При помоле клинкера для ускорения схватывания цемента добавляют

Обновлено: 01.05.2024

Готовые хлористые соли, как ускорители схватывания и твердения бетонов.

При исследовании разных ускорителей схватывания и твердения бетонных композиций, было установлено, что соли двухвалентных металлов более действенны, чем соли одновалентных. А еще более эффективны соли трехвалентных металлов. Также было выявлено, что из всех этих солей наиболее действенны соли соляной кислоты – хлориды, особенно если принять во внимание также и очень высокую их растворимость в воде.

Хлористые соли очень давно и очень успешно применяются в строительной практике в качестве ускорителей и противоморозных добавок. Они дешевы, доступны. Пожаро-взрыво безопасны. Не ядовиты. Не оказывают негативного влияния на людей и окружающую среду. Но на сегодняшний день у них имеется два очень серьезных недостатка – дешевизна, коррозионная активность по отношению к железу и высочайшая эффективность.

Первый недостаток – дешевизна, все время предопределяет их судьбу. В пору социалистического строительства, в угоду копеечной экономии, хлориды использовали массово и повсеместно. Оказалось, что их коррозионную активность можно достаточно легко нивелировать добавками нитритов (нитрита натрия или нитрита кальция) или иными ингибиторами типа катапина. Пока смешением ингредиентов в нужных пропорциях занимались узкоспециализированные предприятия, производившие комплексы на основе хлоридов типа ННХК (нитрит-нитрат-хлорид кальция) все было более-менее благополучно. Но как только практически то же самое пытались делать на местах, комплекс ХК+НН, например (хлорид кальция + нитрит натрия), в так называемых построечных условиях, часто приключалась какая ни, будь бяка, смакуемая потом ежегодником “Аварийные обрушения в строительстве”. Действительной первопричиной всех этих неприятностей служили не хлориды сами по себе, а, в первую очередь, нарушение технологического регламента работы с ними. Национальную отечественную черту – разгильдяйство, увековечили на законодательном уровне, - вообще запретив применение хлоридов для большинства более-менее ответственных конструкций. С учетом отечественной ментальности абсолютно верное решение – береженого, Бог бережет. Между тем на Западе хлориды давно и достаточно широко применяются. Даже бетоносмесительное оборудование идет сразу с мерниками для хлористого кальция.

Бурный всплеск интереса к ускорителям наблюдается в последнее время. За период развала многие бетонные заводы, по тем или иным причинам, утратили свое паросиловое хозяйство – использовать отработанный способ ускорения твердения бетонных изделий при помощи тепловлажностной обработки уже стало просто физически невозможно. Выход единственный – работать по так называемой беспропарочной технологии с использованием ускорителей - химических интенсификаторов схватывания и твердения.

И хотя национальное строительное законодательство для очень многих видов железобетона прямо и непосредственно запрещает использование неингибированных хлористых солей, никто ведь не запрещал их использовать в простых бетонах. О какой, скажите на милость, коррозии может идти речь при производстве изделий, где железной арматуры нет вообще? – те же малые архитектурные формы, элементы мощения, ячеистые и легкие бетоны и т.д. В этом случае опять срабатывает, как это ни парадоксально, один из недостатков хлоридов – их высокая эффективность при низкой цене.

Ведь чего греха таить, многие продавцы технологии и оборудования для производства элементов мощения, например, абсолютно не заинтересованы в распространении правдивой информации об отечественных модификаторах для бетонов. Многие из них основной бизнес делают именно на продаже форм для производства тротуарных камней. А все остальное – антураж, призванный обеспечить именно их продажу. Разумеется, эффективные и дешевые ускорители для подобного бизнеса как кость в горле – оборачиваемость форм резко увеличивается, соответственно объемы их продаж падают.

Очень интересный факт, исключительно полно характеризующий отношение к ускорителям на основе хлоридов на Западе – в середине 70-х годов в Великобритании 90% объема продаж ускорителей составляли 16 торговых марок. Так вот 12 из них были изготовлены на основе хлористых солей. Выпускаемые в начале 70-х в Чехословакии 7 добавок-ускорителей – все были изготовлены на основе хлоридов. А вот как относятся к ускорителям в такой, достаточно консервативной и требовательной к качеству строительства, стране, как США (см. Таблица 67-1)

В процессе твердения портландцемента основное значение имеет скорость схватывания и скорость твердения. Скорость твердения ПЦ определяется скоростью гидратации клинкерных минералов: чем быстрее гидратируется минерал, тем быстрее нарастает его прочность.

При замедлении схватывания цемента задача сводится к тому, чтобы связать гидроалюминаты кальция в другие соединения. Эту задачу выполняет гипс, который реагирует с трехкальциевым гидроалюминатом и образует нерастворимую соль 3СаO*Al2О3*3СаSО4*31H2O. При содержании гипса 1,5-3,5% портландцемент удовлетворяет требованиям стандарта: начало схватывания его наступает не ранее 45 мин и заканчивается не позднее 12ч от момента затворения водой.

32) Коррозия портландцементного камня, причины, основные виды, меры защиты от коррозии. Основные причины коррозии делят на три вида:

1. Разложение составляющих цементного камня и растворение и вымывание гидроксида кальция Са(ОН)2 .! Выщелачивающая коррозия. При действии проточных вод происходит растворение и вымывание Са(ОН)2 . этот вид коррозии характеризуется появлением белых подтеков на бетоне.

Меры защиты: 1) Защита поверхности водонепроницаемыми пленками; 2) Введение активных минеральных добавок; 3) Повышение плотности бетонов и т.д.

2. Образование легкорастворимых солей в рез. взаимодействия Са(ОН)2 с агрессивными веществами и вымывания этих солей. !Кислотная, магнезиальная коррозия. Пример: Са(ОН)2 +HCl=СаСl2+H2O - кислотная коррозия, СаСl2- легкорастворимое соединение; Са(ОН)2 +MgCl2= СаСl2+Mg(ОН)2 –магнезиальная коррозия.

3. Образование в порах новых соединений, занимающих больший объем, сем исходные продукты реакции.!Сульфатоалюминатная коррозия. Пример:

На цементы и бетоны также оказывают влияние органические кислоты, они, как и неорганические быстро разрушают цементный камень. Но нефть нефтепродукты неопасны, если в них нет остатков кислот. Вредное воздействие оказывают мин. удобрения, особенно вредны аммиачные удобрения. Мероприятия по защите цемента от коррозии:1) создание плотных (водонепроницаемых) бетонов, 2)применение спец. цементов в зависимости от вида коррозии, 3) устройство защитных гидроизоляционных пленок (окрасок, облицовок)

33) Активные минеральные (гидравлические добавки). Природные и искусственные. Их взаимодействие с известью и цементом. При твердении в ПЦ образуется свободная известь Са(ОН)2 , наличие которой снижает устойчивость цементного камня в проточных, напорных и слабоминеральных водах, поэтому необходимо вводить в состав цемента активные добавки, для закрепления образующейся в рез. гидролиза и гидратации кальциевых силикатов извести.

АМД – природные или искусственные материалы, содержащие активную (растворимую) форму кремнезема и глинозема, обладающие гидравлическими свойствами. При смешении с гидратной известью тонкоизмолотые АМД при затворении водой твердеют сначала на воздухе, а затем в воде. АМД бывают природные и искусственные, кислые и основные (характеризуются модулем основности).

Природные АМД: ряд горных пород осадочного и вулканического происхождения (диатомит, опока). Искусственные АМД: шлаки (металлургические, топливные), золы ТЭС, отходы промышленности. Наиболее широко применяются доменные гранулированные шлаки.

По стандарту начало схватывания цемента должно наступать не ранее 45 мин, а конец — не позднее 12 ч от начала затворения. Как слишком быстрое, так и чересчур медленное схватывание существенный недостаток цемента. Если цемент слишком быстро схватывается, то он превращается в камневидное тело прежде чем его успевают употребить в дело. При работе с такими цементами необходимо быстро их транспортировать и укладывать после затворения водой, что очень трудно. Использование же медленно схватывающихся цементов часто сильно замедляет темпы строительства.

Скорость схватывания цемента зависит от ряда факторов. Большое значение имеет его минералогический состав, в особенности содержание трехкальциевого алюмината, который ускоряет схватывание. Степень обжига цементного клинкера также влияет на скорость схватывания. Сильно обожженный цемент схватывается медленнее, а слабо обожженный — быстрее, чем цемент нормального обжига. С увеличением тонкости помола ускоряется схватывание цемента вследствие большей удельной поверхности цементного порошка. Повышенное количество воды при затворении цемента замедляет его схватывание, а уменьшенное — ускоряет. С повышением температуры окружающей среды процесс схватывания ускоряется, а с понижением — замедляется. Магазинирование клинкера и силосование цемента замедляют схватывание, так как при хранении цемент реагирует с влагой и углекислой воздуха, в результате чего зерна цемента покрываются оболочкой, состоящей из углекислого кальция и других новообразований, а это затрудняет взаимодействие цемента с водой при затворении.

Для замедления сроков схватывания цемента к клинкеру при помоле добавляют гипс, однако количество его должно быть таким, чтобы содержание SО3 в цементе не превышало 3,5%, что в пересчете на CaS04*2Н2О составляет -7,53%, а на CaS04*О,5Н2О — 6,34%. Следует всегда учитывать, что сам клинкер содержит некоторое количество SО3. Величина оптимальной дозировки гипса зависит от минералогического состава клинкера, тонкости помола и некоторых других факторов и в ряде случаев приближается к верхнему пределу допускаемого стандартом, а в отдельных случаях, при большом содержании С3А и весьма тонком помоле, может даже превышать его. Объясняется это тем, что гипс добавляют цементу в первую очередь для того, чтобы, вступая во взаимодействие с трехкальциевым алюминатом, образовывать в начальный период твердения (до получения жесткой недеформирующейся структуры твердеющего цементного камня) гидросульфоалюминат, что регулирует (замедляет) сроки схватывания цемента и улучшает ряд его свойств. Наряду с этим следует учитывать, что при твердении цемента, содержащиеся в нем алюмоферриты хотя и медленнее, но также вступают во взаимодействие с гипсом, связывая определенное его количество в комплексные новообразования. Количество гипса, вступающего в реакцию с алюминатами и алюмоферритами кальция, зависит от тонкости помола цемента, температуры его при выходе из мельницы, режима охлаждения и связанного с этим содержания в клинкере стекловидной фазы степени присадки золы и ее состава, а также от ряда других производственных факторов. Поэтому для каждого завода оптимальная дозировка гипса будет иной.

Большой избыток гипса может привести к появлению внутренних напряжений, иногда вплоть до образования трещин вследствие запоздалого появления гидросульфоалюмината кальция в уже затвердевшем цементном камне за счет твердых исходных компонентов. При недостаточном количестве гипса не удается использовать все заложенные в цементе возможности для быстрого твердения; такой цемент чересчур быстро схватывается. Следует отметить, что добавка гипса также благоприятно влияет на процесс твердения содержащихся в цементе силикатов кальция. Поэтому ограничено и минимальное содержание SО3 не менее 1,5%.

Серьезное значение имеет нагревание цемента при помоле, так как вследствие развивающейся при этом температуры гипс в той или иной степени переходит из двуводного в полуводный, т. е. в модификацию, значительно более растворимую в воде, что изменяет условия твердения цемента.

Дозировку добавляемого гипса целесообразно определять исходя из того его количества, которое связывается в первые сроки твердения, когда реакции происходят за счет растворенных в воде компонентов. За оптимальную дозировку гипса, в случае твердения при обычных температурах, можно принять то наибольшее его количество, которое практически может быть химически связано в твердеющем цементе в течение первых 24 ч после затворения цемента водой.

Добавками, ускоряющими сроки схватывания, являются: хлористый кальций, соляная кислота, глиноземистый цемент, растворимое стекло, углекислый натрий (сода) и ряд других. К замедлителям схватывания наряду с гипсом относятся слабый раствор серной кислоты, сернокислое окисное железо и ряд других.

Теория твердения портландцемента развивается на базе основополагающих работ Ле-Шателье, Михаэлиса, А. А. Байкова, П. А. Ребиндера и других выдающихся ученых. Большой вклад в науку о вяжущих веществах внесли П. И. Боженов, П. П. Будников, Ю. М. Бутт, А. В. Волженский, В. А. Воробьев, С. И. Дружинин, В. А. Кинд, О. П. Мчеделов-Петросян, В. Н. Юнг и др.

Цементное тесто, приготовленное путем смешивания цемента с водой, имеет три периода твердения. Вначале, в течение 1 — 3 ч после затворения цемента водой, оно пластично и легко формуется. Потом наступает схватывание, заканчивающееся через 5 — 10 ч после затворения; в это время цементное тесто загустевает, утрачивая подвижность, но его механическая прочность еще невелика. Переход загустевшего цементного теста в твердое состояние означает конец схватывания и начало твердения, которое характерно заметным возрастанием прочности. Твердение бетона при благоприятных условиях длится годами — вплоть до полной гидратации цемента.

Химические реакции. Сразу после затворения цемента водой начинаются химические реакции. Уже в начальной стадии процесса гидратации цемента происходит быстрое взаимодействие элита с водой с образованием гидросиликата кальция и гидроокиси:

2 (ЗСаО • Si02) + 6Н20 = ЗСаО • 2Si02 • ЗН20 + ЗСа(ОН)2

После затворения гидрат окиси кальция образуется из алита, так как белит гидратируется медленнее алита и при его взаимодействии с водой выделяется меньше Са(ОН)2, что видно из уравнения химической реакции

2 (2СаО • Si02) + 4Н20 = ЗСаО • 2SiOa • ЗН20 + Са(ОН)2

Гидросиликат кальция 3CaO-2Si02-3H20 образуется при полной гидратации чистого трехкальциевого силиката в равновесии с насыщенным раствором гидроокиси кальция. Молярное соотношение CaO/Si02 в гидросиликатах, образующихся в цементном тесте, может изменяться в зависимости от состава материала, условий твердения и других обстоятельств. Поэтому применяется термин CSH для всех полукристаллических и аморфных гидратов кальциевых силикатов.

Основной алюмосодержащей фазой в портландцементе является трехкальциевый алюминат ЗСаО-А1203. Он представляет и самую активную фазу среди клинкерных минералов. Немедленно после соприкосновения ЗСаО-А12Оз с водой на поверхности непро-реагировавших частиц образуется рыхлый слой метастабильных (неустойчивых) гидратов 4СаО-А1203- 19Н20 и 2СаО-А1203-8Н20 в виде тонких гексагональных пластинок, образующих по терминологии Кондо и Даймона «структуру карточного домика». Рыхлая структура гидроалюминатов ухудшает морозостойкость, а также стойкость против химической коррозии. Это одна из причин ограничения количества трехкальциевого алюмината в специальных портландцементах, применяемых для морозостойких бетонов.

Для замедления схватывания при помоле клинкера добавляют небольшое количество природного гипса (3 — 5% от массы цемента).

В насыщенном растворе Са(ОН)2 эттрингит сначала выделяется в коллоидном тонкодисперсном состоянии, осаждаясь на поверхности частиц ЗСаО-А12Оз, замедляет их гидратацию и оттягивает начало схватывания цемента. Кристаллизация Са(ОН)2 из пересыщенного раствора понижает концентрацию гидроокиси кальция в растворе, и эттрингит уже образуется в виде длинных иглоподобных кристаллов. Кристаллы эттрингита и обусловливают раннюю прочность затвердевшего цемента. Эттрингит, содержащий 31 — 32 молекулы кристаллизационной воды, занимает примерно вдвое больший объем по сравнению с суммой объемов реагирующих веществ (С3А и сульфат кальция). Заполняя поры цементного камня, эттрингит повышает его механическую прочность и стойкость. Структура затвердевшего цемента улучшается еще и потому, что предотвращается образование в нем слабых мест в виде рыхлых гидроалюминатов кальция.

Гидроалюминат связывается добавкой природного гипса, как указано выше, а гидроферрит входит в состав цементного геля.

Свойства и формирование структуры цементного теста. Путем тщательного смешения цементного порошка с водой получают цементное тесто; оно представляет собой концентрированную водную суспензию, обладающую характерными свойствами структурированных дисперсных систем: прочностью структуры, структурной и пластической вязкостью, тиксотропией.

Цементное тесто до укладки бетонной смеси и начала схватывания имеет в основном коагуляционную структуру, в нем твердые частицы суспензии связаны ван-дер-ваальсовыми силами и сцеплены вследствие переплетения гидратных оболочек, покрывающих частицы.

Структура цементного теста разрушается при механических воздействиях (перемешивание, вибрирование и т. п.), вследствие этого резко падает предельное напряжение сдвига и тесто с предельно разрушенной структурой, подобно вязкой жидкости, заполняет форму. Переход теста в текучее состояние имеет тиксотропный характер, т. е. после прекращения механических воздействий структурные связи в системе вновь восстанавливаются.

Структурно-механические свойства цементного теста возрастают по мере гидратации цемента. Например, предельное напряжение сдвига цементного теста, по данным Е. Е. Сегаловой и др., измеренное после его изготовления, составило 0,01 МПа; к началу схватывания оно возросло до 0,15 МПа (т. е. в 15 раз), а к концу схватывания достигло 0,5 МПа (увеличилось в 50 раз). Следовательно, цементное тесто отличается способностью быстро изменять реологические свойства в течение 1 — 2 ч.

Формирование структуры цементного теста и прочности происходит следующим образом. Первыми элементами структуры, образующимися после смешивания цемента с водой, являются эттрингит, гидрат окиси кальция и иглы геля CSH, растущие из частиц клинкера. Присутствие эттрингита в виде коротких гексагональных призм обнаружено уже через 2 мин после затворения цемента водой, а спустя несколько часов появляются зародыши кристаллов Са(ОН)2. Частицы геля гидросиликата, имеющие первоначально игольчатую форму, продолжая расти, ветвятся, становятся древовидными. Образование дендритных форм является одной из причин

соединения частиц геля гидросиликата в агрегаты, имеющие характерную форму «снопов пшеницы» или в виде плотно агломерированных листков. Тонкие слои геля получаются и между кристаллами Са (ОН)2, образуя с ними сросток, упрочняющий цементное тесто.



Рис. 48. Процесс гидратации цемента и развитие структуры цементного теста во времени (по Лохеру и Рихартцу): 1 — Са(ОН)2; 2 — эттрингит; За — гидросиликаты кальция, длинные волокна; Зб — то же, короткие волокна; 4 — 3CaO-Al203'CaS04-12H20; 5 —

4Са0'А120з'13Н20; 6 — кривая изменения объема пор; 1 — неустойчивая структура; /1 — формирование основной структуры; //1 — конденсация структуры и получение устойчивой структуры

На рис. 48 схематично показано развитие структуры цементного теста. Первичная структура представляет собой малопрочный пространственный каркас из дисперсных частиц продуктов гидратации, связанных ван-дер-ваальсовыми силами; 'переплетение гидратных оболочек, образованных на частицах адсорбированной водой, тоже удерживает частицы друг около друга. Хотя прочность первичной структуры невелика, подвижность твердых частиц все же снижается, и цементное тесто загустевает. К концу периода схватывания формируется основная структура цементного теста, которое превращается в цементный камень.

Структура цементного камня в значительной степени определяется механизмом его гидратации. В результате взаимодействия цемента с водой образуются «внутренние» продукты гидратации в пространстве, первоначально занятом цементными зернами, и «внешние» продукты гидратации, заполняющие пространство, первоначально занятое водой.

Количество внутреннего гидросиликата кальция намного больше, чем внешнего CSH. Внутренний гидросиликат получается в результате топохимической гидратации алита и белита, т. е. путем непосредственного присоединения воды к твердой фазе. Внутренний гидросиликат имеет тонкую и плотную структуру; отношение CaO/SiOj может быть от 0,5 до больших величин по Тейлору.

Внешние продукты гидратации образуются через растворение вне зерен цемента и состоят из небольшого количества внешнего гидросиликата, крупных кристаллов Са(ОН)2 и эттрингита.


Рис. 49. Основные структурообразующие фазы цементного камня (твердение портландцементного теста в воде при 20°С, В/Ц=0,35, в течение 28 сут) по

На рис. 49 можно видеть основные фазы портландцементного камня.

Частицы геля гидросиликата (кристаллиты) представляют собой субмикрокристаллические тонкие пластинки («фольгу») из двух-трех структурных слоев; толщина каждого слоя — около 6 А, а диаметр частицы — менее 100 А. Следовательно, твердая фаза в гидратированном цементе находится в состоянии весьма сильного раздробления. Удельная поверхность портландцемента составляет 0,3 — 0,45 м2/г; в процессе гидратации происходит диспергация цемента и удельная поверхность твердой фазы возрастает в 100 — 200 раз. Например, удельная поверхность цементного камня, изготовленного с водоцементным отношением 0,6, после 512 сут твердения при 100%-ной влажности была равна 782 м2/г (при гидратации 91% цемента). Клеящая способность цементного теста зависит от дисперсности твердой фазы: она повышается по мере гидратации цемента, т. е. при превращении все большего количества цемента в гель. Однако удельная поверхность самого геля гидросиликата значительно уменьшается при высушивании, что видно из опытных данных. Цементный камень, изготовленный из раствора с В/Ц = 0,4, имел в возрасте 514 сут (при гидратации 86% цемента) удельную поверхность (м2/г): 708 — при 100%-ной, 330 — при 50%-ной и 189 — при 12%-ной относительной влажности. Укрупнение частиц новообразований при сильном высушивании не только снижает клеящую способность гидратированного цемента, но и повышает его хрупкость. Все эти исследования говорят о необходимости ухода за бетоном, предотвращающего его раннее высушивание, а также о создании соответствующих влажностных условий при тепловой обработке железобетонных конструкций.

При изготовлении портландцемента стандарт допускает добавку к клинкеру активных минеральных (гидравлических) добавок в количестве, определяемом видом портландцемента и качеством добавки. Неотъемлемой частью портландцемента является добавка гипса; получение пластифицированного и гидрофобного портландцемента достигается добавкой поверхностно-активных веществ.

Активные минеральные добавки подразделяются на природные и искусственные. В качестве последних применяются в основном доменные гранулированные шлаки, хотя не исключается возможность использования металлургических и топливных шлаков при соответствующем их химико-минералогическом составе.

Природные активные минеральные добавки бывают:

осадочного происхождения, образованные в результате осаждения из водоемов остатков некоторых растений или в результате природного обжига глинистых пород;

вулканического происхождения, образовавшиеся в результате извержения магмы.

В качестве добавок осадочного происхождения в цементном производстве применяются:

диатомиты—состоящие преимущественно из скопления микроскопических панцирей диатомовых водорослей и содержащие главным образом кремнезем в аморфном состоянии;

трепелы — состоящие из микроскопических округлых зерен и содержащие главным образом аморфный кремнезем. Трепелы и диатомиты по своим физическим свойствам сходны с глинами: они пластичны, вязки и легко размокают в воде; опоки — уплотненные диатомиты и трепелы; глиежи — горные породы, образовавшиеся в результате природного обжига глины при подземных пожарах в угольных пластах.

Добавками вулканического происхождения являются: пески вулканические — представляющие собой рыхлые продукты извержения вулканов и содержащие в основном алюмосиликаты;

туфы вулканические — уплотненные и сцементированные (склеенные) застывшей магмой вулканические пеплы;

трассы — видоизмененные разновидности вулканических туфов;

пемза — кремневидные породы, характеризующиеся пористым губчатым строением, называемые поэтому еще вспученным вулканическим стеклом.

Назначение гидравлических добавок в портландцементе состоит в том, чтобы связать в нерастворимые соединения свободный гидрат окиси кальция, выделяющийся при твердении цемента (см. стр. 16). В соответствии с этим основным показателем качества гидравлической добавки является способность ее связывать Са (ОНЬ- Эта способность добавки характеризуется ее активностью.

За показатель активности гидравлической добавки принимается количество извести в миллиграммах, поглощаемой из известкового раствора одним граммом добавки в течение 30 суток.

Добавки с меньшей активностью относятся к инертным. Методика определения активности добавок и технические требования к ним приведены в ГОСТ 6269—63, утвержденном в 1963 г. в качестве искусственных активных минеральных добавок цементная промышленность использует: доменные гранулированные шлаки (кислые и основные), представляющие собой силикатные расплавы, получаемые при выплавке чугуна и превращаемые в мелкозернистое состояние путем быстрого охлаждения;

кремнеземистые отходы — вещества, богатые активным кремнеземом, получаемые при извлечении глинозема из глины при производстве алюминия (сиштоф);

топливные золы и шлаки — остаточный продукт, образующийся при определенном температурном режиме сжигания некоторых видов топлива; по химическому составу он состоит из кислотных окислов (кремнезема, глинозема);

обожженные глины — продукт искусственного обжига глинистых пород и самовозгорающихся в отвалах пустых шахтных пород (глинистые и углистые сланцы).

Оценка качества искусственных активных минеральных добавок, за исключением доменных шлаков, производится так же, как и природных — по величине активности, которая должна быть не ниже следующей (по ГОСТ 6269—'63) в мгСа°

кремнеземные отходы 200

обожженные глины, топливные золы и шлаки . 50

Кроме того, в соответствии с требованием стандарта содержание в добавках ангидрида серной кислоты (S03) должно быть не более 3% и содержание несгоревших частиц топлива в топливных шлаках и золах не более 15%.

Среди разнообразия искусственных добавок в цементном производстве больше всего применяют доменные гранулированные шлаки.

Показателями качества доменных гранулированных шлаков, принятыми стандартом для их разделения на сорта, является модуль основности М0 и модуль активности Ма.

Шлаки относятся к основным, если М0 больше или равен 1; при М0 меньшем, чем 1, шлаки относятся к кислым.

Модуль основности характеризует гидравлическую активность шлаков, т. е. способность их порошков к самостоятельному твердению при смешивании с водой. Эта способность проявляется только у основных шлаков и тем больше, чем выше их модуль основности.

Объясняется это минералогическим составом шлака. В процессе чугунной плавки для понижения температуры плавления пустой породы, содержащейся в руде, в доменную печь вводится известняк. При обжиге он разлагается на СаО и 002. Образующаяся окись кальция начинает взаимодействовать с кислотными окислами пустой породы — кремнеземом и глиноземом, образуя силикаты и алюминаты кальция — соединения, сходные с минералами клинкера. Чем больше образуется этих соединений, тем выше будет гидравлическая активность шлаков. Таким образом, активность шлаков определяется содержанием окиси кальция и с возрастанием ее количества по отношению к кислотным окислам, т. е. модуля основности, увеличивается.

Улучшается качество шлаков и с повышением модуля активности, т. е. отношения % А1203 к % Si02. В этом случае в шлаках возрастает относительное содержание алюминатов кальция, отличающихся от силикатов кальция быстрым твердением.

Требования к химическому составу шлаков регламентируются ГОСТ 3476—60.

Наряду с требованиями ГОСТ в отношении химического состава доменные гранулированные шлаки не должны содержать более 5% кусков шлака, не подвергшегося грануляции. Размер таких кусков не должен превышать 100 мм по наибольшему измерению.

Гипс как добавка к клинкеру при получении портландцемента применяется в виде гипсового камня. По химическому составу он представлен в основном двуводным сернокислым кальцием CaS04 - 2Н20. Химически чистый двуводный сернокислый кальций — минерал гипс — содержит в овоем составе: СаО — 32,56%; S03 — 46,51 % и Н20 — 20,93% - Гипс должен соответствовать требованиям ГОСТ 4013—61 «Камень гипсовый для производства вяжущих веществ». В зависимости от содержания CaS04-2H20 в гипсовом камне последний подразделяется на три сорта. К 1 сорту относится гипсовый камень с содержанием CaS04 • 2HzO не менее 90%, ко II сорту — не менее 75% и к III сорту — не менее 65%.

Поверхностно-активные добавки подразделяются на пластифицирующие и гидрофобизирующие. Их используют, как отмечалось, для изготовления соответственно пластифицированного и гидрофобного портландцементов. Однако эти добавки вводят также и во все другие разновидности портландцементов. При этом каждый цемент приобретает дополнительное название соответственно пластифицированный или гидрофобный. Например, пластифицированный дорожный портландцемент или гидрофобный сульфатостойкий портландцемент.

Пластифицирующие поверхностно-активные добавки применяют в виде концентратов сульфитно-спиртовой барды (ССБ). Они образуются как отход при получении целлюлозы по сульфитному способу. В зависимости от состояния и соответственно содержания сухого вещества различают концентраты ССБ. жидкие ОКБЖ), содержание сухих веществ в которых не менее 50%, твердые (КБТ) — не менее 76% и порошкообразные (КБП) — не менее 87%.

Оптимальное количество вводимой добавки в цемент находится в пределах 0,15—0,25% от веса цемента, считая на сухое вещество добавки.

Гидрофобизирующие поверхностно-активные добавки применяют в виде асидола, асидол-мылонафта и мылонафта, являющихся нафтеновыми (нефтяными) кислотами, образующимися при переработке нефти.

Кроме указанных веществ, применяют также олеиновую кислоту. Она содержится в животных жирах.

Количество вводимой гидрофобизирующей добавки зависит от ее вида и состава цемента и устанавливается опытом. Обычно величина этой добавки находится в пределах от 0,06 до 0,30% от веса цемента, считая на сухое вещество добавки.

Для лучшего распределения добавок в цементе их вводят в цементную мельницу в жидком виде. Для этой цели применяют специальные дозировочные механизмы. Если же добавки поступают на завод в виде пасты, например мылонафт, или в твердом состоянии, их растворяют в горячей воде. Следует помнить, что величина добавки рассчитывается на сухое вещество от веса цемента. Для этого необходимо знать концентрацию раствора, т. е. количество граммов твердого вещества, содержащегося в 1 л раствора.

Смотрите также:

Для регулирования сроков схватывания в обычных цементах марок 300. 500 при помоле к
добавок. Клинкер. Качество клинкера зависит от его химического и минералогических составов.

Раздельный помол клинкера и добавок менее выгоден, так
Наличие активной пуццолановой добавки качественно не меняет характера взаимодействия клинкерных минералов с водой.

При изготовлении цементов совместным помолом твердые добавки, например кварцевый песок, играют роль абразива по отношению к клинкеру.

Заменяя часть клинкера минеральной добавкой, значительно
Такая большая дозировка шлака возможна вследствие особенностей его химического состава, близкого к клинкеру.

Помол клинкера с добавкой гипса — заключительная технологическая операция. В результате получают тонкозернистый порошок темно-серого или зеленовато-серого цвета.

Портландцемент с минеральными добавками (ПЦД) получают измельчением клинкера, минеральных добавок и гипса.

Читайте также: