Расчет кирпичного столба на прочность и устойчивость пример

Обновлено: 16.05.2024

Методические указания.Данные для проектирования кирпичного столба с сетчатым армированием, при выполнении проекта в режиме диалога с ЭВМ печатаются после проверки расчета колонны и фундамента. Проектирование кирпичного столба рекомендуется выполнять в следующей последовательно- сти:

· по заданному расчетному усилию N и эксцентриситету его относительно- го центра тяжести сечения e0, принимая величину средних напряжений в кладке не более 3 МПа, находится ориентировочно требуемая площадь сечения столба, по которой назначаются размеры ширины b и высоты h сечения с учетом кратности размера кирпича;

· для принятых размеров сечения столба вычисляется максимальное на- пряжение в кладке и назначаются марки кирпича и раствора с учетом то- го, чтобы расчетное сопротивление неармированной кладки было не ме- нее 0,6 от максимального (для случая расчета армированной кладки);

· определяется требуемое армирование кладки (в %), по которому назна- чаются диаметр, размер ячейки и шаг сеток; сетки проектируются из про- волочной арматуры класса Вр500 или А240;

· выполняется проверка несущей способности принятого конструктивного решения кирпичного столба с сетчатым армирование; при этом допуска-ется, что фактическая несущая способность столба может быть до 1,5 раза выше заданной величины продольной силы N.

Все расчеты должны выполняться с учетом заданного ЭВМ вида кирпича. Рассмотрим пример проектирования кирпичного столба по следующим ис-

ходным данным, полученным от ЭВМ (см. рис. 20) для наиболее опасного се- чения на высоте 2/3 H: величина расчетной продольной силы N = 775 кН; вели- чина расчетной продольной силы от длительных нагрузок Ng = 648 кН; эксцен- триситет продольной силы относительно центра тяжести сечения e0= 6,0 см =

=60 мм; расчетная высота столба l0= H= 4,8 м = 4800 мм; кирпич силикатный

Решение.Определим требуемые размеры поперечного сечения столба, принимая величину средних напряжений в кладке σ = 2,5 МПа, тогда получим:

A=N/σ = 775·103/2,5 = 0,31·106 мм2. Назначаем размеры сечения кирпичного столба с учетом кратности размерам кирпича b=510 мм и h=640 мм с A=510·640=0,3264·106 мм2=0,3264 м2 (рис. 23).

Так как заданная величина эксцентриситета e0 = 60 мм < 0,17h =

=0,17·640=109 мм, то согласно 7.31 [7], столб можно проектировать с сетча- тым армированием.

Вычисляем максимальное (у наиболее сжатой грани) напряжение в кладке с принятыми размерами сечения, пользуясь формулами (13) и (14) [7]:

σmax= N/(mgφ1Acω)= 775·103/(1·0,9·0,2652·106·1)= 3,25 МПа,

где Ac=A(1−2e0/h)=0,3264·106(1−2·60/640)= 0,2652·106мм2 , а значения ко- эффициентов mg = 1, φ1 = 0,9 и ω = 1 принято предварительно ориентировочно.

Тогда расчетное сопротивление неармированной кладки должно быть не менее 0,6·3,25 = 1,95 МПа.

По табл. 2 [7] принимаем для кладки столба марку кирпича 150 и мар- ку раствора 75 ( R = 2,0 МПа). Так как площадь сечения столба A= 0,3264 м2> 0,3 м2, то, согласно п. 6.12 [7], расчетное сопротивление кладки не коррек- тируем.

Преобразуя формулу (31)[7], вычислим требуемый процент армирования кладки, принимая значение Rskb = σmax = 3,25 МПа, тогда получим:



где Rs= 0,6·415 = 249 МПа для арматуры сеток класса Вр500 с учетом ко- эффициента условий работы γcs= 0,6 (см. табл. 14 [7]), а y=h/2 = 640/2=320 мм.


Рис. 23. К расчету кирпичного столба с сетчатым армированием:

а – расчетная схема; б – эпюры усилий N и М; в – эпюра коэффициента φ1;

г – схема армирования столба

Для диаметра арматуры сеток 5 мм (Ast= 19,6 мм2) и шага сеток s = 158 мм (через каждые два ряда кладки при толщине шва 14 мм), вычислим размер ячейки сетки с перекрестным расположением стержней, который должен быть не более:

c = 2 Ast ×100 /( μs) = 2 ×19,6 ×100 /(0,40 ×158) = 62

46
Принимаем размер c = 50 мм, при этом получим фактический процент се- точного армирования каменной кладки:

μ = 2 Ast ×100 /(cs) = 2 ×19,6 ×100 /(50 ×158) = 0,496%,

что не превышает предельного

(1 - 2e0 / y)Rs

(1 - 2 × 60 / 320)249



Определяем фактическую несущую способность запроектированного се- чения кирпичного столба с сетчатым армированием (рис. 23, г).

Согласно п. 7.3 [7], для определения коэффициентов продольного изгиба расчетная высота столба при неподвижных шарнирных опорах будет равна l0 = H = 4800 мм, соответственно гибкость в плоскости действия изгибающего момента: λh = l0 /h = 4800/640 = 7,5.

Высота сжатой части сечения: hc = h −2e0 = 640−2·60 = 520 мм, и соответст- вующая ей гибкость: λhс = l0 /h = 4800/520 = 9,2 .

Вычисляем прочностные и деформативные характеристики армированной кладки:

· расчетное сопротивление армированной кладки при внецентренном сжа- тии:



· упругую характеристику кладки с сетчатым армированием по формуле (4) [7]:


6,98

где α = 750 принимаем по табл. 16 [7] для силикатного полнотелого кирпича; Ru = kR = 2·2,0 = 4 МПа; а Rsku =kR +2Rsn μ/100 = 2·2,0 +2(0,6·500)×

×0,496/ 100 = 6,98 МПа.

Пользуясь табл. 19 [7], по величинам гибкостей λh и λhс и значению упругой характеристики армированной кладки αsk находим значение коэффици- ентов продольного изгиба для армированной кладки при внецентренном сжа- тии φ = 0,844 и φc = 0,784; соответственно получим φ1= (φ + φc)/2 = (0,844 +

Коэффициент ω, учитывающий повышение расчетного сопротивления кладки при внецентренном сжатии, определяем по табл. 20 [7], где

ω = 1 + e0/h = 1 + 60/640 = 1,09 < 1,45.

Тогда фактическая несущая способность запроектированного кирпичного столба при внецентренном сжатии будет равна:

Nu=mg φ1Rskb Ac ω = 1·0,814·3,54·0,2652·106·1,09 = 833·103 Н = 833 кН.

Rsk= R +2μRs /100 = 2,0 + 2·0,402·249/100= 4,0 МПа ≤ 2R= 4,0 МПа;

αsk = 468 и φ = 0,794 при λh = l0 /h = 4800/510 = 9,4.

Тогда несущая способность при центральном сжатии составит:

Nu= mg φRsk A = 1·0,794·4,0·0,3264·106 = 1037·103 Н = 1037 кН>833 кН.

Следовательно, фактическая несущая способность столба будет опреде- ляться случаем внецентренного сжатия и составит Nu=833кН>775 кН, поэтому прочность кирпичного столба обеспечена.

Теперь можно заполнить контрольный талон, как это показано на рис. 24

для рассмотренного примера расчета и получить от ЭВМ результаты про- верки.

ПГС 4 курс П11 гр.I Kод b h Марка Марка Cетчатое армирование N(кH) Oценка Контр. I
Кравцов С.Н. Iзадания (см) (см) кирпича раствора d(мм) c(мм) s(мм) тип факт. чертежа сумма I

Срок сдачи информацииI : : : : : : : : : : : I По 6 этапу до 270310I 102.06 51 64 150 75 5 50 158 1 833 5 1494.06 I


Пояснения к заполнению контрольного талона:

b – ширина сечения кирпичного столба, см: h – высота сечения кирпичного столба, см; d – диаметр арматуры сетки, мм;

c – размер ячейки сетки, мм;

s – шаг сеток, мм;

тип – если сетки типа «зигзаг», то следует записать 2;

N – расчетная несущая способность кирпичного столба с

Факт фактически принятыми проектными параметрами, кН;


Оценку чертежа колонны и фундамента записывает преподаватель.

ПГС 4 курс П11 гр.I Kод b h Марка Марка Cетчатое армирование N(кH) Oценка PезультатI Кравцов С.Н. Iзадания (см) (см) кирпича раствора d(мм) c(мм) s(мм) тип факт. чертежа ошибок I

Информация студента I 102.06 51. 64. 150. 75. 5. 60. 158. 1. 833. 5. I

Результаты проверки I 51. 64. 150. 75. 5. 60. 158. 1. 833. 5. I

Bы OTЛИЧHO выполнили расчет кирпичного столба,

желаю успешной защиты проекта, до новых встреч «ЭВМ».

Рис. 24. К автоматизированному расчету кирпичного столба с сетчатым армированием:

а – заполненный контрольный талон; б – результаты диалога с ЭВМ

Кирпич - достаточно прочный строительный материал, особенно полнотелый, и при строительстве домов в 2-3 этажа стены из рядового керамического кирпича в дополнительных расчетах как правило не нуждаются. Тем не менее ситуации бывают разные, например, планируется двухэтажный дом с террасой на втором этаже. Металлические ригеля, на которые будут опираться также металлические балки перекрытия террасы, планируется опереть на кирпичные колонны из лицевого пустотелого кирпича высотой 3 метра, выше будут еще колонны высотой 3 м, на которые будет опираться кровля:

Многопролетные балки с равными пролетами - 2 часть

Внимание! Данная статья является продолжением статьи "Многопролетные балки. Основы расчета", и без ознакомления с указанной статьей может быть не совсем понятна.

3. Расчет четырехпролетной балки с равными пролетами и равномерно распределенной нагрузкой во всех пролетах.

Четырехпролетная шарнирно опертая балка является 3 раза статически неопределимой. Чтобы не запутаться при решении многочисленных уравнений, необходимых для определения опорных реакций и моментов на опорах, попробуем еще раз подойти к решению задачи не традиционно. Так как четырехпролетная балка с равными пролетами и равномерно распределенной нагрузкой во всех пролетах является симметричной, то можно рассматривать не всю балку, а только первые два пролета, заменив остальные два пролета жесткой опорой. Этот метод мы использовали при расчете двухпролетной балки и он себя оправдал. Более того, чтобы получить расчетную схему половины четырехпролетной балки, достаточно к двухпролетной балке из указанного примера приложить изгибающий момент на опоре С таким образом, чтобы тангенс угла поворота на опоре С стал равен нулю:

Расчет на ударные нагрузки

Обычно в жилых домах расчет перекрытий на ударные нагрузки не производится. Считается, что никаких особенных ударных нагрузок на перекрытие в квартирах и жилых домах нет, а те что есть, учтены расчетом на действующую нагрузку, принятую с хорошим запасом.

Как правило так оно и есть. Однако если вы собираетесь сделать в своей квартире спортзал и предполагаете, что на пол иногда будет падать штанга или гиря, при этом пол в помещении будет вполне обычным, т.е. без дополнительных амортизаторов удара, то такое перекрытие желательно просчитать на действие ударной нагрузки

Расчет арочной перемычки из кирпича

С тех пор, как люди придумали железобетон и начали делать из него простые по форме перемычки, необходимость в арочных перемычках, выложенных из кирпича, отпала. Тем не менее арочные перемычки из кирпича и натурального камня делаются и сейчас, просто потому, что оконный или дверной проем со сводом намного эстетичнее, чем порядком набивший оскомину прямоугольник.

Расчет арочной перемычки (лучковой перемычки, лучковой арки) в отличие от прямолинейной перемычки состоит из двух этапов: определения геометрических параметров и расчета на прочность. При этом в силу своей природы арочная перемычка для самонесущих стен, а тем более для перегородок, в расчете на прочность как правило не нуждается, а вот арочную перемычку несущих стен, на которые могут опираться балки или плиты перекрытия, проверить расчетом не помешает. Это мы и попробуем сделать.

Расчет опорной площадки стены на смятие

При строительстве домов по старым добрым технологиям, то бишь со стенами из прочного природного камня, шлакоблока, пустотелого, а тем более из полнотелого кирпича, опорные участки стены рассчитывать на смятие обычно не нужно, если проемы в таких стенах не превышают 2-3 метров, да и количество этажей ограничено двумя-тремя.

Прочности указанных материалов стен как правило хватает с многократным запасом, чтобы избежать смятия опорных площадок. И даже если на стены будут опираться стальные балки или перемычки, то при указанных пролетах и этажности с прочностью опоры тоже проблем быть не должно, хотя проверить прочность кладки на смятие не помешает. А вот если при возведении стен используются популярные нынче блоки из ячеистых бетонов (пенобетона или газобетона) низкой плотности, да и проемы в таких стенах хочется сделать побольше, то проверить опорные площадки на смятие нужно, особенно если планируются металлические балки перекрытия, да и от железобетонных плит перекрытия нагрузка может быть не малой.

Расчет опорного участка балки на смятие

Что такое - "смятие"?

Когда Вы забиваете гвоздь в доску и наносите последний удар, чтобы утопить шляпку гвоздя, то после слишком сильного удара на поверхности доски вокруг шляпки гвоздя останется вмятина. Если описывать ее терминами сопромата, то эта вмятина и есть "смятие" в результате неупругой деформации древесины. Смятие - термин для обозначения неупругих деформаций, возникающих при локальном приложении нагрузки. И сминаться может не только древесина, но и кирпич, камень, бетон и даже металл. В приведенном примере к смятию привела ударная нагрузка, но далее мы будем рассматривать только статическую нагрузку.

Расчет ригеля для двухпролетных балок

Расчет ригеля - промежуточной опоры для двухпролетных балок отличается от расчета ригеля для однопролетных балок тем, что следует учитывать статическую неопределимость системы, в результате чего нагрузка на ригель будет зависеть от прогиба самого ригеля.

Впрочем ничего сложного в подобном расчете нет, особенно если ригель будет располагаться посредине, т.е. длины пролетов двухпролетных балок будут одинаковыми. Как это можно сделать, мы рассмотрим на следующем примере:

Расчет балки на действие равномерно распределенной нагрузки

Как правило под термином "балка" по умолчанию подразумевается однопролетный стержень постоянного по длине сечения, без консолей, на двух шарнирных опорах, т.е. статически определимый. Определение термина "распределенная (равномерно распределенная) нагрузка" приводится отдельно. Опять же умолчанию подразумевается, что нагрузка к балке приложена перпендикулярно нейтральной оси и действует по всей длине балки. Пример расчета такой балки мы ниже и рассмотрим.

Отмечу, что для опытного инженера-строителя расчет балки на действие равномерно распределенной нагрузки больших проблем не представляет, тем более, если значения и нагрузки и длины пролета выражены целыми однозначными цифрами. Как он это делает? Сейчас узнаем.

Расчет балки на действие сосредоточенной нагрузки

Как правило по умолчанию под термином "балка" подразумевается однопролетный стержень постоянного по длине сечения, без консолей, на шарнирных опорах. Определение термина "сосредоточенная (точечная) нагрузка" приводится отдельно. Пример расчета такой балки мы ниже и рассмотрим.

Конечно же для опытного инженера-строителя подобный расчет никаких проблем не представляет. А если сосредоточенная нагрузка приложена посредине балки, то инженер часто выполняет примерный расчет в уме за несколько секунд, тем более, если значения и нагрузки и длины пролета выражены целыми однозначными цифрами. Как он это делает? Сейчас узнаем.

Расчет дома

Расчет дома - занятие не из простых. В данном случае под расчетом дома подразумевается не только определение стоимости материалов, но и расчет конструкций дома на нагрузки.

Так вот расчет конструкций дома как раз и подразумевает определенную сложность, особенно для людей, не знакомых даже с основами теории сопротивления материалов и строительной механики.

Расчет балки на действие наклонной равномерно распределенной нагрузки

На первый взгляд может показаться, что расчет балок на действие равномерно распределенной нагрузки, приложенной под некоторым углом к нейтральной оси балки, отличным от 90 градусов, представляет чисто академический интерес. Ну то есть только для того, чтобы помучить и без того затурканных студентов.

Но это только на первый взгляд. Оказывается, что когда нужно рассчитать стропильную ногу, для своей любимой, единственной и неповторимой кровли, то расчет балки, к которой приложена наклонная равномерно распределенная нагрузка - самое оно.

Расчет балки на действие равномерно распределенной нагрузки не по всей длине

Расчет балки, на которую действует распределенная нагрузка, приложенная не по всей длине балки, особенно в тех случаях, когда нагрузка является несимметричной относительно середины пролета (центр тяжести нагрузки смещен вправо или влево от середины пролета) не то, чтобы очень сложный, но достаточно трудоемкий, когда нужно точно определить максимально возможный прогиб.

Когда такая суперточность не нужна, а частному застройщику она как правило не нужна, то можно пойти по самому простому пути:

Предварительный расчет деревянной балки

Для опытного инженера-строителя предварительный расчет деревянной балки большого труда не составляет и много времени не занимает. А если значения нагрузки и длины пролета выражаются целыми однозначными цифрами, то такой расчет выполняется в уме за несколько секунд.

Расчет вакуумного дирижабля

Лет 10 назад один из читателей обратился ко мне с просьбой помочь рассчитать вакуумный дирижабль. Тогда я был слишком занят, да и в возможность создания вакуумного дирижабля не верил (как впрочем не верю и сейчас) и в помощи пришлось отказать.

Но сейчас я на пенсии и у меня есть время для рассмотрения даже таких, не очень актуальных вопросов, поэтому попробуем рассчитать параметры вакуумного дирижабля, исходя из существующих законов физики.



Перед строительством дома важно грамотно запроектировать его несущие конструкции. Расчет нагрузки на фундамент позволит обеспечить надежность опор под здание. Его проводят перед подбором фундамента после определения характеристик грунта.

Самый главный документ при определении веса конструкций дома — СП «Нагрузки и воздействия». Именно он регламентирует, какие нагрузки приходятся на фундамент и как их определить. По этому документу можно разделить нагрузки на следующие типы:

Временные в свою очередь делятся на длительные и кратковременные. К постоянным относят те, которые не исчезают при эксплуатации дома (вес стен, перегородок, перекрытий, кровли, фундамента). Временные длительные — это масса мебели и оборудования, кратковременные — снег и ветер.

Постоянные нагрузки

  • размеры элементов дома;
  • материал, из которого они изготовлены;
  • коэффициенты надежности по нагрузке.


  • глубина промерзания почвы;
  • уровень расположения грунтовых вод;
  • наличие подвала.

При залегании на участке крупнообломочных и песчаных грунтов (средний, крупный) можно не углублять подошву дома на величину промерзания. Для глин, суглинков, супесей и других неустойчивых оснований, необходима закладка на глубину промерзания грунта в зимний период. Определить ее можно по формуле в СП «Основания и фундаменты» или по картам в СНиП «Строительная климатология» (этот документ сейчас отменен, но в частном строительстве может быть использован в ознакомительных целях).

При определении залегания подошвы фундамента дома важно контролировать, чтобы она располагалась на расстоянии не менее 50 см от уровня грунтовых вод. Если в здании предусмотрен подвал, то отметка основания принимается на 30-50 см ниже отметки пола помещения.

Определившись с глубиной промерзания, потребуется подобрать ширину фундамента. Для ленточного и столбчатого ее принимают в зависимости от толщины стены здания и нагрузки. Для плитного назначают так, чтобы опорная часть выходила за пределы наружных стен на 10 см. Для свай сечение назначается расчетом, а ростверк подбирается в зависимости от нагрузки и толщины стен. Можно воспользоваться рекомендациями по определению из таблицы ниже.

Тип фундамента Способ определения массы
Забор железобетонный Умножают ширину ленты на ее высоту и протяженность. Полученный объем нужно перемножить на плотность железобетона — 2500 кг/м 3 . Рекомендуем: .
Перекрытия железобетонный Умножают ширину и длину здания (к каждому размеру прибавляют по 20 см на выступы на границы наружных стен), далее выполняют умножение на толщину и плотность железобетона. Рекомендуем: .
Столбчатый железобетонный Площадь сечения умножают на высоту и плотность железобетона. Полученное значение нужно помножить на количество опор. При этом вычисляют массу ростверка. Если у элементов фундамента имеется уширение, его также необходимо учесть в расчетах объема. Рекомендуем: .
Свайный буронабивной То же, что и в предыдущем пункте, но нужно учесть массу ростверка. Если ростверк изготавливается из железобетона, то его объем перемножают на 2500 кг/м 3 , если из древесины (сосны), то на 520 кг/м 3 . При изготовлении ростверка из металлопроката потребуется ознакомиться с сортаментом или паспортом на изделия, в которых указывается масса одного погонного метра. Рекомендуем: .
Свайный винтовой Для каждой сваи изготовитель указывает массу. Нужно умножить на количество элементов и прибавить массу ростверка (см. предыдущий пункт). Рекомендуем: .

На этом расчет нагрузки на фундамент не заканчивается. Для каждой конструкции в массе нужно учесть коэффициент надежности по нагрузке. Его значение для различных материалов приведено в СП «Нагрузки и воздействия». Для металла он будет равен 1,05, для дерева — 1,1, для железобетона и армокаменных конструкций заводского производства — 1,2, для железобетона, который изготавливается непосредственно на стройплощадке — 1,3.

Временные нагрузки

Проще всего здесь разобраться с полезной. Для жилых зданий она равняется 150 кг/м2 (определяется исходя из площади перекрытия). Коэффициент надежности в этом случае будет равен 1,2.

Снеговая зависит от района строительства. Чтобы определить снеговой район потребуется СП «Строительная климатология». Далее по номеру района находят величину нагрузки в СП «Нагрузки и воздействия». Коэффициент надежности равен 1,4. Если уклон кровли более 60 градусов, то снеговую нагрузку не учитывают.

Определение значения для расчета

При расчете фундамента дома потребуется не общая его масса, а та нагрузка, которая приходится на определенный участок. Действия здесь зависят от типа опорной конструкции здания.

Тип фундамента Действия при расчете
Забор Для расчета ленточного фундамента по несущей способности нужна нагрузка на погонный метр, исходя из нее рассчитывается площадь подошвы для нормальной передачи массы дома на основание, исходя из несущей способности грунта (точное значение несущей способности грунта можно узнать только с помощью геологических изысканий). Полученную в сборе нагрузок массу нужно разделить на длину ленты. При этом учитываются и фундаменты под внутренние несущие стены. Это самый простой способ. Для более подробного вычисления потребуется воспользоваться методом грузовых площадей. Для этого определяют площадь, с которой передается нагрузка на определенный участок. Это трудоемкий вариант, поэтому при строительстве частного дома можно воспользоваться первым, более простым, способом.
Перекрытия Потребуется найти массу, приходящуюся на каждый квадратный метр плиты. Найденную нагрузку делят на площадь фундамента.
Столбчатый и свайный Обычно в частном домостроении заранее задают сечение свай и потом подбирают их количество. Чтобы рассчитать расстояние между опорами с учетом выбранного сечения и несущей способности грунта, нужно найти нагрузку, как в случае с ленточным фундаментом. Делят массу дома на длину несущих стен, под которые будут установлены сваи. Если шаг фундаментов получится слишком большим или маленьким, то сечение опор меняют и выполняют расчет заново.

Пример выполнения вычислений

Удобнее всего сбор нагрузок на фундамент дома делать в табличной форме. Пример рассмотрен для следующих исходных данных:

  • дом двухэтажный, высота этажа 3 м с размерами в плане 6 на 6 метров;
  • фундамент ленточный железобетонный монолитный шириной 600 мм и высотой 2000 мм;
  • стены из кирпича полнотелого толщиной 510 мм;
  • перекрытия монолитные железобетонные толщиной 220 мм с цементно-песчаной стяжкой толщиной 30 мм;
  • кровля вальмовая (4 ската, значит, наружные стены по всем сторонам дома будут одинаковой высоты) с покрытием из металлической черепицы с уклоном 45 градусов;
  • одна внутренняя стена посередине дома из кирпича толщиной 250 мм;
  • общая длина гипсокартонных перегородок без утепления толщиной 80 мм 10 метров.
  • снеговой район строительства ll, нагрузка 120 кг/м2 кровли.

0,6 м * 2 м * (6 м * 4 + 6 м) = 36 м 3 — объем фундамента

36 м 3 *2500 кг/м 3 = 90000 кг = 90 тонн

6 м * 4 шт = 24 м — протяженность стен

24 м * 3 м = 72 м 2 -площадь в пределах одного этажа

(72 м 2 * 2) *918 кг/м 2 — 132192 кг = 133 тонны — масса стен двух этажей

6 м * 2 шт * 3 м = 36 м 2 площадь стен на протяжении двух этажей

36 м 2 * 450 кг/м 2 = 16200 кг = 16,2 тонн — масса

6 м * 6 м = 36 м 2 — площадь перекрытий

36 м 2 *625 кг/м 2 = 22500 кг = 22, 5 тонн — масса одного перекрытия

22,5 т * 3 = 67,5 тонн — масса подвального, междуэтажного и чердачного перекрытий

10 м * 2,7 м (здесь берется не высота этажа, а высота помещения) = 27 м 2 — площадь

27 м 2 * 28 кг/м 2 = 756 кг = 0,76 т

(6 м * 6 м)/cos 45ᵒ (угла наклона кровли) = (6 * 6)/0,7 = 51,5 м 2 — площадь кровли

51,5 м 2 * 60 кг/м 2 = 3090 кг — 3,1 тонн — масса

36м 2 * 150 кг/м 2 * 3 = 16200 кг = 16,2 тонн (площадь перекрытий и их количество взяты из предыдущих расчетов)

51,5 м 2 * 120 кг/м 2 = 6180 кг = 6,18 тонн (площадь кровля взята из предыдущих расчетов)

Чтобы понять пример, эту таблицу нужно смотреть совместно с той, в которой приведены массы конструкций.

Далее необходимо сложить все полученные значения. Итого нагрузка для данного примера на фундамент с учетом собственного веса составляет 409,7 тонн. Чтобы найти нагрузку на один погонный метр ленты, необходимо разделить полученное значение на протяженность фундамента (посчитано в первой строке таблицы в скобках): 409,7 тонн /30 м = 13,66 т/м.п. Это значение берут для расчета.

При нахождении массы дома важно выполнять действия внимательно. Лучше всего уделить этому этапу проектирования достаточное количество времени. Если совершить ошибку в этой части расчетов, потом возможно придется переделывать весь расчет по несущей способности, а это дополнительные затраты времени и сил. По завершении сбора нагрузок рекомендуется перепроверить его, для исключения опечаток и неточностей.

Совет! Если вам нужны подрядчики, есть очень удобный сервис по их подбору. Просто отправьте в форме ниже подробное описание работ которые нужно выполнить и к вам на почту придут предложения с ценами от строительных бригад и фирм. Вы сможете посмотреть отзывы о каждой из них и фотографии с примерами работ. Это БЕСПЛАТНО и ни к чему не обязывает.

В статье представлен пример расчета несущей способности кирпичной стены трехэтажного бескаркасного здания с учетом выявленных в ходе ее осмотра дефектов. Подобные расчеты относятся к категории «проверочных» и выполняются обычно в рамках детального визуально-инструментального обследования зданий.

Несущая способность центрально- и внецентренно — сжатых каменных столбов определяется на основании данных о фактической прочности материалов кирпичной кладки (кирпича, раствора) в соответствии с разделом 4 .

Для учета выявленных в ходе обследования дефектов в формулы СНиП вводится дополнительный понижающий коэффициент, учитывающий снижение несущей способности каменных конструкций (Ктр) в зависимости от характера и степени обнаруженных повреждений по таблицам гл. 4 .

ПРИМЕР РАСЧЕТА

Проверим несущую способность внутренней несущей каменной стены 1-го этажа по оси «8» м/о «Б»-«В» на действие эксплуатационных нагрузок с учетом выявленных в ходе ее обследования дефектов и повреждений.

Исходные данные:

— Толщина стены: dст=0,38 м
— Ширина простенка: b=1,64 м
— Высота простенка до низа плит перекрытий 1 этажа: H=3,0 м
— Высота вышележащего столба кладки: h=6,5 м
— Площадь сбора нагрузок от перекрытий и покрытия: Sгр=9,32 м2
— Расчетное сопротивление кладки cжатию: R=11,05 кг/см2

В ходе осмотра стены по оси «8» зафиксированы следующие дефекты и повреждения (см. фото ниже): массовое выпадение раствора из швов кладки на глубину более 4 см; смещение (искривление) горизонтальных рядов кладки по вертикали до 3 см; множественные вертикально ориентированные трещины раскрытием 2-4 мм (в т.ч. по растворным швам), пересекающие от 2 до 4 горизонтальных рядов кладки (до 2-х трещин на 1 м стены).

По совокупности выявленных дефектов (с учетом их характера, степени развития и площади распространения), в соответствии с , несущая способность рассматриваемого простенка должна быть снижена не менее чем на 30%. Т.е. коэффициент снижения несущей способности простенка принимается равным — Ктр=0,7. Схема для сбора нагрузок на простенок приведена ниже на Рис.1.


РИС.1. Схема для сбора нагрузок на простенок

I. Сбор расчетных нагрузок на простенок

II. Расчет несущей способности простенка

(п. 4.1 СНиП II-22-81)

Количественная оценка фактической несущей способности кирпичного центрально сжатого простенка (с учетом влияния обнаруженных дефектов) на действие расчетной продольной силы N, приложенной без эксцентриситета, сводится к проверке выполнения следующего условия (формула 10 ):

Nс=mg×φ×R×A×Kтр ≥ N (1)

Согласно результатам прочностных испытаний расчетное сопротивление кладки стены по оси «8» сжатию составляет R=11,05 кг/см2 .
Упругая характеристика кладки согласно п.9 Таблицы 15(К) равна: α=500.
Расчетная высота столба: l0=0,8×H=0,8×300=240 см.
Гибкость элемента прямоугольного сплошного сечения: λh=l0 / dст=240/38=6,31.
Коэффициент продольного изгиба φ при α=500 и λh=6,31 (по Таблице 18): φ=0,90.
Площадь поперечного сечения столба (простенка): A=b×dст=164×38=6232 см2.
Т.к. толщина рассчитываемой стены более 30 см (dст=38 см), коэффициент mg принимается равным единице: mg=1.

Подставив полученные значения в левую часть формулы (1), определим фактическую несущую способность центрально-сжатого неармированного кирпичного простенка :

Nс=1×0,9×11,05×6232×0,7=43 384 кгс

III. Проверка выполнения условия прочности (1)

[ Nc=43384 кгс ] > [ N=36340,5 кгс ]

Условие прочности выполнено: несущая способность кирпичного столба с учетом влияния выявленных дефектов оказалась больше значения суммарной нагрузки N .

Список источников:
1. СНиП II-22-81* «Каменные и армокаменные конструкции».
2. Рекомендации по усилению каменных конструкций зданий и сооружений. ЦНИИСК им. Курченко, Госстрой.

В расчетах каменных конструкций возможные снижения прочности, связанные с естественным разбросом механических свойств, учитываются коэффициентом безопасности. Для всех видов каменных кладок, работающих на сжатие (кроме вибрированной), принимается К=2, а при растяжении К = 2,25. Расчетное сопротивление R, принимаемое в расчетах конструкций:

Обстоятельства, которые не принимаются во внимание непосредственно при установлении расчетных характеристик, но могут повлиять на несущую способность или деформативность конструкции, учитываются коэффициентами условий работы т, т. е. расчетные сопротивления умножают на соответствующие коэффициенты. Так, при расчете прочности каменных и армокаменных конструкций площадью сечения 0,3 м2 и менее, расчетное сопротивление кладки умножают на коэффициент 0,8; при расчете кладки на сжатие при нагрузках, которые будут приложены после твердения раствора более одного года, коэффициент равен 1,1.

Наружные несущие стены должны быть, как минимум, рассчитаны на прочность, устойчивость, местное смятие и сопротивление теплопередаче. Чтобы узнать, какой толщины должна быть кирпичная стена, нужно произвести ее расчет.

Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.

Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (Мрз) от 25 и выше.

При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.

Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.

Пример расчета кирпичной стены.

Несущая способность кирпичной кладки зависит от многих факторов - от марки кирпича, марки раствора, от наличия проемов и их размеров, от гибкости стен и т.д. Расчет несущей способности начинается с определения расчетной схемы. При расчете стен на вертикальные нагрузки, стена считается опертой на шарнирно-неподвижные опоры. При расчете стен на горизонтальные нагрузки (ветровые), стена считается жестко защемленной. Важно не путать эти схемы, так как эпюры моментов будут разными.

Всем добрый день.
Строю одноэтажный дом с терассой, сейчас заканчивают крышу.
Одноэтажный дом с терассой под одной четырехскатной крышей, мягкая черепица, свес кровли 1м, угол скатов примерно 20-22 градуса.
Фундамент свайно-ростверковая плита. На доме перекрытие монолитная плита 20см. На терассе перекрытия нету. На терассе стоят кирпичные колонны 38х38 высотой 3м с армированным сердечником арматурой 3шт диаметр 12мм, перфоратором всунутые в фундамент и обвязанные арматурой 6мм каждые 50 см. С каждой колонны торчит шпилька по центру колонны диаметром 16 для маурлата(шпилька длинной 1м,50 см внутри сердечника 50 см снаружи для маурлата) . Между колоннами длиной 5м лежит lvl брус 360х75. Между пролетом 7.5 м лежит двойной lvl брус 2х(360х75), между пролетом 9м лежит тройной 3х(360х75). Двойные и тройные lvl одеты на эту шпильку 16мм, и весь маурлат по контуру перевязан между собой еще шпильками. На доме по краю стен чердака которые выходят на терассу стоят дополнительные прогоны, чтобы максимально снять нагрузку с lvl бруса.


Собственно вопрос, мне когда фирма проектировала кровлю, т.к были хотелки меньше колонн, особенно не напротив окон, напроектировала lvl брус между колоннами, и типо колонны из кирпича 38*38 с армированным сердечником должны выдержать. Но сейчас когда заканчивают кровлю у меня закралось подозрение, что сечения этих колонн недостаточно для противостоянию опрокидывания. Несущей способности как я понимаю там с запасом, а вот с опрокидыванием наверное есть вопросы, т.к нагрузки неравномерны. Никаких трещен нету, просто визуально колонны выглядят на фоне пролетов мелкими, особенно угловая. Позвонил знакомому проектировщику(не те которые это проектировали), он пока занят и сможет помочь рассчитать только на след неделе, но сходу сказал что он бы конечно все делал в 51*51 кирпиче..

Вопрос хватает ли этих колонн несущей способности опрокидыванию и какой запас прочности у них? Если не хватает что мне можно сделать, доложить кирпич? использовать обойму из уголков 75*75?(насколько это эффективно?)

На прочность кладки влияет прочность и размеры камня, прочность раствора, качество кладки, способ перевязки швов и пр.

Расчет для неармированной кладки выполняется по базовой формуле


где коэффициент, учитывающий влияние пластических деформаций кладки определяется


ЗАДАНИЯ

Сконструировать каменный столб из кирпича. Расчетная схема с шарнирными концами. Кирпич глиняный пластического прессования. Раствор цементно-известковый

Вариант
Длина, м 2,8 5,6 5,2 5,4 4,8 6,2 5,0 6,0
Кирпич М150 М125 М100 М150 М150 М125 М100 М150 М125 М100
Раствор М75 М50 М25 М25 М50 М75 М75 М50 М25 М50
N , кн
Вариант
Длина, м 3,2 4,2 3,0 5,8 5,4 5,6 5,0 6,4 5,2 4,8
Кирпич М150 М125 М100 М150 М150 М125 М100 М150 М125 М100
Раствор М75 М50 М25 М25 М50 М75 М75 М50 М25 М50
N , кн
Вариант
Длина, м 3,4 4,4 3,2 6,0 5,6 5,8 4,6 6,4 5,4 5,0
Кирпич М150 М125 М100 М150 М150 М125 М100 М150 М125 М100
Раствор М75 М50 М25 М25 М50 М75 М75 М50 М25 М50
N , кн

УКАЗАНИЯ К ВЫПОЛНЕНИЮ ПРАКТИЧЕСКОЙ РАБОТЫ

1.Принимаем расчетное сопротивление в соответствии с маркой кирпича и раствора


2.Определяем упругую характеристику α


3. Задаемся коэффициентом продольного изгиба φ = 0,8 и коэффициентом mg (mg =1, если размеры сечения больше 30 см)

Читайте также: