Расчет армирования стены подвала

Обновлено: 05.05.2024

РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ПОДПОРНЫХ СТЕН И СТЕН ПОДВАЛОВ ДЛЯ ПРОМЫШЛЕННОГО И ГРАЖДАНСКОГО СТРОИТЕЛЬСТВА

Рекомендовано к изданию решением секции несущих конструкций НТС ЦНИИПромзданий.

Составлено к главам СНиП II-15-74* и II-91-77** и содержит основные положения по расчету и конструированию подпорных стен из монолитного и сборного железобетона с примерами расчета и необходимыми табличными значениями коэффициентов, облегчающих расчет, а также рекомендации по расчету стен подвалов промышленных и гражданских зданий.

* На территории Российской Федерации документ не действует. Действуют СНиП 2.02.01-83, здесь и далее по тексту.

** На территории Российской Федерации документ не действует. Действуют СНиП 2.09.03-85. - Примечания изготовителя базы данных.

Для инженерно-технических работников проектных и строительных организаций.

Руководство разработано ЦНИИПромзданий Госстроя СССР (кандидаты техн. наук Н.А.Ушаков, А.М.Туголуков, инженеры И.Д.Залещанский, Ю.В.Фролов, С.В.Третьякова) - разд.1-9, прил.1-5 при участии институтов: НИИОСП им. Н.М.Герсеванова Госстроя СССР (д-р техн. наук Е.А.Сорочан, кандидаты техн. наук А.В.Вронский, А.С.Снарский) - разд.5 и 6; Киевского Промстройпроекта Госстроя СССР (инженеры В.А.Козлов, С.И.Савускан) - разд.2, 3, 7, прил.4; Гипроречтранса Минречфлота РСФСР (д-р техн. наук В.Б.Гуревич, канд. техн. наук В.Э.Даревский, инж. М.А.Орлова) - разд.5 и 6 и Фундаментпроекта Минмонтажспецстроя СССР (инженеры В.К.Демидов, М.Л.Моргулис, И.С.Рабинович) - разд.6, 8, 9, прил. 2.


1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Руководство распространяется на проектирование гравитационных подпорных стен для промышленного и гражданского строительства, возводимых на естественных основаниях, а также на проектирование стен подвалов промышленных и гражданских зданий.

1.2. Руководство не распространяется на проектирование подпорных стен магистральных дорог, гидротехнических сооружений, подпорных стен специального назначения (противооползневые, противообвальные и др.), а также на проектирование подпорных стен, предназначенных для строительства в особых условиях (на вечномерзлых, набухающих, просадочных грунтах, на подрабатываемых территориях и др.).

1.3. Проектирование подпорных стен и стен подвалов должно осуществляться на основании:

чертежей генерального плана (горизонтальная и вертикальная планировка);

отчета об инженерно-геологических изысканиях;

технологического задания, содержащего данные о нагрузках и при необходимости особые требования к проектируемой конструкции, например, требования по ограничению деформаций и др.

1.4. Конструкция подпорных стен и стен подвалов должна устанавливаться по данным сравнения вариантов, исходя из технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, трудоемкости и стоимости строительства, а также с учетом условий эксплуатации конструкций.

1.5. Подпорные стены, сооружаемые в населенных пунктах, следует проектировать с учетом архитектурных особенностей этих пунктов.

1.6. При проектировании подпорных стен и стен подвалов должны приниматься конструктивные схемы, обеспечивающие необходимую прочность, устойчивость и пространственную неизменяемость сооружения в целом, а также отдельных элементов его на всех стадиях возведения и эксплуатации.

1.7. Элементы сборных конструкций должны отвечать условиям индустриального изготовления их на специализированных предприятиях.

Целесообразно укрупнять элементы сборных конструкций, насколько это позволяют грузоподъемность монтажных механизмов, а также условия изготовления и транспортирования.

1.8. Для монолитных железобетонных конструкций следует предусматривать унифицированные опалубочные и габаритные размеры, позволяющие применять типовые арматурные изделия и инвентарную опалубку.

1.9. В сборных конструкциях подпорных стен и стен подвалов конструкции узлов и соединений элементов должны обеспечивать надежную передачу усилий, прочность самих элементов в зоне стыка, а также связь дополнительно уложенного бетона в стыке с бетоном конструкции.

1.10. Проектирование конструкций подпорных стен и стен подвалов при наличии агрессивной среды должно вестись с учетом дополнительных требований, предъявляемых главой СНиП III-23-76*.

* На территории Российской Федерации документ не действует. Действуют СНиП 3.04.03-85. - Примечание изготовителя базы данных.

1.11. Проектирование мер защиты железобетонных конструкций от электрокоррозии должно производиться с учетом требований СН 65-76* "Инструкция по защите железобетонных конструкций от коррозии, вызываемой блуждающими токами".

* На территории Российской Федерации документ не действует. Действуют СНиП 2.03.11-85 . - Примечание изготовителя базы данных.

1.12. При проектировании подпорных стен и стен подвалов следует, как правило, применять унифицированные типовые конструкции.

Проектирование индивидуальных конструкций подпорных стен и стен подвалов допускается в тех случаях, когда параметры и нагрузки для их проектирования превосходят параметры и нагрузки для типовых конструкций, либо когда применение типовых конструкций невозможно исходя из местных условий осуществления строительства.

1.13. В Руководстве рассматриваются подпорные стены и стены подвалов при засыпке их однородным грунтом.


2. МАТЕРИАЛЫ ДЛЯ ПОДПОРНЫХ СТЕН

2.1. В зависимости от принятого конструктивного решения подпорные стены могут возводиться из железобетона, бетона, бутобетона и каменной кладки.

2.2. Выбор материала для подпорных стен обусловливается технико-экономическими соображениями, требованиями долговечности, условиями производства работ, наличием местных строительных материалов и средств механизации.

2.3. Железобетонные и бетонные подпорные стены рекомендуется проектировать из бетона проектной марки по прочности на сжатие:

для сборных железобетонных конструкций - М 200, М 300, М 400;

для монолитных железобетонных и бетонных конструкций - М 150, М 200.

Предварительно напряженные железобетонные конструкции следует преимущественно проектировать из бетона марки М 300, М 400, М 500, М 600. Для бетонной подготовки следует применять бетон марки М 50 и М 100.

2.4. Для кирпичных подпорных стен следует применять хорошо обожженный красный кирпич марки не ниже М 200 на растворе марки не ниже М 25, а при очень влажных грунтах - не ниже М 50. Применение силикатного кирпича не допускается.

2.5. Бутовая и бутобетонная кладка для подпорных стен должна быть выполнена из камня марки не ниже 150-200 на портландцементном растворе марки не ниже 50.

2.6. Для конструкций, подвергающихся попеременному замораживанию и оттаиванию, в проекте должна быть оговорена марка бетона по морозостойкости.

Проектная марка бетона по морозостойкости для железобетонных конструкций подпорных стен назначается в зависимости от температурного режима их эксплуатации в соответствии с табл.1. Температурный режим эксплуатации устанавливается исходя из значения расчетной зимней температуры наружного воздуха в районе строительства.

Температурный режим эксплуатации подпорных стен

Минимальная проектная марка бетона по морозостойкости

от -20 °С до
-40 °С вкл.

от -5 °С до
-20 °С вкл.

Примечание. Расчетная зимняя температура наружного воздуха принимается как средняя температура воздуха наиболее холодной пятидневки в зависимости от района строительства.

Требования к бутобетону и каменной кладке по морозостойкости предъявляются те же, что и к бетонным и железобетонным конструкциям.

2.7. Для армирования железобетонных конструкций, выполняемых без предварительного напряжения, следует применять стержневую горячекатаную арматурную сталь периодического профиля классов A-III и A-II по ГОСТ 5781-75. Для монтажной (распределительной) арматуры допускается применение горячекатаной арматуры класса A-I по ГОСТ 5781-75 или обыкновенной арматурной гладкой проволоки класса B-I по ГОСТ 6727-53*.

На территории Российской Федерации документ не действует. Действует ГОСТ 5781-82, здесь и далее по тексту.

На территории Российской Федерации документ не действует. Действует ГОСТ 6727-80. - Примечания изготовителя базы данных.

При расчетной зимней температуре ниже минус 30 °С арматурная сталь класса A-II марки ВСт5пс2 к применению не допускается.

2.8. В качестве напрягаемой арматуры предварительно напряженных железобетонных элементов следует преимущественно применять термически упрочненную арматуру классов Ат-VI и Ат-V по ГОСТ 10884-78*.

* На территории Российской Федерации документ не действует. Действует ГОСТ 10884-94, здесь и далее по тексту. - Примечание изготовителя базы данных.

Допускается также применять горячекатаную арматуру классов A-V, A-IV по ГОСТ 5781-75 и термически упрочненную арматуру класса Ат-IV по ГОСТ 10884-81.

При расчетной зимней температуре ниже минус 30 °С арматурная сталь класса A-IV марки 80С к применению не допускается.

2.9. Анкерные тяги и закладные элементы должны приниматься из прокатной полосовой стали класса С 38/23 (ГОСТ 380-71*) марки ВСт3кп2 при расчетной зимней температуре до минус 30 °С включительно и марки ВСт3пс6 при расчетной температуре от минус 30 °С до минус 40 °С. Для анкерных тяг рекомендуется также сталь С 52/40 марки 10Г2С1 при расчетной зимней температуре до минус 40 °С включительно. Толщину полосовой стали следует принимать не менее 6 мм. Возможно также применение для анкерных тяг арматурной стали класса А-III.

На территории Российской Федерации документ не действует. Действуют: в части требований к сортовому и фасонному литью ГОСТ 535-2005; в части марок и химического состава ГОСТ 380-2005; в части требований к толстолистовому прокату ГОСТ 14637-89. - Примечание изготовителя базы данных.

2.10. В сборных железобетонных и бетонных элементах монтажные (подъемные) петли должны выполняться из арматурной стали класса A-I (марок ВСт3сп2 и ВСт3пс2) или из стали класса A-II (марка 10ГТ).

При расчетной зимней температуре ниже -40 °С применение для петель стали ВСт3пс2 не допускается.


3. ТИПЫ ПОДПОРНЫХ СТЕН

3.1. Подпорные стены по конструктивному решению подразделяются на массивные и тонкостенные.

В массивных подпорных стенах их устойчивость на сдвиг при воздействии горизонтального давления грунта обеспечивается в основном собственным весом стены.

В тонкостенных подпорных стенах их устойчивость обеспечивается собственным весом стены и весом грунта, вовлекаемого конструкцией стены в работу.

Как правило, массивные подпорные стены более материалоемки и более трудоемки в возведении, чем тонкостенные, и могут применяться при соответствующем технико-экономическом обосновании (например, при возведении их из местных материалов, отсутствии сборного железобетона и т.д.).

3.2. Массивные стены могут возводиться из монолитного бетона, сборных бетонных блоков, бутобетона и каменной кладки.

По форме поперечного сечения массивные стены могут быть:

с двумя вертикальными гранями (рис.1, а);

с вертикальной лицевой и наклонной тыльной гранью (рис.1, б),

с наклонной лицевой и вертикальной тыльной гранью (рис.1, в),

с двумя наклонными в сторону засыпки гранями (рис.1, г),

со ступенчатой тыльной гранью (рис.1, д),

с ломаной тыльной гранью (рис.1, е).


Рис.1. Массивные подпорные стены

а - с двумя вертикальными гранями; б - с вертикальной лицевой и наклонной тыльной гранью; в - с наклонной лицевой и вертикальной тыльной гранью; г - с двумя наклонными в сторону засыпки гранями; д - со ступенчатой тыльной гранью; е - с ломаной тыльной гранью

3.3. Стены с наклонными гранями (переменного сечения, утончающиеся кверху) менее материалоемки, чем стены с двумя параллельными гранями.

При наличии наклонной в сторону от засыпки тыльной грани в работу подпорной стены включается масса грунта, расположенного над этой гранью. В стенах с двумя наклонными в сторону засыпки гранями интенсивность горизонтального давления грунта уменьшается, но возведение стен такого сечения является более сложным.

Видео-курсы от Ирины Михалевской

Расчет армирования стены ведется как расчет изгибаемого элемента по формулам «Пособия по проектированию железобетонных конструкций без предварительного напряжения арматуры (к СНиП 2.03.01-84)».


В исходные данные вносим следующую информацию: толщину стены h, ширину стены, которая взята в расчет b = 1 м (мы считаем один погонный метр конструкции).

Так как одна грань стены соприкасается с грунтом, то у нее защитный слой бетона до рабочей арматуры должен быть не меньше 35 мм, поэтому расстояние от грани стены до оси стержня мы приняли а = 45 мм. С другой грани стены делать такой защитный слой нет необходимости, поэтому величина а' принята меньшей, но это уже на усмотрение проектировщика.

Так как арматуру мы принимаем по ДСТУ 3760, то расчетное сопротивление арматуры и коэффициент для нее берем из «Рекомендаций по применению арматурного проката по ДСТУ 3760», если же вы берете арматуру по ГОСТ , то эти данные нужно взять из «Пособия по проектированию железобетонных конструкций без предварительного напряжения арматуры (к СНиП 2.03.01-84)», откуда выбираются все коэффициенты и расчетные сопротивления по бетону.

Расчетных моментов у нас два: Мн – момент в стене у основания подошвы, он определяет армирование наружной грани стены (согласно эпюре моментов растянутая арматура в зоне действия этого момента находится именно у наружной грани); Мх – момент в пролете стены, он выгибает стену в другую сторону и определяет армирование грани стены со стороны помещения подвала.


Начинаем расчет с наружной грани стены. Находим рабочую высоту сечения – расстояние от оси рабочей арматуры до противоположной грани стены, именно эта высота сечения стены (а не вся ее толщина) принимает участие в работе железобетона.

Затем находим коэффициент αm по формуле (22) пособия.


После этого необходимо воспользоваться таблицами 20 и 18 пособия и найти еще пару безразмерных коэффициентов.


В изгибаемых элементах может потребоваться армирование в сжатой зоне (при больших моментах и малом сечении элемента – когда растянутая арматура не справляется). Проверка этого условия показывает, что сжатая арматура не нужна, а раз так, то дальнейший расчет арматуры нужно производить по формуле (23) пособия. Если ваш расчет показал необходимость сжатой арматуры, вам следует определять армирование стены по формулам (24…26) пособия.


Итак, мы определили требуемую площадь арматуры 158,9 мм 2 на метр стены. При наиболее благоприятном шаге арматуры 200 мм эту площадь нужно разделить на количество стержней – 5 шт., соответствующих шагу арматуры, и мы получим площадь одного стержня 31,77 мм 2 . Из справочных таблиц находим требуемый диаметр арматуры – 8 мм.

Для дальнейшего расчета нам потребуется значение площади установленной рабочей арматуры (пять стержней диаметром 8 мм), и мы ее определяем: 251,2 мм 2 .


Следующим шагом в п. 10.3 расчета мы проделываем расчет армирования внутренней грани стены при моменте 0,04 т∙м. В итоге получаем диаметр арматуры 6 мм, это, конечно, слишком мало. Но для того, чтобы принять окончательное решение по армированию конструкции, нужно будет сделать еще расчет армирования подошвы.

А сейчас перейдем к следующему этапу расчета – к расчету по раскрытию трещин.

Армирование – это строительный процесс, при котором металлическая арматура используется в качестве одной из составляющих материала для повышения его прочности. Армирование увеличивает сроки службы конструкции, а также улучшает ее рабочие и эксплуатационные характеристики.

С помощью добавления арматуры простой бетон превращается в более прочный и надежный железобетон. При устройстве несущих конструкций (таких, как стены здания) применяется именно второй вариант. Для того чтобы построить стену с нужными техническими характеристиками из обычного бетона, его потребуется очень много. А возводить стены большой толщины не рационально и дорого. Использование арматуры позволяет усилить бетонный слой, не делая его слишком толстым.

Арматура внутри опалубки

Армирование также используется в тех случаях, когда предполагается высокая механическая нагрузка на бетонную конструкцию.

Также нельзя не отметить, что армирование очень хорошо помогает увеличить прочность и устойчивость кирпичной кладки или стены из газобетонных блоков (и их аналогов). Арматура в таких случаях не проходит вертикально сквозь всю стену, а укладывается поясами через каждые несколько рядов. Когда делают бетонную стяжку пола, для армирования обычно пользуются проволокой. Очень важно укрепить стяжку в тех местах, где на нее будет ложиться максимальная нагрузка (например, у входа).

Арматурная конструкция для стены подвала

Стены подвала нуждаются в качественном армировании, так как на них сверху будет давить вес конструкций дома, а по бокам – окружающий постройку грунт.

Для стен небольшого частного подвала вязка арматуры может быть произведена своими руками, без привлечения специалистов.

Вязка стержней проволокой.

Правильная вязка стержней.

В случае с подвальными стенами необходимо сделать такую арматурную сетку, которая будет обладать одним важным качеством – упругостью. Лучше использовать именно вязку, а не сварку. Если фундамент здания будет двигаться из-за осадки или пучения грунта, то с вязаной арматурной сетью ничего не произойдет, а сварная может развалиться, если осадка слишком значительна.

Впрочем, устройство монолитных стен подвала может предусматривать и сварной, и вязаный вариант арматурной сетки. Какой именно метод выбрать, следует уточнить у специалистов, ответственных за проектирование сооружения.

Металлический каркас в опалубке

Арматурный каркас не должен соприкасаться со стенками опалубки.

Вязка арматуры для стен подвала происходит в местах пересечения стержней. Для этого необходимо будет дополнительно приобрести проволоку, которая используется для скрепления стержней. В большинстве случаев, диаметр этой проволоки составляет несколько миллиметров.

Чтобы связать арматуру, потребуются кусачки или специальное устройство, которое облегчит и ускорит работу. Такое приспособление можно найти только у профессионалов, поэтому можно взять его в аренду в ближайшей строительной фирме. Вне зависимости от того, какой метод армирования буде выбран, прочность стены подвала в любом случае повысится. При заливке бетона очень важно уделить повышенное внимание узлам конструкции.

Как только вы свяжете или же сварите арматурную сеть, необходимо очистить установленную заранее опалубку от грязи и пыли, после чего разметить на ней будущее расположение сетки. Только после проведения всех расчетов можно укладывать арматуру внутрь конструкции.

Укладка арматуры и устройство опалубки для монолитной стены должны производиться без воздействия давления грунта. Иными словами, нужно с обеих сторон от опалубки освободить пространство для нормального проведения работ.

Засыпка грунта производится только после того, как арматурная сеть будет установлена в опалубку и залита цементным раствором. Использование вынутого грунта не всегда оправдано. Для обратной засыпки также пользуются специально подготовленным песком или глиной. Все зависит от типа грунта и особенностей здания.

Особенности укладки арматуры

Армирование монолитных бетонных стен – ответственный процесс, который требует определенных умений и навыков. Стены подвала будут испытывать большую нагрузку, поэтому крайне важно правильно уложить арматуру, снизив до минимума риск разрушения сетки при эксплуатации.

Какие основные правила укладки арматуры можно выделить?

  1. Необходимо проследить за тем, чтобы арматура – проволока и другие ее элементы – даже близко не касались опалубки и были расположены на некотором расстоянии. Если это соприкосновение допустить, то в момент, когда вы будете убирать опалубку, вы вполне сможете повредить арматурную сеть, хотя вероятность этого относительно невысока. Если опалубка не снимаемая, то через это соприкосновение к стальному стержню будет проникать нежелательная влага.
  2. Ячейки арматурной сети должны быть определенного размера. Для подвальных стен оптимальной будет ширина в 25-35 см.
  3. Для пущей надежности и прочности конструкции, получаемой после армирования монолитных стен, рекомендуется уменьшать размер ячеек, предусматривая нагрузку, исходящую от перекрытия (если перекрытие также бетонное). Одновременно с этим, делать размер ячеек меньше 5 см не стоит, потому что цементный раствор в этом случае утратит проникающие свойства, и в процессе бетонирования поверхности начнут образовываться нежелательные пустоты.
  4. Дополнительно следует предусмотреть защиту арматуры от коррозии. Для этого используются специальные добавки в заливаемый бетон. Помимо этого, от поверхности стены арматура должна быть отделена слоем бетона толщиной не менее 15-20 мм. Неважно, выполняете ли вы армирование монолитных стен подвала самостоятельно или с помощью наемных работников – всё нужно тщательно проконтролировать и проверить.
  5. Следует также проследить за тем, чтобы арматурные стержни стояли в опалубке максимально прямо, без каких-либо отклонений (в противном случае давление грунта может привести к негативным последствиям). Конечно, незначительные отклонения (до нескольких миллиметров) допускаются, однако, лучше всего обойтись без них. Для проверки ровности монтажа арматурной сети рекомендуется использовать лазерный или традиционный строительный уровень.

Плитный фундамент и монолитные стены

Пример армирования плитного фундамента и монолитных бетонных стен.

По завершении укладки арматуры, необходимо лишний раз проверить правильность установки и монтажа всей конструкции. Главное, чтобы всё соответствовало проекту (если он имеется). Только после этого можно начать заливку раствора.

Тонкости армирования и типичные ошибки

Разумеется, когда домовладелец самостоятельно армирует стены подвала, он может не предусмотреть какие-то моменты и допустить ошибки. Чтобы при эксплуатации подвального помещения не возникало проблем, стоит заранее учесть некоторые факторы:

  • Не стоит пользоваться для создания арматурной конструкции теми стальными стержнями, которые ранее эксплуатировались в других местах. Такая арматура может не выдержать новой нагрузки (давление грунта и перекрытий), поэтому от нее стоит отказаться.
  • Если на новых стержнях перед их установкой вы обнаружили следы ржавчины, то знайте, что их удалять и закрашивать не нужно. Проведение этих мероприятий только ухудшит сцепление стержней с цементным раствором при армировании монолитных стен.
  • Когда вы будете соединять стержни в сеть, то их нужно будет разрезать или сгибать. Для резки подходит традиционная болгарка. А вот для гибки стали, стержень порой предварительно разогревают в целевом месте. Этот подход не является правильным, потому что при нагревании материал будет изменять свою структуру, в результате чего может произойти его разрушение. Отчасти поэтому многие строители не рекомендуют использовать сварку. Конечно, нет ничего страшного, что стержень сломается при эксплуатации в стене небольшого отдельно стоящего подвала, но если такое произойдет в испытывающем высокую нагрузку фундаменте?
  • Ни в коем случае нельзя укладывать арматурную сетку в ту опалубку, куда уже был залит бетон. Если не получилось по каким-либо причинам соблюсти правильную последовательность действий, то необходимо все работы начать сначала. То есть надо убрать залитый раствор, демонтировать опалубку, очистить ее и поставить снова, уложив в нее готовый каркас.
  • Если вы хотите нарастить сделанную арматурную сеть по высоте или длине, то делать это крайне не рекомендуется, потому что при сильной нагрузке в местах наращивания может произойти разрыв. Когда вы уверены, что стены погреба большой нагрузки испытывать не будут, то можно попытаться максимально качественно нарастить каркас, если на то есть необходимость.

При армировании стен подвала нужно учитывать тот момент, что давление грунта с внешней стороны, скорее всего, будет значительным. Поэтому необходимо выбирать качественную арматуру стандартных размеров и связывать ее специальной проволокой. Сварку для скрепления стержней можно использовать только в том случае, если давление грунта не настолько высокое, чтобы оказывать на стену ощутимое воздействие.

В тех случаях, когда дом будет давать осадку, давление грунта также придется принимать во внимание.

Пистолет для вязки арматуры

Специальный пистолет для вязки стержней.

Очень важно на этапе создания монолитной бетонной стены подвального помещения предусмотреть с ее внешней стороны наличие теплоизоляционного и гидроизоляционного слоя.

Кроме того, выше уже было сказано, что арматурные стержни рекомендуется защитить от коррозии с помощью специальных добавок в бетон.

Самостоятельное выполнение работ

Из всего вышесказанного можно сделать вывод о том, что выполнить армирование монолитной стены можно своими руками и без привлечения специалистов. Однако следует обязательно обратиться за помощью к профессионалам, если вы не можете рассчитать давление грунта, вычислить необходимую толщину стержней, выбрать тип проволоки для обвязки, а также хотите уточнить какие-либо важные нюансы.

Главный редактор сайта, инженер-строитель. Окончил СибСТРИН в 1994 году, с тех пор отработал более 14 лет в строительных компаниях, после чего занялся собственным бизнесом. Владелец компании, занимающейся загородным строительством.

Правильный расчет стены подвала подразумевает учет влияния множества факторов. В частности, это уровень грунтовых вод на участке, тип грунта, высота будущего здания, материалы, используемые для строительства и т. д. Все работы по проектированию рекомендуется поручать специалистам. Однако, для общего понимания технологии расчета, вы вполне можете воспользоваться приведенной ниже информацией.

При наличии подвала или цокольного этажа, малозаглубленный ленточный фундамент дома автоматически становится заглубленным. Иными словами, он будет представлять собой полноценную стену под землей, а не просто основание для строения.

Строительство подвала

Фундамент для сооружения с подвалом

Если подвал делается уже после возведения основного сооружения, то необходимо соблюдать следующее правило: образовавшиеся после выемки грунта пустоты не должны попасть в пределы 45-градусной проекции подошвы ленточного фундамента с одной и другой стороны.

Фундамент с подошвой и без нее

Фундамент должен иметь достаточно широкую подошву.

Фундамент следует делать максимально прочным и надежным, чтобы его стены могли успешно противостоять горизонтальным сдвигам вследствие давления окружающего грунта. В качестве фундаментного основания рекомендуется использовать подушку из монолитного бетона, связанную с лентой арматурным каркасом. Так как вес фундамента достаточно большой, подошву следует делать широкой.

Боковое давление грунта

Давление грунта на стену подвала.

Планируя строительство цокольного этажа, который в дальнейшем станет жилой комнатой, следует учитывать, что высокие стены (от 200 см и более), расположенные под землей, будут в течение всего времени эксплуатации испытывать значительное давление со стороны грунта. Поэтому в процессе возведения подвального помещения армированию бетонной стены следует уделить особое внимание.

Шаг между арматурными стержнями в каркасе стены не должен быть чересчур большим. Рекомендуется делать его меньше 40 см по горизонтали и вертикали. Каркас стены должен быть обязательно связан с каркасом фундаментной подушки. Кроме того, необходимо соблюдать правила армирования углов и примыканий стен.

Монолитная армированная бетонная стена является оптимальным вариантом в плане прочности, долговечности и устойчивости к давлению грунта. Такая конструкция надежнее, чем, к примеру, блочные или кирпичные.

Дополнительное усиление конструкции достигается за счет постройки пересекающихся внутренних стен подвального помещения под внутренними стенами сооружения.

Минимальная толщина стен

В зависимости от используемых в строительстве материалов, а также глубины подземного помещения, существуют минимальные значения толщины стен подвалов, а также ширины подошвы фундамента.

Толщина стен из разных материалов

Расчет толщины подвальных стен при строительстве из различных материалов (минимальные значения).

Если стены подвала возводятся из небольших по размеру строительных блоков (например, керамзитобетонных), то кладка должна быть обязательно усилена с помощью продольного армирования и армопояса, проложенного по верхней границе кладки. Что касается сборных бетонных блоков, то нужно учитывать тот факт, что для фундамента дома с подвалом подходят только те, которые произведены с использованием бетона М150 и выше.

Расчет стен фундамента

Ширина стен и размеры подошвы фундамента из монолитного бетона и блоков.

Представленная выше таблица предполагает, что:

  • Стены имеют боковое опирание, если балки потолка подвального помещения опираются о верхнюю часть его стены.
  • Если в стене имеется промежуток (проем) шириной более 120 см, или несколько промежутков, суммарная ширина которых больше 1/4 длины стены, а армирование по контуру этих промежутков отсутствует – часть стены под проемом рассчитывается как не имеющая бокового опирания. В том случае, если ширина участков стены меньше ширины промежутков, то вся стена считается как один большой проем.

Эти критерии нужно учитывать, производя расчет для стены подвала. Конструкция должна обладать хорошей устойчивостью. Следует также помнить об одном из правил строительства – устойчивость стены напрямую зависит от ее длины. Чем она короче, тем конструкция крепче и надежнее.

Деформационные швы

Для больших подвальных помещений (длина стен составляет больше 25 метров) необходимо устройство специальных деформационных швов, которые будут располагаться друг от друга на расстоянии в 15 метров или меньше. Кроме того, швы должны иметься в местах, где наблюдаются перепады высоты сооружения. Их конструкция должна предусматривать защиту от проникновения влаги внутрь подвала.

Расстояние от облицовки до земли

Если внешняя отделка дома производится при помощи кирпича, то декоративная кладка может быть продолжена и на часть стены подвального помещения, которая выступает над землей (верхняя часть подвальной стены должна подниматься не менее чем на 15 см над поверхностью грунта).

Толщина надземной части подвальной стены в этом случае может быть уменьшена до 9 см. Облицовочная кладка крепится к бетонной стене с помощью специальных стяжек. Расстояние между стяжками не должно быть слишком большим: до 90 см по горизонтали и до 20 см по вертикали. Свободное пространство между стеной и облицовочной кладкой заполняется раствором.

Если же облицовка первого этажа будет выполнена из дерева или посредством оштукатуривания по теплоизоляционному материалу либо обрешетке, то от нижней границы обшивки до грунта должен оставаться промежуток в 25 см и более.

Арматурный каркас

Стены цокольного этажа или подвального помещения, как уже было сказано ранее, нуждаются в дополнительном укреплении при помощи арматурного каркаса. Важным качеством такого каркаса является его упругость. Именно поэтому рекомендуется использовать вязку арматурных прутьев, а не жесткое сварочное соединение.

В процессе эксплуатации здания происходят некоторые подвижки фундамента. Это случается во время обильных осадков или при морозном пучении грунта. Арматурный каркас внутри подземных стен будет подвергаться серьезной нагрузке. Со связанными между собой стержнями в таких условиях ничего не произойдет, в то время как сварочное соединение при значительном давлении попросту ломается. А ремонт в подобных ситуациях чрезвычайно сложен и дорог.

Связывание арматурного каркаса осуществляется в тех местах, где металлические стержни пересекаются. Для выполнения этой работы требуется использовать специальную проволоку, предназначенную для вязки арматуры. По сути, ей может стать любая проволока, диаметр которой превышает 2—3 мм. Работа выполняется специальным крючком или пистолетом.

Ржавчина на прутьях

Не следует использовать бывшие в употреблении металлические стержни, потому что старая арматура в ряде случаев имеет дефекты, которые могут проявиться во время эксплуатации. Экономия при покупке материалов в этом случае не оправдана.

Если же новые металлические стержни имеют следы ржавчины, то в этом ничего страшного нет. Не стоит пытаться удалить ржавчину или закрасить ее. Такие манипуляции негативно скажутся на сцеплении арматуры с бетоном. При устройстве каркаса из арматуры металлические стержни можно резать при помощи болгарки.

Для сгибания прутьев можно воспользоваться специальными устройствами для разогрева металла на месте. Однако, если есть возможность, от такого подхода следует отказаться, потому что в процессе нагревания меняется структура металла, а это отрицательно сказывается на его эксплуатационных характеристиках.

Не допускается монтаж арматурной конструкции в опалубку, куда ранее уже был залит бетон. Если этапы работы были перепутаны, то весь процесс проводится заново: убирается раствор, опалубка полностью демонтируется, зачищается и устанавливается снова, в нее укладывается металлический каркас и после этого заливается новый раствор.

Наращивание арматурного каркаса

Проводить работы по наращиванию арматурной конструкции в горизонтальном или вертикальном направлении не рекомендуется. Это связано с тем, что при значительных нагрузках в местах соединения могут образоваться разрывы.

Наращивание арматурного каркаса разрешается лишь в тех случаях, когда подвальные стены в процессе эксплуатации не будут испытывать значительных нагрузок (легкие стройматериалы, низкий уровень грунтовых вод и т. д.).

Самостоятельно провести армирование стен не всегда просто. Особенно если вы ранее не занимались строительством и не обладаете требуемыми навыками и умениями. Для этой работы рекомендуется нанять профессиональных строителей.

Толщина стен подвала, диаметр используемой арматуры и количество строительных материалов должны быть заранее определены с учетом особенностей эксплуатации сооружения, уровня грунтовых вод и других факторов.

Главный редактор сайта, инженер-строитель. Окончил СибСТРИН в 1994 году, с тех пор отработал более 14 лет в строительных компаниях, после чего занялся собственным бизнесом. Владелец компании, занимающейся загородным строительством.

Особенности армирования стен подвала

Армирование стен подвала – ответственная работа, для которой нужны определенные навыки и умения. Стены погреба должны выдерживать большую нагрузку, поэтому важно грамотно сделать расчет, уложить арматуру, минимизировав вероятность разрушения сетки во время эксплуатации.

При строительстве нужно придерживаться следующих правил:

  1. Внимательно следить за тем, чтобы арматура и прочие ее элементы не соприкасались с опалубкой и располагались хотя бы на минимальном расстоянии. В противном случае, когда опалубка будет убираться, возрастает риск повреждения арматурной сетки. Шансы не велики, но все же имеются. В случае если опалубка сниматься не будет, сквозь места, где она соприкасается со стальным стержнем, станет попадать нежелательная влага.
  2. Грамотно подбирать арматурную сеть. Так, ее ячейки должны быть определенной величины. Для стен подвала подходящим размером будет 25-35 см.
  3. Чтобы конструкция была надежной и прочной после армирования монолитных конструкций рекомендуется уменьшить величину ячеек. Это делается с учетом нагрузки, которую оказывает перекрытие (в случае, если оно также сделано из бетона). Что касается величины ячеек, она не должна быть менее 5 см. Если этот расчет не соблюсти, раствор цемента потеряет проникающие характеристики и со временем стены покроются ненужными пустотами.
  4. Также стоит подумать над тем, чтобы защитить материал от разрушения. Для этого применяют специальные составы, которые отправляют в заливаемый бетон. Кроме этого, арматуру от поверхности стен отделяют пластом бетона. При этом его толщина должна быть около 15 мм.
  5. Обязательно следить и за тем, чтобы стержни арматуры стояли максимально прямо в опалубке. Если буду нарушения в расчете, давление почвы может пагубно повлиять на постройку. Естественно, незначительные погрешности (несколько миллиметров) имеют место быть, но лучше постараться их исключить. Чтобы проверить, насколько ровно выполнен монтаж сети, можно использовать строительный уровень.
  6. В конце укладки арматуры, нужно дополнительно проверить то, насколько правильно установлен и проведен монтаж монолитных стен подвала в целом. Важно, чтобы полученный результат соответствовал расчетам. И только тогда можно приступать к заливке раствора.

Внимание! Не имеет значения, работа выполняется самостоятельно или с привлечением специалистов, каждый шаг нужно контролировать и проверять.

Материалы

Армирование монолитных стен подвала предполагает усиление бетонного блока с внутренней стороны с использованием разных материалов. Для этой цели применяются прутки или волокна, которые в процессе растяжения блока делают так, что он не растрескивается.

Все материалы для армирования условно делятся на три группы:

  • металлические прутья;
  • композитная арматура;
  • фибра.

Остановимся более подробно на каждой группе.

Стальные прутки

В строительстве пока чаще всего используют привычные металлические прутья. Они обеспечивают надежность возводимого помещения. Их изготавливают из углеродистой стали. Прутья бывают гладкими и с насечками (поперечные и продольные).

Длина прутка для армирования монолитных бетонных стен подвала составляет 11,75 м.

Композитный материал

Если говорить о композитной арматуре, речь идет о неметаллических волокнах. Как правило, для ее производства берут стекловолокно, углеволокно и пр. Преимуществом этого материала является то, что он устойчив к агрессивным факторам и не поддается коррозии, в отличие от металла. Также арматура имеет высокую прочность на разрыв, при этом гораздо легче стальной. Ну и основное преимущество в том, что такие прутья обойдутся гораздо дешевле, чем металлические.

Подобная арматура отличается широким спектром исходных материалов, которые ежегодно увеличиваются. Сейчас чаще используют базальтопластиковые и стеклопластиковые армирующие прутья, имеющие спиральную накрутку.

Также существует полиэтиленрефталатовая и углеводородная арматура, однако сейчас ее популярность еще не достигла своего пика. Большим плюсом материала является его низкий вес.

Фиброволокно

Фибра же представляет собой волокна, которые распределяются по раствору. Его добавляют на этапе замешивания. Непосредственно само волокно бывает разной длины и диаметра. Фибра изготавливается из волокон, основной которых выступает:

  1. сталь;
  2. стекло;
  3. базальт;
  4. полипропиленовые соединения.

Важно! Как правило, строители прибегают к усилению стекловолокном, так как оно отличается высокими прочностными свойствами, а также относительно низкой стоимостью.

Для чего нужно усиливать бетон

Некоторые задаются вопросом, для чего нужно армировать бетонные монолитные стены, если он сам по себе достаточно прочный материал. На самом деле простой бетонный блок, без усиления, прочный только на сжатие. Сдвинуться монолитная конструкция способна по таким причинам:

  • изменения объема грунта;
  • постепенной осадки фундамента;
  • геофизической активности;
  • внесение изменений в планировку постройки;
  • осуществление работ по надстройке.

Металлические элементы, добавляемые как в строительный материал, так и в процессе отделке монолитных стен позволят добиться необходимой прочности в подвале дома.

Достоинства усиленного бетона

Если строительные работы проведены правильно, то есть с соблюдением технологий и расчетов, оно способно решить одновременно несколько задач:

  1. Повысить прочность подвального помещения.
  2. Бетонные элементы строения становятся более устойчивыми к климатическим условиям, в частности речь идет о температурных перепадах.
  3. В разы увеличивается срок эксплуатации постройки.
  4. Возросшая прочность позволяет увеличить механические нагрузки на несущую конструкцию.
  5. Предупреждение растрескивания бетонных элементов.

Расчет монолитной наружной стены

Грамотный расчет монолитной стены подвала играет важную роль в работе. Прежде стоит отметить, что толщина стен и, соответственно, армирование, напрямую связано с уровнем грунтовых вод. Так, если вода не поднимается до уровня постройки, строительство будет проходить гораздо проще. Дело в том, что нижняя плита не является силовой и может выступать за стены где-то на 5-10 см. При этом, что касается толщины перекрытий постройки из монолитного бетона, этот расчет варьируется в пределах 20-40 см. И это при условии, что имеются поперечные стены.

В случае, когда подвал расположен ниже грунтовых вод, расчет будет таким: толщина пола должна быть 20 см и выходить за стены на 30-40 см. При этом она должна быть обязательно армирована с соблюдением всех правил.

Железобетонное перекрытие кладут на монолитные стены постройки спустя 3-4 недели. Сделать это нужно в тот же сезон. В противном случае стены могут наклониться внутрь строения из-за давления грунта.

Также, нужно учесть теплотехнический расчет. Его проводят для того, чтобы определить теплозащитные характеристики строительных конструкций.

Читайте также: