Построение градуировочной зависимости прочности бетона пример

Обновлено: 05.05.2024

В последние годы популярность и доступность различных методов контроля прочности бетона и реализующих их приборов резко возросла. И несмотря на требования нормативных документов, резко ограничивающие возможность применения большинства методов для использования в ходе обследования конструкций зданий и сооружений, в том или ином объеме они применяются большинством организаций.

Необходимо уточнить, что в данной статье речь идет только о прочности бетона на сжатие и далее под «прочностью» понимается именно этот параметр бетона.

Рассмотрим следующие вопросы.

  1. Какие методы определения (оценки) прочности бетона применяются и какие наиболее доступны?
  2. Каковы параметры основных применяемых методов с точки зрения стоимости оборудования, производительности и погрешности измерений?
  3. Какие методы в реальных условиях объектов обследования, с учетом сложившейся на рынке ситуации, можно применять, соблюдая требования норм?

Классификация методов контроля прочности бетона

Исследования прочности бетона должны выполняться по требованиям ГОСТ 28570 [1], 22690 [2], 17624 [3], ГОСТ Р 53231 (вышел новый ГОСТ 18105)[4], СТО [5]. Условно все применяемые методы можно разделить на 3 группы, представленные на рис. 1.

Результаты, полученные методами первой группы, являются наиболее соответствующими истинному значению прочности материала по следующим причинам. Во-первых, измеряется именно искомый параметр – усилие, соответствующее разрушению при сжатии. Во-вторых, исследуется образец материала, изъятый из тела конструкции, а не только из поверхностного слоя. В-третьих, влияние на результат измерения внешних факторов: влажность, армирование, дефекты поверхностного слоя и прочих, – можно свести к минимуму.

Однако данный подход для рядовых объектов на практике применяется крайне редко. Это обусловлено тремя основными причинами: высокая стоимость оборудования, большая трудоемкость процесса измерения и, следовательно, его себестоимость и локальное повреждение конструкций, которое в большинстве случаев заказчик не приемлет.

Подсчитаем оценочную стоимость необходимого для первого вида измерений оборудования. Учитывая, что метод выбуривания кернов по сравнению с отбором проб выпиливанием характеризуется меньшей трудоемкостью и повреждением, наносимым конструкции, рассмотрим оборудование именно для него. Рассмотрим комплект оборудования, доступного на рынке, со средним качеством и минимальными необходимыми параметрами. В минимальный комплект можно включить: перфоратор (Bosch GBH 2-26), установка алмазного сверления для отбора кернов диаметром до 100 мм (Husqvarna DMS 160A), камнерезный станок (Diam SK-600) и пресс гидравлический (ПГМ-1000МГ4). Данные сведены в таблицу 1.

Трудозатраты для выполнения измерений будут состоять из выбуривания трех кернов (согласно п.СП13-102 [6] для определения прочности одного конструктивного элемента), доставки с объекта в лабораторию (в расчет взят 1 ч), торцовки на камнерезном станке и испытания на прессе с последующей обработкой результатов.

Для всех методов контроля, указанных на рис. 1, по требованиям ГОСТов [1,2,3] необходимо до выполнения измерений (отбора проб) определить наличие и расположение арматуры (для этого использовался измеритель защитного слоя бетона ИПА-МГ4.01). Данная операция, как правило, выполняется магнитным методом по ГОСТ 22904 [7]. Эта составляющая в затраты на приборное обеспечение и трудоемкость не включена.

Подсчитаем оценочную стоимость необходимого для второго вида измерений оборудования. Расчет выполнен для метода отрыва со скалыванием, так как в отличие от методов отрыва и скалывания ребра, данный метод в отечественной практике обследования нашел наибольшее применение.

Стоимость оборудования

В минимальный комплект можно включить перфоратор (Bosch GBH 2-26) и прибор для определения прочности бетона методом отрыва со скалыванием (ПОС-50МГ4). Трудозатраты для выполнения измерения методом отрыва со скалыванием будут состоять из бурения шпура, закладки анкера и проведения измерения. Количество единичных измерений для определения прочности бетона участка конструкции должно быть не менее трех [4,6]. Данные представлены в таблице 1.

Во всех косвенных неразрушающих методах контроля прочности для реализации достаточно наличия самого прибора контроля. Трудоемкость состоит непосредственно из измерений того или иного параметра (отскок, скорость ультразвука, диаметр отпечатка и пр.) после выполнения надлежащего количества измерений.

Таблица 1. Сводные данные по методам измерения

№ по рис. 1Метод измеренияСтоимость оборудования, руб.Трудоемкость*, чел/чСтоимость испытания**, руб.
1.2Испытание кернов на прессе490000412000
2.2Отрыв со скалыванием7200015000
3.1Ультразвуковой метод660000,11500
3.2Метод упругого отскока1000000,22500
3.3Метод ударного импульса560000,21500
3.4Метод пластической деформации40000,52000

*Трудоемкость определена по всем операциям с момента начала работ на объекте, учитывая необходимость обработки поверхности и прочие вспомогательные операции, до получения первичных данных о прочности, без работ по оформлению результатов.
**Стоимость указана по результатам опроса специализированных организаций с учетом минимально необходимого по требованиям нормативных документов количества измерений и без учета дополнительных затрат.

Измерение прочности методом пластической деформации характеризуется большей трудоемкостью, так как помимо нанесения отпечатков на поверхность бетона конструкции необходимо производить измерение их диаметров и дальнейший расчет их отношения (при использовании молотка Кашкарова).

Исходя из данных, представленных в таблице 1, можно сделать вывод о том, что приборы третьей группы характеризуются очевидными преимуществами. Они обладают наименьшей трудоемкостью и, соответственно, стоимостью единичного испытания. Величина инвестиций в приобретение оборудования также минимальна по сравнению с методом 1 группы. И сопоставима со стоимостью оборудования 2 группы. Помимо этого все косвенные методы контроля являются полностью «неразрушающими» и не наносят повреждений бетону конструкций при измерениях.

Именно эти факторы являются основной причиной большой популярности методов группы 3 у различных организаций, занимающихся обследованием и испытаниями бетона. Особенно это относится к фирмам, стремящимся минимизировать расходы на оборудование, либо «молодым» организациям, а также к организациям, основной целью которых является не качество выполненной работы.

Правила контроля прочности бетона.

Согласно п. 3.14 ГОСТ 22690 [2], «для определения прочности бетона в конструкциях предварительно устанавливают градуировочную зависимость между прочностью бетона и косвенной характеристикой прочности (в виде графика, таблицы или формулы)». Применение методов упругого отскока, ударного импульса или пластической деформации при обследовании конструкций, бетон которых обладает параметрами, отличающимися от бетона, на котором построена градуировочная зависимость (то есть всегда), возможно только с уточнением данной зависимости. Уточнение зависимости подразумевает испытание бетона методом группы 2 или 1.

Согласно п. 3.16. ГОСТ Р 53231 (вышел новый ГОСТ 18105)[4], использование всех косвенных методов контроля (группа 3) возможно только с построением градуировочной зависимости.

Согласно п. 8.3.1 и Приложению Б СП 13-102 [6], определение прочности бетона выполняется неразрушающими методами в соответствии с ГОСТ 22690 [2], и без построения градуировочной зависимости может быть выполнено только методами отрыва со скалыванием, отрыва, скалывания ребра и по испытанию отобранных образцов.

Иными словами, применять все методы контроля прочности, входящие в группу 3 (рис. 1), без построения градуировочной зависимости НЕЛЬЗЯ, а построение зависимости ведет к неизбежному использованию методов группы 1 или 2. По результатам анализа отчетов сторонних организаций, а также общения с коллегами из различных регионов России можно утверждать, что в отечественной практике обследования указанными нормами пренебрегает большинство организаций. Почему так происходит, описано выше.

Рассмотрим, чем вызвано такое категоричное требование норм по отношению к косвенным неразрушающим методам контроля.

Во-первых, это большая неопределенность (погрешность) результатов измерения фиксируемого параметра. Помимо наличия приборной составляющей погрешности (износ пружины, низкий заряд аккумуляторов и т.п.), которая вносит определенный вклад в результирующую погрешность, превалирующую роль играют многочисленные внешние факторы [8]. К ним относятся:

  • качество обработки поверхности бетона;
  • наличие дефектов (скрытых и явных) в зоне измерения (микротрещины, поры, каверны,расслоения и т.п.);
  • включения крупного заполнителя;
  • наличие арматуры в зоне измерения;
  • повреждение поверхностного слоя (размораживание, промасливание, увлажнение, карбонизацияи другие виды коррозии);
  • сила прижатия датчика (для ультразвукового метода);
  • другие факторы.

Все перечисленные факторы в определенном сочетании имеют место всегда, а минимизация их влияния либо невозможна, либо снижает производительность измерений в разы (например, предварительная шлифовка поверхности бетона).

Во-вторых, даже при сведении к минимуму влияния внешних факторов путем тщательной подготовки и проведения исследований, а также статистической обработки результатов измерений и отбраковки их части, полученный результат не может быть использован без частной градуировочной зависимости для конкретного исследуемого бетона.

Установление градуировочной зависимости, например, для ультразвукового метода, по требованиям п. 3.4 ГОСТ 17624 [3] подразумевает испытание не менее 30 образцов кубов (15 серий по 2 куба в каждой). На большинстве объектов среднего масштаба, а также при выборочном обследовании бетонных конструкций выполнение такого количества прямых испытаний сводит к нулю необходимость применения неразрушающих методов вообще. Помимо этого, получить согласование заказчика на повреждение конструкций (неизбежное при испытаниях) в таком объеме на эксплуатируемых объектах гражданского назначения редко представляется возможным.

Необходимо отметить, что на практике, даже при соблюдении минимального количества образцов для построения градуировочной зависимости, найденная зависимость может оказаться не удовлетворяющей требованиям норм по статистическим параметрам оценки (допустимое среднеквадратическое отклонение, коэффициент вариации). Таким образом, выполненная исследовательская работа может оказаться бесполезной.

Тем не менее, применять косвенные методы неразрушающего контроля можно. Это целесообразно в следующих случаях:

  • когда нет необходимости определять прочность бетона (например, для расчета), а необходимо только оценить ее значение и использовать как один из ряда факторов, характеризующих техническое состояние конструкции (однородность, сплошность и др.), например при обследовании фундаментов по требованиям п. 7.16 ТСН 50-302 [9] и п.5.2.15 ГОСТ Р 53778 [10];
  • когда необходимо качественно выявить зоны неоднородности прочности бетона для дальнейшего применения методов групп 1 и 2 в этих зонах;
  • когда есть возможность и необходимость выполнения комплексных работ и построения частной градуировочной зависимости согласно требованиям ГОСТ.

Учитывая, что методов третьей группы несколько, рассмотрим, какой из них оптимален. Параметры трудоемкости и стоимости имеются в таблице 1. Ниже рассмотрим третий немаловажный фактор – погрешность измерения.

Исследование прочности бетона колодца различными методами

На одном из обследованных в 2011 г объектов автором было проведено исследование, в ходе которого осуществлен контроль прочности бетона тремя косвенными неразрушающими методами с последующим испытанием отобранных образцов. Метод пластической деформации не применялся ввиду его низкой производительности.

Объект представляет собой колодец, выполненный из монолитного железобетона, радиусом 12 м и глубиной 8 м. Бетонирование стен колодца велось захватками, разделяющими колодец по высоте на 8 ярусов. Результаты измерений, выполненных различными методами, представлены в таблице 2. Для измерений использованы следующие приборы: ультразвуковой метод – УКС-МГ4 («СКБ Стройприбор») (рис. 2); метод упругого отскока – Original Schmidt N (Proseq) (рис. 3); метод ударного импульса – ИПС МГ4.03 («СКБ Стройприбор»).

Измерения ультразвуковым методом

Измерения методом упругого отскока

Среднее значение регистрируемых параметров, представленное в таблице, получено по выборке, состоящей из результатов не менее чем 30 единичных измерений. Коэффициент вариации V определен как отношение среднего квадратичного отклонения к среднему значению (математическому ожиданию).

Таблица 2. Результаты исследования прочности бетона колодца различными методами

По данным, представленным в таблице, видно, что наименьшей погрешностью измерения характеризуется ультразвуковой метод. Метод упругого отскока имеет коэффициент вариации приблизительно в 2 раза выше. Разброс результатов измерения методом ударного импульса максимален и характеризуется коэффициентом вариации, превышающим 40%, при среднем значении 31,6%.

Для сопоставления результатов измерений, приведенных в таблице, они представлены в графическом виде на рис. 4. Значения приведены в виде отклонений результата измерения по каждому ярусу от среднего по всем ярусам.

По графикам (рис. 4) можно сделать вывод, что результаты измерений методами ударного импульса и ультразвуковым характеризуются высокой корреляцией и в целом сопоставимы с результатами испытания на прессе. Результаты измерений методом ударного импульса не характеризуются тесной связью ни с другими методами неразрушающего контроля, ни с результатами испытания на прессе.

Выводы и рекомендации.

  1. Для измерения прочности бетона обследуемых конструкций без нарушения требований современных норм можно применять только методы 1 и 2 групп (испытание отобранных образцов и метод отрыва со скалыванием).
  2. Оптимальным по точности, трудоемкости, стоимости и доступности оборудования, универсальности использования и масштабу разрушения конструкции является метод отрыва со скалыванием по ГОСТ 22690 [2].
  3. В случаях, когда поверхностный слой имеет глубокое повреждение, бетон конструкции заморожен, а также требуются наиболее достоверные результаты, необходимо выполнять отбор проб и испытание в лабораторных условиях.
  4. Применение ультразвукового метода и метода ударного импульса целесообразно для приблизительной оценки прочности, а также для выявления зон с отклонением прочности от среднего значения (зон неоднородности бетона).
  5. Из всех косвенных методов неразрушающего контроля рекомендуется использование ультразвукового метода или метода ударного импульса, а при возможности их сочетание, что также рекомендуется в литературе [11,12].

Литература

    . Бетоны. Методы определения прочности по образцам, отобранным из конструкций. . Бетоны. Определение прочности механическими методами неразрушающего контроля. Технические требования. . Бетоны. Ультразвуковой метод определения прочности. . Бетоны. Правила контроля и оценки прочности. (вышел новый ГОСТ 18105) . Бетоны. Ультразвуковой метод определения прочности. . Правила обследования несущих строительных конструкций зданий и сооружений. . Конструкции железобетонные. Магнитный метод определения толщины защитного слоя бетона и расположения арматуры.
  1. Штенгель В.Г. О корректном применении НК в обследованиях железобетонных конструкций длительно эксплуатирующихся сооружений // В мире НК. 2009. No3. С. 56-62. . Проектирование фундаментов зданий и сооружений в Санкт-Петербурге. . Здания и сооружения. Правила обследования и мониторинга технического состояния.
  2. Штенгель В.Г. Общие проблемы технического обследования неметаллических строительных конструкций эксплуатируемых зданий и сооружений // Инженерно-строительный журнал. 2010. No7(17). С. 4-9. . Методические указания по обследованию строительных конструкций производственных зданий и сооружений. Часть 1. Железобетонные и бетонные конструкции.

К.т.н., старший преподаватель А.В. Улыбин
ФГБОУ ВПО Санкт-Петербургский государственный политехнический университет

Любой строительный объект, будь то частный дом, или многоэтажное здание, требует к себе особого внимания. Минимизировать любые риски на строительном объекте можно лишь благодаря строгому контролю, а также проверке качества железобетонных конструкций. Контроль качества бетонных изделий позволяет выявить некачественный материал и при необходимости заменить его, чтобы избежать преждевременного разрушения здания.

Одним из самых важных моментов при проверке качества бетона является построение градуировочной зависимости. В сегодняшнем материале мы расскажем, что это такое и какие данные необходимо знать, чтобы найти и вычислить градуировочную зависимость бетона.

Определение

Градуировочная зависимость бетона – это зависимость, которая связывает между собой косвенную характеристику прочности бетона с прочностью бетона на сжатие. Стоит отметить, что без нее невозможно определить класс бетона.

Испытания прочности могут быть абсолютно любыми, начиная от проверки ультразвуком и заканчивая скалыванием с отрывом. Особой популярностью пользуются именно неразрушающие методы, которые позволяют полностью устранить либо минимизировать повреждения элементов здания во время проверки.

Но, для того чтобы построить градуировочную зависимость, необходимо использовать прямые методы неразрушающего контроля.

Как рассчитать градуировочную зависимость?

Строить градуировочную зависимость нужно для каждого типа бетона, даже если вы приобретаете бетонную смесь или готовое изделие у одного и того же поставщика. При этом, если вы используете одну и ту же марку бетона, но приобретали его у разных поставщиков, вам все равно нужно строить разные градуировочные зависимости. Дело в том, что одна и та же зависимость будет неактуальной для разных поставщиков, так как бетонные смеси могут отличаться по составу, однородности и другим характеристикам.

Градуировочные зависимости прочности бетона устанавливают для каждого вида нормируемой прочности, которые указаны в пункте 4.2 обновленного ГОСТ 18105-2018.

Чтобы построить градуировочную зависимость, нужно выбрать как минимум 12 участков, включая и те, в которых значение косвенного показателя будет минимальным, максимальным, а также примут промежуточное значение. Итоговое же количество участков и их расположение указывается в проектной документации и устанавливается с учётом следующих моментов:

  • основные задачи проверки прочности бетона, его класса и т.д.;
  • тип изделия (балка, стена, колонна, плита);
  • расположение хваток и порядок их бетонирования;
  • наличие и расположение арматуры.

Если выполняется проверка прочности монолитного бетонного изделия, то из каждой партии нужно проверять хотя бы одно изделие. При этом количество проверок должно быть следующее:

6.2.1 При построении градуировочной зависимости по результатам испытаний прочности бетона в конструкциях зависимость устанавливают по единичным значениям косвенного показателя и прочности бетона одних и тех же участков конструкций.

За единичное значение косвенного показателя принимают среднее значение косвенного показателя в участке. За единичное значение прочности бетона принимают прочность бетона участка, определенную прямым неразрушающим методом или испытанием отобранных образцов.

6.2.2 Минимальное число единичных значений для построения градуировочной зависимости по результатам испытаний прочности бетона в конструкциях - 12.

6.2.3 При построении градуировочной зависимости по результатам испытаний прочности бетона в конструкциях не подлежащих испытанию конструкциях или их зонах предварительно проводят измерения косвенным неразрушающим методом согласно требованиям раздела 7.

Затем выбирают участки в количестве, предусмотренном 6.2.2, на которых получены максимальное, минимальное и промежуточные значения косвенного показателя.

После испытания косвенным неразрушающим методом участки испытывают прямым неразрушающим методом или отбирают образцы для испытания по ГОСТ 28570.

6.2.4 Для определения прочности при отрицательной температуре бетона участки, выбранные для построения или привязки градуировочной зависимости, сначала испытывают косвенным неразрушающим методом, а затем отбирают образцы для последующего испытания при положительной температуре или отогревают внешними источниками тепла (инфракрасные излучатели, тепловые пушки и др.) на глубину 50 мм до температуры не ниже 0°С и испытывают прямым неразрушающим методом. Контроль температуры отогреваемого бетона проводят на глубине установки анкерного устройства в подготовленном отверстии или по поверхности скола бесконтактным способом с помощью пирометра по ГОСТ 28243.

Отбраковка результатов испытаний, используемых для построения градуировочной зависимости при отрицательной температуре, допускается только в том случае, если отклонения связаны с нарушением процедуры испытания. При этом отбраковываемый результат должен быть заменен результатами повторного испытания в той же зоне конструкции.

Построение градуировочной зависимости по контрольным образцам

6.3.1 При построении градуировочной зависимости по контрольным образцам зависимость устанавливают по единичным значениям косвенного показателя и прочности бетона стандартных образцов-кубов.

За единичное значение косвенного показателя принимают среднее значение косвенных показателей для серии образцов или для одного образца (если градуировочную зависимость устанавливают по отдельным образцам). За единичное значение прочности бетона принимают прочность бетона в серии по ГОСТ 10180 или одного образца (градуировочная зависимость по отдельным образцам). Механические испытания образцов по ГОСТ 10180 проводят непосредственно после испытаний косвенным неразрушающим методом.

6.3.2 При построении градуировочной зависимости по результатам испытаний образцов-кубов используют не менее 15 серий образцов-кубов по ГОСТ 10180 или не менее 30 отдельных образцов-кубов. Образцы изготовляют в соответствии с требованиями ГОСТ 10180 в разные смены, в течение не менее 3 сут из бетона одного номинального состава, по одной технологии, при том же режиме твердения, что и конструкция, подлежащая контролю.

Единичные значения прочности бетона образцов-кубов, используемых для построения градуировочной зависимости, должны соответствовать ожидаемым на производстве отклонениям, при этом быть в пределах диапазонов, установленных в 6.1.7.

6.3.3 Градуировочную зависимость для методов упругого отскока, ударного импульса, пластической деформации, отрыва и скалывания ребра устанавливают на основе результатов испытаний изготовленных образцов-кубов сначала неразрушающим методом, а затем разрушающим методом по ГОСТ 10180.

При установлении градуировочной зависимости для метода отрыва со скалыванием изготовляют основные и контрольные образцы по 6.3.4. На основных образцах определяют косвенную характеристику, контрольные образцы испытывают по ГОСТ 10180. Основные и контрольные образцы должны быть изготовлены из одного бетона и твердеть в одинаковых условиях.

6.3.4 Размеры образцов следует выбирать в соответствии с наибольшей крупностью заполнителя в бетонной смеси по ГОСТ 10180, но не менее:

- 100х100х100 мм для методов отскока, ударного импульса, пластической деформации, а также для метода отрыва со скалыванием (контрольные образцы);

- 200х200х200 мм для метода скалывания ребра конструкции;

- 300х300х300 мм, но с размером ребра не менее шести глубин установки анкерного устройства для метода отрыва со скалыванием (основные образцы).

6.3.5 Для определения косвенных характеристик прочности проводят испытания согласно требованиям раздела 7 на боковых (по направлению бетонирования) гранях образцов-кубов.

Общее число измерений на каждом образце для метода упругого отскока, ударного импульса, пластической деформации при ударе должно быть не менее установленного числа испытаний на участке по таблице 2, а расстояние между местами ударов - не менее 30 мм (15 мм для метода ударного импульса). Для метода пластической деформации при вдавливании число испытаний на каждой грани должно быть не менее двух, а расстояние между местами испытаний - не менее двух диаметров отпечатков.

При установлении градуировочной зависимости для метода скалывания ребра проводят по одному испытанию на каждом боковом ребре.

При установлении градуировочной зависимости для метода отрыва со скалыванием проводят по одному испытанию на каждой боковой грани основного образца.

6.3.6 При испытаниях методом упругого отскока, ударного импульса, пластической деформации при ударе образцы должны быть зажаты в прессе с усилием не менее (30±5) кН и не более 10% ожидаемого значения разрушающей нагрузки.

6.3.7 Образцы, испытанные методом отрыва, устанавливают на прессе так, чтобы к опорным плитам пресса не прилегали поверхности, на которых проводили вырыв. Результаты испытаний по ГОСТ 10180 увеличивают на 5%.

Проведение испытаний

Общие требования

7.1.1 Число и расположение контролируемых участков в конструкциях должны соответствовать требованиям ГОСТ 18105 и указываться в проектной документации на конструкции или устанавливаться с учетом:

- задач контроля (определение фактического класса бетона, распалубочной или отпускной прочности, выявление участков пониженной прочности и т.п.);

- вида конструкции (колонны, балки, плиты и др.);

- размещения захваток и порядка бетонирования;

Правила назначения числа участков испытаний монолитных и сборных конструкций при контроле прочности бетона приведены в приложении И. При определении прочности бетона обследуемых конструкций число и расположение участков должны приниматься по программе проведения обследования.

7.1.2 Испытания проводят на участке конструкции площадью от 100 до 900 см .

7.1.3 Общее число измерений на каждом участке, расстояние между местами измерений на участке и от края конструкции, толщина конструкций на участке измерений должны быть не менее значений, приведенных в таблице 2 в зависимости от метода испытаний.

Таблица 2 - Требования к участкам испытаний

Наименование метода Общее число измерений на участке Минимальное расстояние между местами измерений на участке, мм Минимальное расстояние от края конструкции до места измерения, мм Минимальная толщина конструкции, мм
Упругий отскок 9 30 50 100
Ударный импульс 10 15 50 50
Пластическая дефомация 5 30 50 70
Скалывание ребра 2 200 - 170
Отрыв 1 2 диаметра диска 50 50
Отрыв со скалыванием при рабочей глубине заделки анкера :
40 мм 1 5h 150 2h
2

7.1.4 Отклонение отдельных результатов измерений на каждом участке от среднего арифметического значения результатов измерений для данного участка не должно превышать 10%. Результаты измерений, не удовлетворяющие указанному условию, не учитывают при вычислении среднего арифметического значения косвенного показателя для данного участка. Общее число измерений на каждом участке при вычислении среднего арифметического должно соответствовать требованиям таблицы 2.

7.1.5 Прочность бетона в контролируемом участке конструкции определяют по среднему значению косвенного показателя по градуировочной зависимости, установленной в соответствии с требованиями раздела 6, при условии, что вычисленное значение косвенного показателя находится в пределах установленной (или привязанной) зависимости (между наименьшим и наибольшим значениями прочности).

7.1.6 Шероховатость поверхности участка бетона конструкций при испытании методами отскока, ударного импульса, пластической деформации должна соответствовать шероховатости поверхности участков конструкции (или кубов), испытанных при установлении градуировочной зависимости. В необходимых случаях допускается зачищать поверхности конструкции.

При использовании метода пластической деформации при вдавливании, если нулевой отсчет снимают после приложения начальной нагрузки, требований к шероховатости поверхности бетона конструкции не предъявляют.

Метод упругого отскока

7.2.1 Испытания проводят в следующей последовательности:

- прибор располагают так, чтобы усилие прикладывалось перпендикулярно испытуемой поверхности в соответствии с инструкцией по эксплуатации прибора;

- положение прибора при испытании конструкции относительно горизонтали рекомендуется принимать таким же, как и при установлении градуировочной зависимости. При другом положении прибора необходимо вносить поправку на показатели в соответствии с инструкцией по эксплуатации прибора;

- фиксируют значение косвенной характеристики в соответствии с инструкцией по эксплуатации прибора;

- вычисляют среднее значение косвенной характеристики на участке конструкции.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.011)

Средние значения прочности , определенные испытанием образов по ГОСТ 10180, и косвенных характеристик , необходимых для опреде­ления этих коэффициентов, рассчитывают по формулам:

где Riф и Hi - соответственно значения прочности и косвенной характерис­тики для отдельных серий по ГОСТ 10180;

N - число серий (или отдельных образцов), использованных для построения градуировочной зависимости.

2. После построения градуировочной зависимости по формуле (3) производят ее корректировку отбраковкой единичных результатов испы­таний, не удовлетворяющих условию

где ST - остаточное среднее квадратическое отклонение, определенное по формуле

где RiH - прочность бетона в i-той серии образцов, определенная по гра­дуировочной зависимости по формуле

После отбраковки градуировочную зависимость устанавливают зано­во по формулам (3-5) по оставшимся результатам испытания.

Погрешность определения прочности бетона по установленной зави­симости оценивают по формуле (9).

то проведение контроля и оценка прочности по полученной зависимости не допускаются.

3. Проверку градуировочной зависимости проводят не реже одного раза в 2 мес.

Для этого изготовляют не менее 6 серий образцов в соответствии с разд. 3 настоящего стандарта.

Для каждой серии образцов определяют единичные значения кос­венной характеристики Нi и прочности бетона по данным испытания на прессе Riф (по ГОСТ 10180).

В соответствии с установленной градуировочной зависимостью по по­лученным косвенным характеристикам определяют прочность бетона. Вычисляют среднее значение косвенных характеристик по формуле

где n - число серий, испытанных для проверки градуировочной зависи­мости.

Затем разделяют испытанные серии образцов, единичные значения косвенной характеристики которых не превышают их среднее значение :

Ко второй группе относятся все остальные серии, т.е. те, у которых

Градуировочная зависимость допускается к дальнейшему примене­нию при одновременном выполнении следующих условий:

1) Разность Riф - RiН не имеет одинакового знака в пяти из шести испы­танных серий образцов.

2) Среднее квадратическое отклонение SП прочности бетона в испытанных сериях, определенное по формуле

не должно превышать более чем в полтора раза среднее квадратическое отклонение используемой градуировочной зависимости

(Измененная редакция).

3) Значение разности (Riф - RiН) не должно иметь одинакового знака для серий образцов первой и второй групп.

При невыполнении хотя бы одного из условий градуировочную зави­симость устанавливают заново.

Пример. Прочность бетона проектного класса по прочности В20 кон­тролируют методом отскока прибором КМ. Для установления зависимос­ти между значениями отскока и прочности бетона было испытано в тече­ние 5 сут. 20 серий образцов-кубов размером 100х100х100 мм (N=20). Средние результаты по каждой серии приведены в табл. 10.


Любой строительный объект, будь то частный дом, или многоэтажное здание, требует к себе особого внимания. Минимизировать любые риски на строительном объекте можно лишь благодаря строгому контролю, а также проверке качества железобетонных конструкций. Контроль качества бетонных изделий позволяет выявить некачественный материал и при необходимости заменить его, чтобы избежать преждевременного разрушения здания.
Одним из самых важных моментов при проверке качества бетона является построение градуировочной зависимости. В сегодняшнем материале мы расскажем, что это такое и какие данные необходимо знать, чтобы найти и вычислить градуировочную зависимость бетона.

Определение

Градуировочная зависимость бетона – это зависимость, которая связывает между собой косвенную характеристику прочности бетона с прочностью бетона на сжатие. Стоит отметить, что без нее невозможно определить класс бетона.
Испытания прочности могут быть абсолютно любыми, начиная от проверки ультразвуком и заканчивая скалыванием с отрывом. Особой популярностью пользуются именно неразрушающие методы, которые позволяют полностью устранить либо минимизировать повреждения элементов здания во время проверки.
Но, для того чтобы построить градуировочную зависимость, необходимо использовать прямые методы неразрушающего контроля.

Рассчитать градуировочную зависимость можно по формуле: R = a*H + b
В данном примере R является прочностью бетонной конструкции, которая обозначается в МПа, Н ‒ это косвенная характеристика, a и b – коэффициенты.
Вычислить коэффициент a можно по следующей формуле:


Строить градуировочную зависимость нужно для каждого типа бетона, даже если вы приобретаете бетонную смесь или готовое изделие у одного и того же поставщика. При этом, если вы используете одну и ту же марку бетона, но приобретали его у разных поставщиков, вам все равно нужно строить разные градуировочные зависимости. Дело в том, что одна и та же зависимость будет неактуальной для разных поставщиков, так как бетонные смеси могут отличаться по составу, однородности и другим характеристикам.
После того, как градуировка построена, необходимо провести ее корректировку. Сделать это можно, отбраковав единичные результаты испытаний.


  • S – это остаточное среднеквадратическое отклонение;
  • Riф ‒ это показатель прочности бетонного изделия в i-м участке, которая определяется прямыми методами. Обозначается в МПа;
  • RiH – это показатель прочности бетонной конструкции в i-м участке. Она определяется исключительно по градуировке. Также обозначается в МПа.


  • основные задачи проверки прочности бетона, его класса и т.д.;
  • тип изделия (балка, стена, колонна, плита);
  • расположение хваток и порядок их бетонирования;
  • наличие и расположение арматуры.
  • 3 на каждую захватку, если изделие плоское;
  • 4 на каждый метр длины изделия, если конструкция плоская и располагается горизонтально;
  • 6 на любую из вертикальных конструкций.


Корректировать градуировочную зависимость нужно как минимум 1 раз в месяц. Для этого нужно приехать непосредственно на сам объект и провести повторные испытания бетона. Далее специалисты выбирают минимальные, средние и максимальные значения, выполняют все необходимые подсчеты и корректируют градуировку.
Получается, что после первой корректировки у нас уже будет 15 испытаний (поскольку при расчете первичной градуировочной зависимости таких испытаний было 12). Максимальное количество испытаний, которое может учитываться в одной зависимости, должно быть не более 20. Выполнив третью корректировку, вы проведете 21 испытание. Соответственно, одно испытание необходимо отбраковать (самое первое), после чего выполнять корректировку градуировочной зависимости.
При дальнейших корректировках также необходимо отбраковывать по 3 предыдущих испытания, чтобы их количество не превышало 20.
Применять установленную градуировочную зависимость для определения прочности бетона можно лишь в тот момент, когда значения косвенной характеристики попадают в диапазон от Hmin до Hmax.
Если же коэффициент корреляции составляет меньше, чем 0,7, или значение Sthm/R ф больше 0,15, то проводить проверку прочности и оценивать качество бетонной конструкции или смеси по полученной зависимости нельзя.

Читайте также: