Пусковой ток теплого пола

Обновлено: 19.04.2024

Пусковой, иначе стартовый, ток — это ток, возникающий в цепи в момент включения питания. Величина его может в несколько раз превышать значение номинального тока кабеля. Это важный параметр, который необходимо учитывать при расчете максимальной длины отрезков саморегулирующегося кабеля .

От чего зависит пусковой ток

На величину пускового тока влияют как параметры самого кабеля, так и окружающие условия.

  • Температура окружающей среды при включении — чем она ниже, тем больше пусковой ток и стартовая мощность.
  • Свойства саморегулируемого кабеля — проводящая матрица с положительным температурным коэффициентом (PTC) изменяет свое сопротивление в зависимости от окружающей температуры. В «холодном» состоянии сопротивление кабеля мало. Поэтому в момент включения ток велик. После подачи питания кабель разогревается, его сопротивление растет, ток в цепи уменьшается.
  • Длина греющего кабеля — чем больше длина секции, тем больше пусковой ток. Саморегулируемый греющий кабель условно можно представить в виде множества резисторов, подключенных параллельно к одному источнику питания. Чем больше длина линии, тем меньше общее сопротивление цепи, тем больше пусковой ток.
  • Мощность греющего кабеля — чем больше удельная (погонная) мощность (Вт/м), тем больше стартовый ток.

Саморегулирующийся нагревательный кабель может иметь пусковой ток в 1,5–5 и даже более раз рабочего значения. Это необходимо учитывать на этапе расчета системы особенно при применении мощных кабелей большой длины.

Проблемы из-за неверного расчета пускового тока

Неправильный расчет и выбор оборудования приводят к таким последствиям:

  • Срабатывания автоматов и других устройств защиты при включении обогревательной системы из холодного состояния . Эта проблема может быть не выявлена при тестировании системы, если оно проводилось до наступления холодов, и проявится только в холодное время года. При расчете системы рекомендуется выбирать защитный автомат с запасом по току.
  • Перегрев силового кабеля — большая продолжительность процесса включения с высоким значением пускового тока нагревает его жилы, это может привести к КЗ и аварийной ситуации.

Способы уменьшения пускового тока

Большой пусковой ток нежелателен для питающей сети, поскольку приходится устанавливать автоматы на больший номинальный ток и подбирать силовой кабель большего сечения. Уменьшить величину пускового тока можно следующими способами:

Экономия энергопотребления греющего кабеля

При использовании системы кабельного обогрева часто встает вопрос об экономии энергопотребления. Поговорим о том, что такое номинальная мощность кабеля, что такое расчетная мощность кабеля и что такое энергопотребление.

Номинальная мощность греющего кабеля

Для греющего кабеля понятие номинальная мощность определяется как удельная мощность (мощность одного метра кабеля) умноженная на длину секции (отрезка кабеля):

Рном = Руд * L , например, кабель мощностью 16 Вт/м при длине 5 м будет иметь номинальную мощность 80 Вт.

Расчетная (стартовая) мощность греющего кабеля

Расчетная мощность высчитывается по данной формуле – номинальная мощность, умноженная на стартовый коэффициент:

Расчетная мощность кабеля (стартовая мощность кабеля)- мощность, которую кабель потребляет при подаче питания. Особенность саморегулирующего кабеля в том, что у него существует так называемые стартовые токи. Время от старта греющего кабеля до выхода на номинальный режим работы кабеля составляет примерно 5-10 минут. Мы в своих расчетах применяем коэффициент стартового тока равный 3. Также, по величине стартового тока подбирается пускозащитная аппаратура, подбираются кабельные линии и автомат. Расчетную мощность также можно назвать пиковой, так как она длится не значительное время, буквально несколько секунд.

Электропотребление

Величина электропотребления высчитывается по данной формуле:

Данное электропотребление для греющего кабеля достаточно значительное.

Методы снижения электропотребления греющего кабеля

Использование терморегулятора

Несмотря на то, что греющие кабели саморегулирующиеся использование терморегуляторов в составе системы управления позволяет значительно экономить электроэнергию. Особенно это актуально на системах обогрева трубопровода, кровли, резервуара. В качестве терморегулятора также можно использовать специализированные контроллеры, которые предназначены для регулирования температуры.

Для обогрева бытовых труб : ЦРТ01-М, РТ-820, РТМ.

Для обогрева кровли : АРТ19-16К, РТМ2000, ТР Метео-01 и другие.

Также можно использовать более эффективные специально-разработанные устройства, которые помимо температуры измеряют другие параметры (например, датчики осадков). И по совокупности этих параметров система включает либо выключает электрообогрев.

Использование кабеля меньшей мощности

К примеру, для обогрева трубопроводов если не провести расчёт тепловых потерь, удельная мощность на метр будет избыточна. Для утепленных бытовых труб, закопанных в землю чаще всего используется саморегулирующийся греющий кабель мощностью 16 Вт/м без оплетки (Samreg, SRL и другие).

Использование двух тарифного счетчика

Есть счетчики день/ночь, у них цена днем выше, ночью ниже. Для обогрева полов, каких-нибудь конструкций можно использовать большую часть ночью. И таким образом, мы в денежном эквиваленте будем тратить меньше.

Пусковой (стартовый) ток – это максимальный ток, возникающий в момент подачи питания на систему. Этот параметр необходимо учитывать при проектировании, а точнее - при расчете максимальной длины отрезков кабеля.

От чего зависит стартовый ток

  • Температуры включения . Чем ниже температура окружающей среды, при которой происходит включение системы обогрева, тем выше пусковой ток и тем больше стартовая мощность.
  • Длины нагревательного кабеля . Чем больше длина секции, тем больше СТ системы. Для резистивного кабеля он определяется внутренним удельным сопротивлением Ом/м нагревательной жилы и рассчитывается, и контролируется при изготовлении секции на заводе. Саморегулируемый нагревательный кабель можно условно представить как множество параллельных резистеров (сопротивлений), подключенных к одному источнику питания. Сопротивление будет уменьшаться при увеличении длины линии, и, соответственно, увеличится пусковой ток.

От чего зависит величина стартового тока

Мощности греющего кабеля. Чем больше удельная мощность кабеля (Вт/м), тем больше СТ.

Особенности конструкции нагревательного кабеля. Резистивный греющий кабель из-за особенности конструкции имеет небольшой СТ, который на несколько процентов превышает рабочее значение тока.

Саморегулируемый кабель имеет достаточно большой СТ, который может увеличиваться в 1.5 -5 и более раз от своего рабочего значения. Причина - использование в конструкции проводящей матрицы с PTC-коэффициентом, меняющей свое электрическое сопротивление в зависимости от температуры окружающей среды.

В «холодном» состоянии кабель имеет небольшое сопротивление, которое к тому же зависит от температуры окружающей среды. При подаче питания на кабель, он начинает разогреваться, его сопротивление начинает расти, ток в цепи питания уменьшается. Коэффициент стартового тока зависит от компонентного состава и применяемых технологий при производстве матрицы кабеля.

У каждой марки нагревательного кабеля своя величина стартового тока. Производители редко указывают эту информацию в технических характеристиках. Этот параметр является условной величиной и при различных условиях один и тот же кабель может иметь разное значение СТ. Аналогично производители саморегулирующегося кабеля не нормируют его удельное сопротивление Ом/м.

График зависимости СТ кабеля Samreg-40-2CR* от температуры окружающей среды

График зависимости стартового тока кабеля Samreg-40-2CR

*график построен на основе испытаний

Пиковая нагрузка приходится на первые 3-30 секунд после включения, в этот момент СТ может превышать номинальное значение в 2-5 раз. Примерно через 5-10 минут происходит полная стабилизация и выход греющего кабеля на номинальную мощность.

Расчет пускового тока греющего кабеля

Грубо рассчитать максимальный пусковой ток нагревательной секции можно исходя из общей длины греющего кабеля в системе и его удельной мощности.

Пример расчета максимального стартового тока греющего кабеля

Имеется секция саморегулирующегося кабеля удельной мощностью 30 Вт/м и длиной 50 м. Номинальная мощность секции при температуре +10°С составляет Pном=30Вт/м*50м=1500Вт. Это мощность уже разогретой секции. Если на кабель в «холодном» состоянии подать питание, то его мощность будет в несколько раз выше номинального значения. Для расчетов мы принимаем коэффициент стартового тока равный 2.5-3 для кабелей марки Samreg и Alphatrace. Коэффициент определен в ходе экспериментов с кабелем данных марок, а также изучения их физических и электротехнических свойств. У греющих кабелей иных производителей данный коэффициент может отличаться как в большую, так и меньшую сторону.

Тогда, стартовая (пусковая) мощность в нашем примере равна Pпуск=3хPном=4500Вт, пусковой ток Iпуск=4500/220=20,45 А.

По найденному значению СТ осуществляется выбор автоматических и дифференциальных выключателей для защиты нагревательной секции, а также тип и сечение силового питающего кабеля. Для секции, приведенной в примере, необходим дифференциальный автомат на номинальный ток Iном=25А с дифференциальным током Iут=30мА

Способы уменьшения стартового тока

Большая величина СТ является нежелательной для питающей сети, так как приходится использовать автоматы с большим номинальным током. Кроме того, подбирается силовой кабель увеличенного сечения.

Существует несколько способов снижения СТ системы:

Последовательное подключение

Последовательное подключение к питающей сети нагревательных секций , которое обеспечивается с помощью установки реле выдержки времени. Это устройство применимо в системе, состоящей из нескольких линий (нагревательных секций). Оно позволяет включать каждую линию с определенным временным интервалом (обычно около 5 минут). При данном способе подключения ток в нагревательной секции уменьшится до рабочего (номинального значения) через 5 минут после подачи питания. После этого можно осуществлять включение следующей линии. Таким образом, суммарный СТ всей системы обогрева равен:

где Iном1, Iном2… - номинальные токи нагревательных секций соответственно 1ой, 2ой и т.д.

Iпуск.n – СТ секции, которая включается в сеть последней.

Чем больше секций включается по такой схеме (т.е. чем больше ступеней включения), тем больше пусковой ток будет стремиться к номинальному току для данной системы. Так, если по такой схеме включить хотя бы 3 группы (одна группа включается напрямую, 2 другие через реле времени через 5 и 10 минут соответственно) при условии равномерного распределения мощностей по группам, то пусковой ток можно снизить почти на 50%.

Пример принципиальной схемы шкафа управления с реле времени

Принципиальная схема шкафа управления
Схема шкафа управления с реле времени
Реле времени

Видео применения реле времени для последовательного включения линий обогрева

Устройство плавного пуска

Устройство в течение всего времени холодного запуска системы (порядка 10-12 минут) поддерживает значение тока на уровне не выше номинального. В этом случае можно использовать силовые и дифавтоматы, рассчитанные на номинальный ток секции. Кроме того, не придется применять питающий кабель с увеличенным сечением. Принцип работы устройства подробно описан в паспорте.

Схема устройства ICEFREE-PP
Устройство плавного пуска ICEFREE-PP

Согласно максимальной стартовой мощности подбирается также силовой кабель подходящего сечения.

Подбор сечения силового кабеля для системы обогрева

Таблица выбора сечения кабеля по току и мощности с медными жилами

Таблица выбора сечения кабеля с медными жилами

Таблица выбора сечения кабеля по току и мощности с алюминиевыми жилами

Таблица выбора сечения кабеля с алюминиевыми жилами

Неправильный расчет СТ приводит к выходу из строя системы защиты и управления, что может стать причиной аварийных ситуаций на обогреваемом объекте.

Проблемы из-за неправильного расчета пускового тока

Наиболее частые проблемы, возникающие по причине неправильного расчета пускового тока и в соответствии с этим неправильного выбора оборудования:

Срабатывания автоматов защиты и иных защитных устройств

Срабатывания автоматов защиты и иных защитных устройств при включении системы обогрева из «холодного» состояния. Фактически автоматы защиты нагревательных секций выключатся в первые 10-100 секунд после подачи на них питания. Автомат отключается по перегрузке, срабатывает его тепловой расцепитель. Автомат может работать некоторое время в режиме перегрузки, но ввиду затяжного характера процесса снижения СТ, его запаса не хватает. Для устранения этой проблемы приходится выбирать автомат на большее значение номинального тока.

Данная проблема может быть не выявлена на этапе тестирования или запуска системы, так как максимальный пусковой ток увеличивается при понижении температуры окружающей среды. Если систему тестировали до наступления минимальных температур ошибка возникнет только при включении системы в холодное время года (например, в мороз).

Перегрев силового кабеля

Перегрев силового кабеля возникает по причине неправильного подбора его сечения. Из-за большой длительности пускового процесса греющего кабеля высокое значение СТ нагревает жилы силового кабеля. При этом кабель может расплавиться, возникнуть короткое замыкание и даже пожар на объекте обогрева.

Максимальная длина греющего кабеля

При расчетах системы обогрева необходимо помнить, что в первую очередь максимальный стартовый ток зависит от длины секции кабеля.

Превышение допустимой длины приводит не только к увеличению СТ, но и к преждевременному износу системы.

автомат на теплый пол

Основное назначение автоматического выключателя (автомата) – защита электропроводки от токов короткого замыкания (в дальнейшем КЗ) и перегрузок электросети.

Автоматический выключатель для теплого пола

Электрический теплый пол такой же потребитель электроэнергии как и прочие электроприборы, поэтому критерии выбора автомата защиты такие же.

Рекомендовано на каждый теплый пол тянуть отдельную линию электропитания с установленным на нее автоматом защиты.

  • Номинальный ток (рабочий). Данная характеристика отображает значение тока, свыше которого произойдет разъединение цепи и, соответственно, защита электропроводки от перегрузок. Чтобы выбрать подходящее значение (оно может быть 6, 10, 16, 32, 40 А и т.д.), необходимо опираться на сечение кабеля домашней электропроводки и мощность теплого пола. Не углубляясь в расчеты можно принимать автомат защиты с током 10 А для защиты медного кабеля сечением 1,5 мм2 (мощность теплого пола до 2200 Вт) и 16 А для защиты защиты медного кабеля сечением 2,5 мм2 (мощность теплого пола до 3500 Вт) . Автоматы с номинальными токами 10 и 16 А устанавливаются в основном для теплого пола в домах или квартирах, на площадях одной зоны обогрева до 20 м2.
  • Класс автомата (ток срабатывания). Автоматы разделяются по типу мгновенного расцепления на B, C или D. По нему можно вычислить кратковременное значение тока, при котором автомат не сработает на разрыв. Для типа «B» это диапазон от 3 до 5 значений номинального тока. Такие автоматы применяется в цепях без больших скачков тока. Тип мгновенного расцепления «C» рассчитан на токи в 5-10 раз превышающие номинальный. Применяется в цепях, в которых возможны большие токи включения. Тип «D» применяется в цепях, в которых могут быть большие пусковые токи от 10 до 50 значений номинального тока. Для теплого пола применяются автоматы класса В или С.

обозначение автомата защиты

ВНИМАНИЕ ! Выбор автомата защиты, а так же его установку лучше доверить квалифицированному специалисту.

Обращаем Ваше внимание, что на теплый пол необходимо не только устанавливать автомат защиты но и устройство защитного отключения (УЗО), которое будет защищать от поражения электрическим током, в случае повреждения кабеля теплого пола.

Какой силовой кабель нужен для теплого пола

О необходимости установки УЗО можно прочитать в этой статье.

принцип работы саморегулирующегося нагревательного кабеля

Пусковой (стартовый) ток саморегулирующегося кабеля (самрега) — это ток, возникающий в цепи в момент включения питания. Величина его может в несколько раз превышать значение номинального тока нагревательного кабеля.

Это важный параметр, который необходимо учитывать при расчете максимальной длины отрезков саморегулирующегося кабеля.

От чего зависит пусковой ток

Свойства саморегулируемого кабеля — проводящая матрица с положительным температурным коэффициентом (PTC) изменяет свое сопротивление в зависимости от окружающей температуры. В «холодном» состоянии сопротивление кабеля мало. Поэтому в момент включения ток велик. После подачи питания кабель разогревается, его сопротивление растет, ток в цепи уменьшается.

У каждой марки нагревательного кабеля своя величина стартового тока. Производители редко указывают эту информацию в технических характеристиках. Этот параметр является условной величиной и при различных условиях один и тот же кабель может иметь разное значение пускового тока.

На величину пускового тока влияют как параметры самого нагревательного кабеля, так и окружающие условия.

Длина самрега и пусковой ток

Чем больше длина нагревательной секции — тем больше пусковой ток.

Саморегулируемый греющий кабель условно можно представить в виде множества резисторов, подключенных параллельно к одному источнику питания. Чем больше длина линии, тем меньше общее сопротивление цепи, тем больше пусковой ток.

Мощность самрега и пусковой ток

Мощность греющего кабеля — чем больше удельная (погонная) мощность (Вт/м), тем больше стартовый ток.

Температура окружающей среды и пусковой ток

Чем ниже температура окружающей среды — тем больше пусковой ток.

Величина и длительность пускового тока

Саморегулирующийся нагревательный кабель может иметь пусковой ток в 1,5–5 и даже более раз выше рабочего значения (зависит от марки и производителя, чем лучше производитель тем ниже величина пускового тока).

Это необходимо учитывать на этапе расчета системы особенно при применении мощных кабелей большой длины.

Пиковая нагрузка приходится на первые 3-30 секунд после включения, примерно через 5-10 минут происходит полная стабилизация и выход греющего кабеля на номинальную мощность.

Пример расчета максимального стартового тока греющего кабеля

Например, имеется секция саморегулирующегося кабеля удельной мощностью 30 Вт/м длиной 50 м.

Номинальная мощность секции при температуре +10°С составляет Pном=30Вт/м*50м=1500 Вт. Это мощность уже разогретой секции. Если на кабель в «холодном» состоянии подать питание, то его мощность будет в несколько раз выше номинального значения.

Для расчетов мы принимаем усредненный коэффициент стартового тока равный 2.5-3. У греющих кабелей разных производителей данный коэффициент может отличаться как в большую, так и меньшую сторону (необходимо смотреть техническую информацию производителя).

Тогда, стартовая (пусковая) мощность в нашем примере равна Pпуск=3хPном=4500Вт, пусковой ток Iпуск=4500/220=20,45 А.

Проблемы из-за неверного расчета пускового тока

Неправильный расчет и выбор оборудования приводят к таким последствиям:

  • Срабатывания автоматов и других устройств защиты при включении обогревательной системы из холодного состояния. Эта проблема может быть не выявлена при тестировании системы, если оно проводилось до наступления холодов, и проявится только в холодное время года. При расчете системы рекомендуется выбирать защитный автомат с запасом по току.
  • Перегрев силового кабеля — большая продолжительность процесса включения с высоким значением пускового тока нагревает его жилы, это может привести к КЗ и аварийной ситуации.
  • При холодном пуске ток, многократно превышающий номинальный, очень быстро разогревает токоведущую жилу, при этом греющая матрица остается еще достаточно холодной. В результате нарушается контакт между токоведущей жилой и греющей полимерной матрицей, а в отдельных случаях возможно даже отслоение матрицы от жилы и выход греющего кабеля из строя (зависит от качества нагревательного кабеля).

Способы уменьшения пускового тока

Большой пусковой ток нежелателен для питающей сети, поскольку приходится устанавливать автоматы на больший номинальный ток и подбирать силовой кабель большего сечения.

Читайте также: