Приборы для обеззараживания воздуха устанавливаются на высоте метров от уровня пола

Обновлено: 28.03.2024

Инфекции с аэрозольным механизмом передачи определяют 90 % инфекционной заболеваемости в мире. Только от острых респираторных вирусных инфекций заболеваемость и экономические потери больше, чем от остальных инфекционных заболеваний. Обеззараживание воздуха — профилактическое мероприятие, которое помогает предотвратить распространение инфекционных заболеваний с аэрозольным механизмом передачи (туберкулез, корь, дифтерия, ветряная оспа, краснуха, ОРВИ, включая грипп, и т. п.).

Согласно СанПиН 2.1.3.2630-10 «Санитарно-эпидемиологические требования к организациям, осуществляющим медицинскую деятельность» (далее — СанПиН 2.1.3.2630-10) для снижения обсемененности воздуха до безопасного уровня в медицинских организациях применяются технологии воздействия ультрафиолетовым излучением, аэрозолями дезинфицирующих средств, а в ряде случаев и озоном, используются бактериальные фильтры.

Технология 1. Воздействие ультрафиолетовым излучением

Ультрафиолетовое (УФ) бактерицидное облучение воздушной среды помещений — традиционное и наиболее распространенное санитарно-противоэпидемическое (профилактическое) мероприятие, направленное на снижение количества микроорганизмов в воздухе медицинских организаций и профилактику инфекционных заболеваний.

УФ-лучи являются частью спектра электромагнитных волн оптического диапазона. Они оказывают повреждающее действие на ДНК микроорганизмов, что приводит к гибели микробной клетки в первом или последующих поколениях. Спектральный состав УФ-излучения, вызывающего бактерицидное действие, лежит в интервале длин волн 205–315 нм.

Вирусы и бактерии в вегетативной форме более чувствительны к воздействию УФ-излучения, чем плесневые и дрожжевые грибы, споровые формы бактерий.

Эффективность бактерицидного обеззараживания воздуха помещений с помощью УФ-излучения зависит:

  • от видовой принадлежности микроорганизмов, находящихся в воздухе;
  • спектрального состава УФ-излучения;
  • интенсивности импульса, выдаваемого источником УФ-лучей;
  • экспозиции;
  • объема обрабатываемого помещения;
  • расстояния от источника, угла падения УФ-лучей («не работают» в затененных местах помещения);
  • состояния воздушной среды помещения: температуры, влажности, уровня запыленности, скорости потоков воздуха.

3 способа применения УФ-излучения:

прямое облучение проводится в отсутствие людей (перед началом работы, в перерывах между выполнением определенных манипуляций, приема пациентов) с помощью бактерицидных ламп, закрепленных на стенах или потолке либо на специальных штативах, стоящих на полу;

непрямое облучение (отраженными лучами) осуществляется с использованием облучателей, подвешенных на высоте 1,8–2 м от пола с рефлектором, обращенным вверх таким образом, чтобы поток лучей попадал в верхнюю зону помещения; при этом нижняя зона помещения защищена от прямых лучей рефлектором лампы. Воздух, проходящий через верхнюю зону помещения, фактически подвергается прямому облучению;

закрытое облучение применяется в системах вентиляции и автономных рециркуляционных устройствах, допустимо в присутствии людей. Воздух, проходящий через бактерицидные лампы, находящиеся внутри корпуса рециркулятора, подвергается прямому облучению и попадает вновь в помещение уже обеззараженным.

Технические средства
для УФ-обеззараживания

Бактерицидные лампы

В качестве источников УФ-излучения используются разрядные лампы. Физическая основа их функционирования — электрический разряд в парах металлов, при котором в этих лампах генерируется излучение с диапазоном длин волн 205–315 нм (остальная область спектра излучения играет второстепенную роль).

Подавляющее большинство разрядных ламп работают в парах ртути. Они обладают высокой эффективностью преобразования электрической энергии в световую. К таким лампам относятся ртутные лампы низкого и высокого давления.

В последние годы для обеззараживания воздуха стали использоваться ксеноновые импульсные лампы.

Ртутные лампы низкого давления конструктивно и по электрическим параметрам практически не отличаются от обычных осветительных люминесцентных ламп, за исключением того, что их колба выполнена из специального кварцевого или увиолевого стекла с высоким коэффициентом пропускания УФ-излучения, на ее внутреннюю поверхность не нанесен слой люминофора.

Основное достоинство ртутных ламп низкого давления состоит в том, что более 60 % излучения приходится на длину волны 254 нм, обеспечивающую наибольшее бактерицидное действие.

Они имеют большой срок службы (5000–10 000 ч) и мгновенную способность к работе после зажигания.

У ртутно-кварцевых ламп высокого давления иное конструктивное решение (их колба выполнена из кварцевого стекла), и поэтому при небольших размерах они имеют большую единичную мощность (100–1000 Вт), что позволяет уменьшить число ламп в помещении.

Однако эти лампы обладают низкой бактерицидной отдачей и малым сроком службы (500–1000 ч). Кроме того, микробоцидный эффект наступает через 5–10 мин. после начала работы.

Существенным недостатком ртутных ламп является опасность загрязнения парами ртути помещений и окружающей среды в случае разрушения и необходимости проведения демеркуризации. Поэтому после истечения сроков службы лампы подлежат централизованной утилизации в условиях, обеспечивающих экологическую безопасность.

В последние годы появилось новое поколение излучателей — ксеноновые короткоимпульсные лампы, обладающие гораздо большей биоцидной активностью. Принцип их действия основан на высокоинтенсивном импульсном облучении воздуха и поверхностей УФ-излучением сплошного спектра.

Преимущество ксеноновых импульсных ламп обусловлено более высокой бактерицидной активностью и меньшим временем экспозиции. Достоинством ксеноновых ламп является также то, что при случайном их разрушении окружающая среда не загрязняется парами ртути.

Основные недостатки этих ламп, сдерживающие их широкое применение, — необходимость использования для их работы высоковольтной, сложной и дорогостоящей аппаратуры, а также ограниченный ресурс излучателя (в среднем 1–1,5 года).

Бактерицидные лампы подразделяются на озонные и безозонные.

У озонных ламп в спектре излучения присутствует спектральная линия с длиной волны 185 нм, которая в результате взаимодействия с молекулами кислорода образует озон в воздушной среде. Высокие концентрации озона могут оказать неблагоприятное воздействие на здоровье людей. Использование этих ламп требует контроля содержания озона в воздушной среде, безупречной работы вентиляционной системы, регулярного тщательного проветривания помещения.

Чтобы исключить возможность генерации озона, разработаны так называемые бактерицидные безозонные лампы. У таких ламп за счет изготовления колбы из специального материала (кварцевое стекло с покрытием) исключается выход излучения линии 185 нм.

Бактерицидные облучатели

Бактерицидный облучатель — это электротехническое устройство, в состав которого входят: бактерицидная лампа, отражатель и другие вспомогательные элементы, а также приспособления для крепления. Бактерицидные облучатели перераспределяют поток излучения, сгенерированного лампой, в окружающее пространство в заданном направлении. Все бактерицидные облучатели подразделяются на две группы — открытые и закрытые.

В открытых облучателях используется прямой бактерицидный поток от ламп и отражателя (или без него), который охватывает определенное пространство вокруг них. Такие облучатели устанавливаются на потолке, стене или в дверных проемах, возможны мобильные (передвижные) варианты облучателей.

Особое место занимают открытые комбинированные облучатели. В этих облучателях за счет поворотного экрана бактерицидный поток от ламп можно направлять как в верхнюю, так и нижнюю зону пространства. Однако эффективность таких устройств значительно ниже из-за изменения длины волны при отражении. При использовании комбинированных облучателей бактерицидный поток от экранированных ламп должен направляться в верхнюю зону помещения таким образом, чтобы исключить выход прямого потока от лампы или отражателя в нижнюю зону.

У закрытых облучателей (рециркуляторов) бактерицидный поток распределяется в ограниченном замкнутом пространстве и не имеет выхода наружу, при этом обеззараживание воздуха осуществляется в процессе его прокачки через вентиляционные отверстия рециркулятора.

Облучатели закрытого типа (рециркуляторы) должны размещаться в помещении на стенах по ходу основных потоков воздуха (в частности, вблизи отопительных приборов) на высоте не менее 2 м от пола. Рециркуляторы на передвижной опоре размещают в центре помещения или также по периметру. Скорость воздушного потока обеспечивается либо естественной конвекцией, либо принудительно с помощью вентилятора.

При использовании бактерицидных ламп в приточно-вытяжной вентиляции их размещают в выходной камере. В помещении предпочтительней установка облучателей вблизи вентиляционных каналов (не под вытяжкой) и окон.

Сравнительная характеристика различных технических средств обеззараживания воздуха представлена в таблице.


Недостатки технологии 1:

при использовании открытых облучателей требуются средства индивидуальной защиты, запрещается применение в присутствии пациентов;

эффективность облучения снижается при повышенной влажности, запыленности, низких температурах;

не удаляются запахи и органические загрязнения;

ртутные лампы не действуют на плесневые грибы;

использование озонных ламп требует регулярных замеров озона;

бактерицидный поток меняется в ходе эксплуатации, необходим его контроль;

повышенные требования к эксплуатации и утилизации облучателей, которые содержат ртуть;

высокая стоимость установки и сложное техническое обслуживание импульсных ксеноновых ламп.

Технология 2. Применение бактериальных фильтров

Механические фильтры

Фильтры используют такой способ очистки, при котором загрязненный воздух проходит через волокнистые материалы и осаждается на них.

СанПиН 2.1.3.2630-10 регламентируют необходимость очистки воздуха, подаваемого приточными установками, фильтрами грубой и тонкой очистки.

Подбор фильтров и порядок их использования зависит от того, какая чистота воздуха должна быть обеспечена в том или ином помещении медицинской организации. Так, воздух, подаваемый в помещения чистоты классов А (операционные, реанимационные и т. д.) и Б (послеродовые палаты, палаты для ожоговых больных и т. д.), подвергается очистке и обеззараживанию устройствами, которые обеспечивают эффективность инактивации микроорганизмов на выходе из установки не менее чем на 99 % для класса А и 95 % для класса Б, а также эффективность фильтрации, соответствующей фильтрам высокой эффективности (H11–H14).

К сведению

В операционных, оборудованных вентиляцией с механическими фильтрами, бактериальная обсемененность воздушной среды к концу 2–4-часовой операции не превышает 100 микроорганизмов в 1 м3 воздуха. В операционных с обычной вентиляцией этот показатель в 25–30 раз выше.

Ионные электростатические воздухоочистители

Принцип действия таких воздухоочистителей состоит в том, что частицы загрязнения размером от 0,01 до 100 мкм, проходя через ионизационную камеру, приобретают заряд и осаждаются на противоположно заряженных пластинах.

Фотокаталитические воздухоочистители

При использовании фотокаталитических воздухоочистителей происходит разложение и окисление микроорганизмов и химических веществ на поверхности фотокатализатора под действием ультрафиолетовых лучей.

Недостатки технологии 2:

не действует на микроорганизмы, размещенные на поверхностях;

снижает влажность воздуха помещений;

необходимость регулярного технического обслуживания и своевременной замены фильтрующих элементов.

Технология 3. Воздействие аэрозолями дезинфицирующих средств

Согласно МР 3.5.1.0103-15 «Методические рекомендации по применению метода аэрозольной дезинфекции в медицинских организациях» антимикробное действие аэрозолей основано на двух процессах:

  • испарение частиц аэрозоля и конденсация его паров на бактериальном субстрате;
  • выпадение неиспарившихся частиц на поверхности и образование бактерицидной пленки.

В зависимости от размеров частиц аэрозолей дезинфицирующих средств различают:

  • «сухой» туман — размер частиц 3,5–10 мкм;
  • «увлажненный» туман — размер частиц 10–30 мкм;
  • «влажный» туман — размер частиц 30–100 мкм.

Преимущества данного метода дезинфекции:

  • высокая эффективность при обработке помещений больших объемов, в т. ч. труднодоступных и удаленных мест;
  • одновременное обеззараживание воздуха, поверхностей в помещениях, систем вентиляции и кондиционирования воздуха;
  • возможность выбора наиболее адекватного режима применения за счет варьирования режимов работы генератора — дисперсности, длительности циклов обработки, нормы расхода, энергии частиц;
  • экономичность (низкая норма расхода и уменьшение трудозатрат);
  • экологичность (за счет повышения эффективности дезинфекции аэрозольным методом снижается концентрация действующих веществ и расход средства, тем самым снижается нагрузка на окружающую среду);
  • минимизация урона для объектов обработки (снижение концентрации и норм расхода движущей силы сохраняет оборудование от повреждения).

Данная технология обработки воздуха и поверхностей рекомендуется в качестве основного/вспомогательного или альтернативного метода для обеззараживания воздуха и поверхностей при проведении заключительной дезинфекции, генеральных уборок, перед сносом и перепрофилированием медицинских организаций; при различных типах уборки; для обеззараживания систем вентиляции и кондиционирования воздуха при проведении профилактической дезинфекции, дезинфекции по эпидемиологическим показаниям и очаговой заключительной дезинфекции.

Недостатки технологии 3:

опасность вредного химического воздействия на персонал и пациентов;

необходимы дополнительные средства индивидуальной защиты;

длительное проветривание помещений после применения аэрозолей;

применение только в отсутствие пациентов;

непригодность для текущей дезинфекции.

Технология 4. Воздействие озоном

Озон — это химическое вещество, молекула которого состоит из трех атомов кислорода. Молекула озона нестабильна. При взаимодействии с другими веществами озон легко теряет атомы кислорода и поэтому озон является одним из наиболее сильных окислителей, намного превосходя двухатомарный кислород воздух (уступает только фтору и нестабильным радикалам). Он окисляет почти все элементы, за исключением золота и платины.

Озон энергично вступает в химические реакции со многими органическими соединениями. Этим объясняется его выраженное бактерицидное действие. Озон активно реагирует со всеми структурами клетки, чаще вызывая нарушение проницаемости или разрушение клеточной мембраны. Также озон обладает дезодорирующим действием.

В то же время озон является газом, негативное воздействие которого на организм человека превышает воздействие угарного газа.

Важно!

По токсичным свойствам озон относится к первому классу опасности и требует чрезвычайно осторожного обращения с ним. В помещениях, где работают люди, нельзя допускать утечки озона. Под его воздействием могут образовываться токсичные вещества.

Из-за высокой химической активности озон оказывает сильное коррозионное действие на конструкционные материалы.

Недостатки технологии 4:

опасность вредного химического воздействия на персонал и пациентов;

повышенные требования безопасности при работе; при дезинфекции в медорганизациях концентрация озона может достигать 3–10 мг/м3, поэтому обработка проводится в отсутствие людей;

озон может распространяться на соседние помещения при негерметичности обрабатываемых помещений, неправильной работе вентиляционных систем или общих воздуховодов;

коррозионное действие на изделия из металла;

озон непригоден для текущей дезинфекции;

длительное время (120 мин.) саморазложения озона после применения в помещениях, требующих асептичности.

Сочетание технологий

Примеры использования комплексных технологий:

  • последние модели закрытых УФ-облучателей-рециркуляторов, которые сначала пропускают воздух через фильтры, а затем обеззараживают его внутри рабочей камеры с помощью УФ-лучей;
  • различные модели фотокаталитических воздухоочистителей, где перед фотокатализом воздух проходит через механические фильтры.

В медицинских организациях можно реализовать несколько технологий, как параллельно, так и последовательно (например, очищать приточный воздух через фильтры в системе вентиляции и затем использовать рециркуляторы, чтобы поддерживать асептичность).

Система противоплесневой обработки включает первоначальную обработку воздуха и поверхностей аэрозольными генераторами и последующее включение фотокаталитических обеззараживателей.

Вывод

Каждая из технологий обеззараживания воздуха имеет свои преимущества и недостатки, знать которые необходимо как при выборе оборудования для профилактики инфекций, так и при его эксплуатации.

Друзья, новогодние праздники закончились и в ближайшее время многие из вас снова столкнутся с уже ставшими привычными проверками представителей территориальных органов Роспотребнадзора на предмет выполнения санитарных требований по профилактике распространения коронавирусной инфекции.

Друзья, новогодние праздники закончились и в ближайшее время многие из вас снова столкнутся с уже ставшими привычными проверками представителей территориальных органов Роспотребнадзора на предмет выполнения санитарных требований по профилактике распространения коронавирусной инфекции.

Статистика проведенных Роспотребнадзором проверок в 2020 г. свидетельствует, что одним из наиболее часто выявленных нарушений в организациях всех форм собственности является отсутствие или недостаточное количество оборудования по обеззараживанию воздуха (далее - Рециркуляторов).

В нашем обзоре мы не станет разбирать как вести себя во время проверок Роспотребнадзором (этому вопросу мы посвятим отдельную статью), а остановимся только на правовой основе требований Роспотребнадзора по оснащению и применению Рециркуляторов в организациях, которые осуществляют офисную деятельность.

Начнем мы с нормативных правовых актов. В соответствии с требованиями санитарных правил СП 3.1.3597-20 «Профилактика новой коронавирусной инфекции (COVID-19)» и постановления Главного государственного санитарного врача РФ от 13.03.2020 № 6 «О дополнительных мерах по снижению рисков распространения COVID-2019», организациям всех форм собственности в целях выполнения мероприятий, направленных на разрыв механизма передачи новой коронавирусной инфекции, предписано использовать оборудование по обеззараживанию воздуха .

Если с вопросом, сколько необходимо установить Рециркуляторов в отдельно взятом помещении, после проведения несложных математических расчетов на основании требований изготовителя оборудования, более-менее понятно. То вопрос, в каких помещения необходимо устанавливать устройства по обеззараживаю воздуха, а в каких, это делать не обязательно, вызывает больше всего споров и как следствие претензий со стороны надзорных органов.

Ключевое словосочетание в приведенных нами нормативных документах, на которое стоит обратить внимание, это «помещения с постоянным нахождением работников», которое, кстати, в письмах Роспотребнадзора никак не поясняется. Значение этого термина можно найти, например, в ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях», из которого становится ясным, что помещение с постоянным пребыванием людей , это помещение, в котором люди находятся не менее 2 ч. непрерывно или 6 ч. суммарно в течение суток. Как Вы понимаете, под это определение попадают большинство помещений, в которых бывают работники в течение всего рабочего дня.

Есть еще один документ, который регламентирует порядок оснащения помещений организации Рециркуляторами, и на который любят ссылаться представители Роспотребнадзора, это руководство «Р 3.5.1904-04 Дезинфектология. Использование ультрафиолетового бактерицидного излучения для обеззараживания воздуха в помещениях. Руководство» (далее – Руководство). Это документ содержит ограниченный перечень помещений, подлежащих оборудованию бактерицидными установками для обеззараживания воздуха. Если у вас не лечебное учреждение, то согласно Руководству, Рециркуляторами должны оборудоваться «детские игровые комнаты, школьные классы, бытовые помещения промышленных и общественных зданий с большим скоплением людей при длительном пребывании».

Поэтому, коль скоро в рекомендательных письмах Роспотребнадзора отсутствуют конкретные требований для работодателя по оснащению помещений устройствами по обеззараживанию воздуха с учетом их функционального предназначения (типа помещений) и их эффективного применения в условиях коронавирусной инфекции, подход к оснащению Рециркуляторами помещений с постоянным пребыванием работников, по нашему мнению, должен быть основан на разумности и оценке риска заражения работников новой коронавирусной инфекцией.

Нет никакого практического смысла оснащать Рециркуляторами каждое отдельно взятое помещение, оборудованное общеобменной приточно-вытяжной вентиляцией, если в них постоянно находятся всего пару сотрудников. Достаточно приобрести оборудование, например, предназначенное для напольной установки на передвижной платформе, на несколько кабинетов, и установить график его работы в помещениях, где присутствуют ваши работники, исходя из требований производителя:

  • к помещениям, где устанавливается оборудование;
  • к количеству находящихся в них людей,
  • а также к времени его работы.

Напротив, в помещениях зданий и сооружений с массовым пребыванием людей – зрительных, обеденных, выставочных, торговых, спортивных, культовых и в других залах, где могут оказывать услуги 3-м лицам, и риск заражения сотрудников высок, установка Рециркуляторов на постоянной основе, по нашему мнению, необходима.

Конечно же, нельзя исключать, что в ходе проведения проверок органами, уполномоченными осуществлять государственный санитарно-эпидемиологический надзор за соблюдением санитарного законодательства, могут иметь случаи вынесения субъективных решений и претензий со стороны Роспотребнадзора к порядку оснащения и применения оборудования по обеззараживанию воздуха в помещениях организации. Также необходимо помнить, что при угрозе возникновения и распространения инфекционных заболеваний Роспотребнадзор имеет право давать юридическим лицам предписания, обязательные для исполнения ими в установленные сроки. И в этих предписаниях могут содержаться требования, обязывающие организацию оснастить все помещения Рециркуляторами. Поэтому, если Вы получили предписание, содержащее подобные требования, то в целях исключения юридических, репутационных и финансовых рисков, мы рекомендуем выполнить их).

Следующий вопрос связанный с Рециркуляторами, который проверяется Роспотребнадзором, это контроль времени работы устройств по обеззараживанию воздуха.

В соответствии с п. 8.1 Руководства, документами, подтверждающими работоспособность и безопасность эксплуатации оборудования, являются:

  • акт ввода в эксплуатацию;
  • журнал регистрации и контроля за работой оборудования по обеззараживанию воздуха.

В рамках государственного санитарного надзора представители учреждения Роспотребнадзора, в соответствии с п. 10.6 Руководства, обязательно проверят наличие в организации этих документов , а также могут провести метрологический контроль:

  • облученности и дозы облучения в зоне пребывания людей;
  • концентрации озона в воздухе помещения и бактериологический контроль бактерицидной эффективности облучательной установки.

По результатам контрольно-надзорных мероприятий представители Роспотребнадзора составят заключение о разрешении или неразрешении эксплуатации облучательной установки, которое внесут в журнал регистрации и контроля .

Что касается требований к содержанию и порядку ведения журнала регистрации и контроля ультрафиолетовой бактерицидной установки, то они содержатся в приложении 3 Руководства.

Ниже мы привели для вас примерную форму журнала и образец его заполнения .

Пандемия коронавируса накладывает свой отпечаток на быт людей. Последнее время большую популярность приобретают обеззараживатели воздуха. Эти приборы используются не только в помещениях больниц и поликлиник – все чаще они стали появляться в торговых точках и закрытых помещениях с большим количеством людей. Существуют и варианты приборов для домашнего использования. Давайте разберемся, какие существуют обеззараживатели воздуха и чем они отличаются.

Виды приборов для дезинфекции воздуха

Условно все приборы можно разделить на несколько групп по принципу работы:

  • ультрафиолетовые лампы;
  • озонаторы;
  • фотокатализаторы;
  • рециркуляторы воздуха;
  • плазменные очистители;
  • очистители-ионизаторы;
  • электростатические очистители;
  • очистители-увлажнители.

Самыми популярными являются ультрафиолетовые лампы, озонаторы и очистители-ионизаторы.

Ультрафиолетовые лампы

С ультрафиолетовыми лампами открытого сталкивались, пожалуй, все. Чаще всего их можно встретить в поликлиниках и стационарах – всем известные фиолетовые кварцевые лампы. Бактерицидным действием обладает УФ-излучение, длина волны которого составляет 205-315 нм за счет того, что оно повреждает ядро микроорганизмов, вызывая тем самым их гибель. Лампы, длина волны которых равна 365 нм, направлены на уничтожение вирусных частиц.

Существует несколько разновидностей ультрафиолетовых ламп:

  • кварцевые лампы – работают за счет открытых лучшей ультрафиолета, проходящих через колбу из кварцевого стекла. Негативно действуют не только на микроорганизмы, но также на человека, растения и животные, поэтому во время работы прибора необходимо покинуть помещение;
  • бактерицидные лампы с увиолевым стеклом имеют менее выраженное действие, но при этом более безопасное для человека. Тем не менее, смотреть на такую лампу вредно для глаз;
  • Амальгамные лампы – не содержат ртути и являются самыми безопасными для домашнего использования.

Существуют также УФ-лампы закрытого типа, или так называемые рециркуляторы – в них источник ультрафиолетового света расположен внутри корпуса, не пропускающего лучи наружу. Дополнительно в них находится вентилятор, который обеспечивает циркуляцию воздуха через корпус. Внутри корпуса и происходит очистка воздуха.

Озонаторы

Обеззараживающий эффект озона в несколько раз выше, чем у УФ-ламп. При этом кварцевые лампы тоже выделяют озон в воздух, обеспечивая двойной эффект обеззараживания. Вместе с этим, озонаторы более безопасны. Озон оказывает окисляющее действие на мембраны клеток, разрушая их структуру и вызывая гибель микроорганизма. Устойчивых к озону форм микроорганизмов за счет этого крайне мало.

Озонаторы не загрязняют окружающую среду и не вредят растениям и животным, в отличие от УФ-ламп и привычных всем дезинфектантов по типу хлора. Дезинфекция озоном возможна для любых поверхностей и материалов, в том числе воды. При этом полностью уничтожается микрофлора и вирусные частицы.

Однако у озонаторов есть и свои недостатки. Озон в больших количествах ядовит для человека, поэтому большие концентрации его для дезинфекции допустимы только при отсутствии людей в помещении.

Меньшую концентрацию озона, в отличие от озонаторов, выдают электростатические и плазменные очистители воздуха. Они специально предназначены для постоянного функционирования в присутствии людей.

Очистители-ионизаторы

Это приборы, работающие по принципу электростатической и фотокаталитической очистки. Они не вредны для человека, поэтому могут работать в присутствии людей, использоваться в домашних условиях. В результате действия ионизатора образуются ионы, которые заряжают как бактерии, так и обычные загрязнители воздуха (пыль, пыльцу, сигаретный дым). Заряженные ионами загрязнители перемещаются и оседают на электродах ионизатора.

Молекулы кислорода при этом получают отрицательный заряд. Такой воздух полезен для здоровья человека – усвоение отрицательно заряженных молекул кислорода на 20% выше. Ионизированный воздух снижает утомляемость, повышает устойчивость к стрессам, улучшает адаптивные свойства организма и иммунитет. В природе ионизированный воздух наблюдается в горах, темнохвойном лесу, рядом с водопадами.

Все приборы выпускаются для разных объемов помещений, а также для разных типов помещений. Например, УФ-лампы чаще всего используются в медицинских учреждениях, в домашних условиях они – не самый лучший вариант, и лучше отдать предпочтение рециркуляторам.

В условиях пандемического распространения новой коронавирусной инфекции (COVID-19), при которой инфицирование происходит в основном воздушно-капельным путем, Роспотребнадзором уделяется особое внимание обеспечению безопасности воздушной среды, инновационным научным разработкам и технологиям очистки и обеззараживания воздуха. Санитарно-эпидемиологическими правилами СП 3.1.3597-20 «Профилактика новой коронавирусной инфекции (COVID-19)» в числе основных мероприятий, направленных на «разрыв» механизма передачи инфекции, предусмотрено обеззараживание воздуха. Ряд методических рекомендаций Роспотребнадзора по вопросам профилактики COVID-19 для организаций различных отраслей предусматривают необходимость очистки и обеззараживания воздуха в ходе проведения комплекса дезинфекционных мероприятий.

При этом, снижение риска инфицирования COVID-19, как для персонала, так и для посетителей объектов общественного назначения, обеспечивается выполнением всей совокупности профилактических и противоэпидемических мероприятий, предусмотренных санитарными правилами и рекомендациями Роспотребнадзора, применение устройств для обеззараживания воздуха в помещениях с постоянным или массовым нахождением людей является одним из важных факторов снижения риска, за счет снижения уровня микробной обсемененности в помещениях, но не определяющим. В условиях текущей ситуации, определяющей необходимость всемерного снижения рисков распространения COVID-19, большое практическое значение имеет системное и комплексное проведение санитарно-противоэпидемических (профилактических) мероприятий, которые могут иметь различную эффективность, но призваны обеспечивать общий кумулятивный противоэпидемический эффект.

Следует также отметить, что снижение микробной обсемененности воздуха в помещениях возможно не только путем применения бактерицидных облучателей-рециркуляторов на основе использования ультрафиолетового излучения. В настоящее время для этих целей применяются также технологии и оборудование на основе использования постоянных электрических полей, различных видов фильтров, в том числе электрофильтров, аэрозолей дезинфицирующих средств. Выбор технологий и оборудования осуществляются хозяйствующим субъектами самостоятельно с учетом необходимого режима применения (длительно или кратковременно, в присутствии или отсутствии людей), объема помещений, эксплуатационных и других характеристик, наличия оборудования на рынке.

Снижение общей микробной обсемененности воздуха помещений достигается также путем достаточного воздухообмена, обеспечивающего удаление загрязненного и подачу в помещения воздуха, очищенного в фильтровентиляционных установках, оснащенных высокоэффективными фильтрами очистки воздуха (ФОВ) класса Н13-Н14, или в устройствах обеззараживания воздуха, встроенных в вентиляционные системы. Поступление большего количества наружного воздуха в здание снижает концентрацию инфекционных агентов в воздухе помещений, снижая вероятность заражения.

Результаты экспериментов показали, что новый тип коронавируса SARS-CoV-2 способен длительное время сохранять жизнеспособность в воздухе. При этом, системы вентиляции и кондиционирования воздуха не должны увеличивать риск передачи вируса. Многочисленные исследования показывают важность систем вентиляции для снижения потенциальной передачи вируса воздушным путем при их правильном устройстве и эксплуатации, включая периодическую проверку системы, использование наиболее эффективных фильтров и их замену в соответствии с рекомендациями производителя, периодическую очистку вентиляционных каналов. При ненадлежащем обслуживании и эксплуатации системы механической вентиляции и кондиционирования могут способствовать передаче вируса, рециркулируя загрязненный воздух и/или создавая внутренние условия (температуру и влажность), которые поддерживают выживание вируса.

В связи с этим для снижения риска инфицирования COVID-19 в помещениях недостаточно только обеспечение заданной кратности воздухообмена функционирующими системами механической приточно-вытяжной вентиляции (далее - МПВВ). Для этих целей Всемирной организацией здравоохранения (ВОЗ) и специалистами в области вентиляции рекомендуется принятие ряда дополнительных мер в частности:

  • повышение объема подаваемого наружного воздуха, доведение доли подаваемого наружного воздуха (с учетом возможностей МПВВ по обеспечению необходимого температурно-влажностного режима) до 100% (то есть исключение рециркуляции воздуха в системе МПВВ), при использовании систем рекуперации - предпочтительное использования пластинчатых теплоутилизаторов или тепловых насосов;
  • повышение до максимально возможных значений степени фильтрации воздуха без снижения расчетного расхода приточного воздуха, а также устранение дефектов уплотнений корпусов фильтров и фильтродержателей;
  • поддержание работы МПВВ в режиме работы 24/7 с пониженной интенсивностью работы во время отсутствия людей либо, как минимум, включение МПВВ за 2 часа до начала рабочего дня и выключение через 2 часа после его окончания;
  • увеличение по возможности общего расхода приточного воздуха в зонах дыхания.

При возможности, альтернативной мерой, направленной на снижение уровня микробной обсемененности, является регулярное проветривание помещений с естественной вентиляцией (каждые 2 часа), что также предусмотрено санитарно-эпидемиологическими требования и рекомендациями.

Для помещений, оснащенных вентиляцией с естественным побуждением, особенно при невозможности проветривания, рекомендуется использование локальных устройств (стационарных или передвижных) для обеззараживания воздуха.

Детские игровые комнаты, учебные классы, бытовые помещения промышленных и общественных зданий (комнаты отдыха, приема пищи персонала и т.п.) с большим скоплением людей при длительном пребывании подлежат оборудованию бактерицидными установками для обеззараживания воздуха согласно п.5.11 Руководства «Использование ультрафиолетового бактерицидного излучения для обеззараживания воздуха в помещениях» Р 3.5.1904-04.

(c) Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Республике Алтай, 2006—2015 г.

Все права на материалы, размещенные на сайте, охраняются в соответствии с законодательством РФ, в том числе об авторском праве и смежных правах.
При использовании материалов сайта необходима ссылка на источник

Адрес: 649002, Республика Алтай, г. Горно-Алтайск, проспект Коммунистический, 173


Эл. почта:

Обеззараживание воздуха в лабораториях медорганизаций

Обеззараживание воздуха в лабораториях медорганизаций.

Все помещения «заразной» зоны лаборатории должны быть оборудованы бактерицидными облучателями для обеззараживания воздуха и поверхностей. В помещениях «чистой» зоны применение технологий обеззараживание воздушной среды также является обязательным в соответствии с требованиями санитарного законодательства, которое предписывает медработникам выполнять обеззараживание воздуха во всех категориях помещений в рамках проведения генеральных уборок.

Правильное использование медтехники и оборудования позволяет эффективно снижать микробную обсемененность воздушной среды.

В настоящей статье будут рассмотрены два метода обеззараживания воздуха, которые могут применяться в лабораторных подразделениях медорганизаций:

– воздействие ультрафиолетовым излучением с помощью бактерицидных облучателей;

– воздействие аэрозолями дезинфицирующих средств с помощью специальной распыливающей аппаратуры (генераторов аэрозолей).

Ультрафиолетовое бактерицидное облучение.

Обеззараживание воздуха – ультрафиолетовое бактерицидное облучение воздушной среды помещений предполагает использование ультрафиолетовых бактерицидных установок и облучателей. Эксплуатацию облучателей осуществляют в соответствии с Руководством Р 3.5.1904-04 «Использование ультрафиолетового бактерицидного излучения для обеззараживания воздуха в помещениях» и прилагающимися к оборудованию инструкциями.

Выделяют бактерицидные облучатели закрытого, открытого и комбинированного типов. Открытые и комбинированные облучатели предназначены для процесса обеззараживания помещений только в отсутствии людей или при кратковременном их пребывании в помещении при условии использования эффективных средств индивидуальной защиты. Это обусловлено тем, что у облучателей открытого типа прямой бактерицидный поток охватывает широкую зону в окружающем пространстве.

В свою очередь облучатели комбинированного типа снабжены двумя бактерицидными лампами, которые разделены между собой экраном, чтобы поток от одной лампы направлялся наружу в нижнюю зону помещения, а от второй – соответственно в верхнюю.

У облучателей закрытого типа (рециркуляторов) бактерицидный поток от ламп, расположенных в закрытом корпусе, не имеет выхода наружу, что позволяет безопасно применять подобное оборудование в присутствии людей.

При эксплуатации рециркуляторов важно учитывать, что бактерицидный поток будет распределяется лишь в ограниченном замкнутом пространстве, не имея выхода наружу, а обеззараживание воздуха будет осуществляться в процессе его прокачки через вентиляционные отверстия прибора. В связи с этим облучатели закрытого типа необходимо размещать в помещении по ходу основных потоков воздуха на высоте не менее двух метров от пола.

В зависимости от конструкции облучателя воздушный поток может обеспечиваться естественной конвекцией или принудительно при помощи специально встроенного в оборудование вентилятора.

В конструкции рециркуляторов для фильтрации входного воздушного потока может быть предусмотрена установка воздушного фильтра, который, как правило, не является обязательным элементом устройства и устанавливается для защиты медицинского персонала и пациентов от воздействия пыли.

Для эффективной очистки воздуха фильтры необходимо регулярно менять. Периодичность замены указывается в паспорте или инструкции по эксплуатации рециркулятора.

В настоящее время в медицинских организациях стали применяться импульсные ксеноновые ультрафиолетовые установки, которые имеют ряд преимуществ перед традиционными бактерицидными облучателями. Технология предполагает облучение ультрафиолетовым излучением сплошного спектра с очень высокой интенсивностью, что позволяет обеспечивать эффективность обеззараживания воздуха в помещениях на 99,9 % и выше. Еще одним преимуществом импульсных ксеноновых ультрафиолетовых установок является короткое время экспозиции, как правило, не превышающее 5 минут.

Ультрафиолетовые бактерицидные облучатели могут быть стационарными (потолочными, настенными) и передвижными. Количество стационарных облучателей, устанавливаемых в конкретном помещении, определяется его габаритами (объемом).

Информация о максимальном объеме помещений, который способен эффективно обеззараживать конкретный бактерицидный облучатель, указывается в паспорте или инструкции по применению оборудования.

Для оценки бактерицидной эффективности ультрафиолетового облучения воздушной среды помещений в качестве санитарно-показательного микроорганизма принимается золотистый стафилококк. В клинико-диагностических лабораториях бактерицидная эффективность должна составлять не менее 95 %, в бактериологических лабораториях – не менее 99 %. Сведения о бактерицидной эффективности отражаются в паспорте (инструкции) к конкретной модели бактерицидного облучателя.

Пыль, скапливающаяся на поверхности ультрафиолетовых бактерицидных ламп в облучателях необходимо регулярно удалять, поскольку она может значительно снижать бактерицидную эффективность. Периодичность и способ удаления пыли указывается в паспорте или инструкции по эксплуатации конкретной модели облучателя. Осуществлять очистку ламп от пыли можно только при условии отключения прибора от электросети.

Режим эксплуатации и продолжительность сеанса обеззараживания воздуха напрямую зависит от типа применяемого оборудования. Традиционные бактерицидные облучатели открытого и комбинированного типов могут использоваться в повторно-кратковременном режиме, при котором облучатели нужно включать на 15-30 минут каждые 2 часа в течение рабочей смены. Для закрытых облучателей (рециркуляторов) минимальная продолжительность сеанса облучения составляет 1 час.

Оптимально, если в помещениях с постоянным пребыванием людей закрытые облучатели функционируют в течение всего рабочего времени.

Поскольку ультрафиолетовые бактерицидные лампы имеют ограниченный срок службы, по истечении которого необходимо производить их замену, сведения о работе бактерицидных облучателей нужно фиксировать в журналах регистрации и контроля бактерицидных установок.

Пример. Журнал регистрации и контроля бактерицидных установок

Наименование и габариты помещения, номер и место расположения бактерицидной установкиАналитическая №1 клинико-диагностической лаборатории площадь 25м 2 , высота стен 2,75 м, бактерицидная установка №3
Номер и дата акта ввода ультрафиолетовой бактерицидной установки в эксплуатациюАкт № 6 от 21.10.2018 г.
Тип ультрафиолетовой бактерицидной установкиОблучатель закрытого типа (рециркулятор), «Название модели»
Наличие средств индивидуальной защиты (лицевые маски, очки, перчатки)Не требуются
Срок замены ламп (отработавших срок службы)Срок службы ламп – 9000 часов. Замена производится в ближайший рабочий день по истечении данного срока.

Суммарное количество отработанных часов бактерицидной лампой по месяцам

Месяц, годКоличество часов
Январь 2020 г.7200
Февраль 2020 г.7400
Март 2020 г.7600

Ежедневный учет работы ультрафиолетовой бактерицидной установки


Ежедневный контроль времени работы оборудования и регистрация данных в журналах необходимы даже в том случае, если бактерицидный облучатель снабжен цифровым счетчиком для фиксации отработанного времени источников излучения.

Отработавшие свой ресурс или вышедшие из строя ультрафиолетовые бактерицидные лампы относятся к медицинским отходам класса Г (токсикологически опасным). Их собирают в промаркированные емкости любого цвета, кроме желтого и красного, с плотно прилегающими крышками и хранят в специально выделенных подсобных помещениях медицинской организации. Вывоз и обезвреживание отходов класса Г осуществляется специализированными компаниями, имеющими лицензию на данный вид деятельности.

Обеззараживание воздуха. Воздействие аэрозолями дезсредств (аэрозольная дезинфекция).

Воздействие аэрозолями дезсредств (аэрозольная дезинфекция) как метод обеззараживания воздуха может применяться в лабораториях медицинских организаций в рамках выполнения генеральных уборок, а также при ликвидации биологических аварий.

В основу аэрозольной дезинфекции положен принцип преобразования жидкого дезинфектанта в состояние мелкодисперсного аэрозоля с помощью специальной распыливающей аппаратуры (генераторов аэрозолей).

Аэрозольная дезинфекция имеет целый ряд преимуществ, которые, прежде всего, заключаются в высокой эффективности дезинфекционной обработки помещений больших объемов, в том числе труднодоступных и удаленных мест за счет равномерного распределения дезинфектанта. При соблюдении технологии обработки не наблюдается повреждающее воздействие аэрозоля на объекты внешней среды, в том числе медицинское оборудование, мебель, покрытия стен, пола, потолков и т.д..

Требования, предъявляемые к оборудованию, применяемому для аэрозольной дезинфекции в медицинским организациях, изложены в МР 3.5.1.0103-15 «Методические рекомендации по применению метода аэрозольной дезинфекции в медицинских организациях».

Технические характеристики оборудования и скорость распыления дезинфектанта напрямую влияют на эффективность и безопасность обработки.

В медицинских организациях для аэрозольного метода дезинфекции допускается использовать готовые к применению средства или концентраты, рабочие растворы которых относятся к IV классу малоопасных или III классу умеренно опасных химических соединений при введении в желудок и при нанесении на кожу. Как правило, в аэрозольном состоянии эти же средства относятся ко II классу высоко опасных или I классу чрезвычайно опасных химических соединений. В связи с этим аэрозольная дезинфекция должна осуществляться строго в отсутствие людей при соблюдении необходимых мер безопасности и применении средств индивидуальной защиты персоналом, участвующим в проведении обработки.

Для обеззараживания воздуха аэрозольным методом предпочтение следует отдавать дезинфицирующим средствам с широким спектром антимикробного действия. Чаще всего в данных целях используются средства на основе перекиси водорода.

Я была рада поделиться своим опытом. Более подробную информацию обо мне Вы можете узнать в моем профиле. Буду рада видеть Вас на моей страничке в Instagram, где я публикую свои статьи, рассказываю актуальную информацию о дезинфекции и санитарно-противоэпидемических мероприятиях.

Понравилась статья – поделитесь ей в социальных сетях. Делитесь вашим мнением и общайтесь в комментариях. Вы можете предложить тему для публикации в разделе Хочу статью и обменяться опытом в разделе Вопрос специалисту.

Читайте также: