимний период года угол наклона кровли составляет от 45° до 60°. При этом расчет показывает, что большое количество примыканий и сложных соединений обеспечивает неравномерную нагрузку.

Для предотвращения образования сосулек и наледи применяют системы кабельного обогрева. Нагревательный элемент устанавливают по периметру крыши прямо перед водосточным желобом. Для управления системой подогрева используют автоматическую систему управления или вручную контролируют весь процесс.

Расчет массы снега и нагрузки по СНиП

При снегопаде нагрузка может деформировать элементы несущей конструкции дома, стропильную систему, кровельные материалы. С целью предотвращения этого на стадии проектирования выполняют расчет конструкции в зависимости от воздействия нагрузки. В среднем снег весит порядка 100кг/м 3 , а в мокром состоянии его масса достигает 300 кг/м 3 . Зная эти величины, достаточно просто можно рассчитать нагрузку на всю площадь, руководствуясь всего лишь толщиной снегового слоя.

Толщина покрова должна измеряться на открытом участке, после чего это значение умножают на коэффициент запаса — 1,5. Для учета региональных особенностей местности в России используют специальную карту снеговой нагрузки. На её основе построены требования СНиП и других правил. Полная снеговая нагрузка на крышу рассчитывается при помощи формулы:

где S – полная снеговая нагрузка;

Sрасч. – расчетное значение веса снега на 1 м 2 горизонтальной поверхности земли;

μ – расчетный коэффициент, учитывающий наклон кровли.

На территории России расчетное значение веса снега на 1м 2 в соответствии со СНиП принимается по специальной карте, которая представлена ниже.

карта расчетных снеговых нагрузок в регионах России

СНиП оговаривает следующие значения коэффициента μ:

  • при уклоне крыши менее, чем 25° его значение равняется единице;
  • при величине уклона от 25° до 60° он имеет значение 0,7;
  • если уклон составляет более 60° , расчетный коэффициент не учитывается при расчете нагрузки.

Друзья, У-ра, свершилось и мы рады представить вам онлайн калькулятор для расчета снеговой и ветровой нагрузки, теперь вам не нужно ничего прикидывать на листочке или в уме, все просто указал свои параметры и получил сразу нагрзку. Кроме этого калькулятор умеет считать глубину промерзания грунта, если вам известен его тип. Вот ссылка на калькулятор -> Онлайн Калькулятор снеговой и ветровой нагрузки. Кроме этого у нас появилось много других строительных калькуляторов посмотреть список всех вы можете на этой странице: Строительные калькуляторы

Наглядный пример расчета

Возьмем кровлю дома, который находится в Московской области и имеет уклон 30°. В этом случае СНиП оговаривает следующий порядок производства расчета нагрузки:

  1. По карте районов России определяем, что Московский регион находится в 3-м климатическом районе, где нормативное значение снеговой нагрузки составляет 180 кг/м 2 .
  2. По формуле из СНиП определяем полную нагрузку:180×0,7=126 кг/м 2 .
  3. Зная нагрузку от снежной массы, делаем расчет стропильной системы, которая подбирается исходя из максимальных нагрузок.

Установка снегозадержателей

снегозадержатель на кровле

Если расчет выполнен правильно, тогда снег с поверхности крыши можно не убирать. А для борьбы с его сползанием с карниза используют снегозадержатели. Они очень удобны в эксплуатации и освобождают от необходимости удаления снега с кровли дома. В стандартном варианте применяют трубчатые конструкции, которые способны работать, если нормативная снеговая нагрузка не превышает 180 кг/м 2 . При более плотном весе используют установку снегозадержателей в несколько рядов. СНиП оговаривает случаи использования снегозадержателей:

  • при уклоне 5% и более с наружным водостоком;
  • снегозадержатели устанавливают на расстоянии 0,6-1,0 метра от края кровли;
  • при эксплуатации трубчатых снегозадержателей под ними должна предусматриваться сплошная обрешетка крыши.

Также СНиП описывает основные конструкции и геометрические размеры снегозадержателей, места их установки и принцип действия.

Плоские кровли

уборка снега на плоской крыше

На плоской горизонтальной поверхности скапливается максимально возможное количество снега. Расчет нагрузок в этом случае должен обеспечивать необходимый запас прочности несущей конструкции. Плоские горизонтальные крыши практически не строят в районах России с большим количеством атмосферных осадков. Снег может скапливаться на их поверхности и создавать чрезмерно большую нагрузку, которая не учитывалась при расчете. При организации водосточной системы с горизонтальной поверхности прибегают к установке подогрева, который обеспечивает стекание воды с крыши.

Уклон в сторону водосточной воронки должен быть не менее 2°, что даст возможность собирать воду со всей кровли.

вид деревянной беседки

При строительстве навеса для беседки, стоянки автомобиля, дачного домика особое внимание уделяют расчету нагрузки. Навес в большинстве случаев имеет бюджетную конструкцию, которая не предусматривает влияния больших нагрузок. С целью увеличения надежности эксплуатации навеса используют сплошную обрешетку, усиленные стропила и другие конструктивные элементы. Используя результаты расчета можно получить заведомо известное значение нагрузки и использовать для строительства навеса материалы необходимой жесткости.

Расчет основных нагрузок дает возможность оптимально подойти к вопросу выбора конструкции стропильной системы. Это обеспечит длительную службу кровельного покрытия, повысит его надежность и безопасность эксплуатации. Установка возле карниза снегозадержателей позволяет обезопасить людей от сползания опасных для человека снежных масс. В дополнение к этому отпадает необходимость ручной очистки. Комплексный подход в проектировании кровли также включает вариант монтажа системы кабельного обогрева, которая будет обеспечивать стабильную работу водосточной системы при любой погоде.

ГОСТ Р ИСО 4355-2016

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОСНОВЫ ПРОЕКТИРОВАНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

Определение снеговых нагрузок на покрытия

Bases for design of structures. Determination of snow loads on roofs

Дата введения 2017-07-01

Предисловие

1 ПОДГОТОВЛЕН Акционерным обществом "Научно-исследовательский центр "Строительство" (АО "НИЦ "Строительство"), Центральным научно-исследовательским, проектно-конструкторским и технологическим институтом им.В.А.Кучеренко (ЦНИИСК им.В.А.Кучеренко) на основе официального перевода на русский язык англоязычной версии указанного в пункте 4 международного стандарта, который выполнен Федеральным государственным унитарным предприятием "Российский научно-исследовательский центр информации по стандартизации, метрологии и оценке соответствия" (ФГУП "СТАНДАРТИНФОРМ")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

4 Настоящий стандарт идентичен международному стандарту ИСО 4355:2013* "Основы строительных конструкций. Метод определения снеговых нагрузок на крыши" (ISO 4355:2013 "Bases for design of structures - Determination of snow loads on roofs", IDT).

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

Наименование настоящего стандарта изменено относительно наименования указанного европейского стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных европейских стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Введение

Интенсивность и распределение снеговой нагрузки на покрытия могут быть описаны как функции климатических условий, топографических особенностей, формы сооружения, материала кровли, потока тепла через покрытие и времени. В настоящее время для определения таких функций имеется весьма ограниченный набор данных локального характера, вследствие чего в рамках настоящего стандарта было принято решение о рассмотрении вышеуказанной задачи в полувероятностной постановке.

Характеристическое (нормативное) значение снеговой нагрузки на площадь покрытия или на любую другую площадку над землей, подверженную накоплению снега, определено в настоящем стандарте как функция характеристического (нормативного) значения веса снегового покрова s для заданного района и коэффициента формы, описываемого мультипликативной функцией, в которой различные физические параметры представлены номинальными коэффициентами.

Значения коэффициентов формы будут зависеть от климатических условий, в особенности от продолжительности снегового сезона, от ветра, топографии местности, геометрии рассматриваемого сооружения и окружающих зданий, материала кровли, изоляции здания и т.п. Снег может перераспределяться под действием ветра, талая вода может стекать на отдельные участки и снова замерзать; снег может сползать или перемещаться.

Для обеспечения возможности применения ИСО 4355 в каждой стране должны быть установлены национальные данные о географическом распределении веса снегового покрова на ее территории в виде карт и/или другой информации. Процедуры статистической обработки метеорологических данных описаны в приложении А.

1 Область применения

В настоящем стандарте устанавливаются методы определения снеговой нагрузки на покрытия.

ИСО 4355 может служить основой для разработки национальных стандартов по определению снеговых нагрузок на покрытия.

Статистические данные по весу снегового покрова в виде карт районирования, таблиц или формул следует принимать по национальным стандартам.

Коэффициенты формы, представленные в настоящем стандарте, предназначены для применения при проектировании и поэтому могут использоваться непосредственно в тех случаях, когда отсутствует обоснование применения иных значений.

Для определения снеговых нагрузок на покрытия нестандартной формы или форм, не охватываемых настоящим стандартом, рекомендуется проводить специальные исследования. Такие исследования могут включать в себя испытания на масштабных моделях в аэродинамической трубе или в водяном лотке, специально оборудованных для воспроизведения явления снегонакопления, и должны включать в себя методы учета местных метеорологических статистических данных.

Примеры использования численных методов, исследований на масштабных моделях и сопутствующих методов статистического анализа описаны в приложении G.

Приложения, в которых описаны методы определения характеристического значения веса снегового покрова, коэффициента защищенности, термического коэффициента и нагрузок на снегозадерживающие преграды, являются справочными ввиду ограниченного количества документальных источников и доступных научных результатов.

В некоторых регионах в отдельные зимы с аномальными погодными условиями могут быть жесткие условия нагружения, не предусмотренные настоящим стандартом.

Указание стандартных процедур и средств измерений не входит в задачи настоящего стандарта.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт*, целиком или по частям, который является обязательным к применению. Для датированной ссылки применяют только указанное издание. Для недатированной ссылки применяют последнее издание документа, на который имеется ссылка (включая все поправки).

* Таблицу соответствия национальных стандартов международным см. по ссылке. - Примечание изготовителя базы данных.

ISO 2394, General principles on reliability for structures (Общие принципы надежности конструкций)

На момент подготовки к печати ИСО 2394:1998 находился на стадии пересмотра. В настоящее время действует ИСО 2394:2015.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 характеристическое (нормативное) значение веса снегового покрова (characteristic value of snow load on the ground) s: Нагрузка с заданной ежегодной вероятностью ее превышения.

Примечание 1 - Ее значение выражается в килоньютонах на квадратный метр, кН/м.

Примечание 2 - В метеорологии применяется также термин-эквивалент "вес снегового покрова земли" (weight of the ground snow cover).

3.2 коэффициент формы (shape coefficient) : Коэффициент, определяющий значение и распределение снеговой нагрузки на покрытие по поперечному сечению строительного объекта и зависящий в основном от геометрических свойств покрытия.

3.3 значение снеговой нагрузки на покрытия (value of snow load on roofs) s: Функция характеристического (нормативного) значения веса снегового покрова s и соответствующих коэффициентов формы.

Примечание 1 - Значение s зависит также от защищенности кровли и теплового режима здания.

Примечание 2 - Данное определение относится к площади горизонтальной проекции покрытия.

Примечание 3 - Данное значение выражается в килоньютонах на квадратный метр, кН/м.

3.4 базовый коэффициент по нагрузке (basic load coefficient) : Коэффициент, определяющий снижение снеговой нагрузки на покрытие в зависимости от уклона кровли и от коэффициента С, характеризующего материал поверхности кровли.

3.5 коэффициент переноса нагрузки (drift load coefficient) : Коэффициент, определяющий значение и перераспределение дополнительной нагрузки на подветренную сторону или часть покрытия в зависимости от защищенности покрытия от ветра С и от геометрического профиля покрытия.

3.6 коэффициент сползания нагрузки (slide load coefficient) : Коэффициент, определяющий значение и распределение нагрузки, сползающей на нижнюю часть покрытия или на кровлю нижнего уровня.

3.7 коэффициент защищенности (exposure coefficient) C: Коэффициент, учитывающий влияние открытости кровли воздействию ветра.

3.8 коэффициент защищенности для малых покрытий (exposure coefficient for small roofs) C: Коэффициент защищенности для покрытий длиной менее 50 м.

3.9 эффективная длина покрытия (effective roof length) : Длина покрытия, определяемая коэффициентом защищенности, заданным как функция размеров покрытия.

3.10 термический коэффициент (thermal coefficient) C: Коэффициент, определяющий изменение снеговой нагрузки на покрытие как функцию теплового потока через кровлю.

Примечание - В некоторых случаях C может быть больше единицы. Порядок действий в этих случаях описывается в 6.2 и приложении D.

3.11 коэффициент по материалу поверхности кровли (surface material coefficient) C: Коэффициент, определяющий снижение снеговой нагрузки на наклонные покрытия из кровельных материалов с малой шероховатостью поверхности.

3.12 эквивалентная плотность снега (equivalent snow density) : Значение плотности при вычислении ежегодного максимума веса снегового покрова по ежегодному максимуму высоты снегового покрова.

3.13 плотность снега (snow density) : Отношение веса снегового покрова к высоте снегового покрова.

4 Снеговые нагрузки на покрытия

4.1 Обобщенная функция, описывающая интенсивность и распределение снеговой нагрузки на покрытия

Формально снеговую нагрузку на покрытия можно определить как функцию нескольких параметров:


, (1)

где обозначения представлены в разделе 3.

Если параметры С, C и С принимаются постоянными для покрытия или поверхности кровли, то , , и обычно изменяются в пределах кровли.

4.2 Приближенные формы представления снеговой нагрузки на покрытия

В настоящем стандарте полная снеговая нагрузка на покрытие представлена комбинацией трех составляющих: базовой , от переноса и от сползания . Таким образом, для наихудших условий (подветренная сторона нижней кровли):

где "+" обозначает совместное действие.

Воздействие различных параметров упрощается при введении мультипликативных функций:


, (3)


, (4)

Читайте также: