Последовательность проектирования фундаментов мелкого заложения

Обновлено: 30.04.2024

Расчет фундамента мелкого заложения начинают с предварительного выбора его конструкции и основных размеров, к которым относятся глубина заложения фундамента, размеры и форма подошвы. Затем для принятых размеров фундамента производят расчеты основания по предельным состояниям.

Определение глубины заложения фундамента. Очевидно, что чем меньше глубина заложения фундамента, тем меньше объем затрачиваемого материала и ниже стоимость его возведения, поэтому естественно стремление принять глубину заложения как можно меньшей.

Рис. Схемы напластований грунтов с вариантами устройства фундаментов: 1- прочный грунт; 2-более прочный грунт; 3-слабый грунт; 4-песчанная подушка; 5-зона закрепления

- минимальная глубина заложения фундаментов принимается не менее 0,5 м от спланированной поверхности территории; глубина заложения фундамента в несущий слой грунта должна быть не менее 10. 15 см.

Глубина сезонного промерзания грунтов. df=khdfn, где kh – коэффициент, учитывающий влияние теплового режима сооружения, dfn - нормативная глубина сезонного промерзания грунтов, м.


Определение формы и размеров подошвы фундаментов. Форма подошвы фундамента во многом определяется конфигурацией. При расчетах фундаментов мелкого заложения по второму предельному состоянию (по деформациям) площадь подошвы предварительно может быть определена из условия pП≤R, где pП – среднее давление по подошве фундамента, R – расчетное сопротивление грунта основания.

Центрально нагруженный фундамент. Центрально нагруженным считают фундамент, у которого равнодействующая внешних нагрузок проходит через центр площади его подошвы. Реактивное давление грунта по подошве жесткого центрально нагруженного фундамента принимается равномерно распределенным pII=(NoII+GfII+GgII)/A, где NoII - расчетная вертикальная нагрузка на уровне обреза фундамента; GfIIи GgII - расчетные значения веса фундамента и грунта на его уступах; А - площадь подошвы фундамента. В предварительных расчетах вес грунта и фундамента в объеме параллелепипеда АВСD, в основании которого лежит неизвестная площадь подошвы А, определяется приближенно из выражения GfII+GgIImAd где γm - среднее значение удельного веса фундамента и грунта на его уступах, d – глубина заложения фундамента, м.


А=NoII/(R-γmd). Рассчитав площадь подошвы фундамента, находят его ширину b. Ширину ленточного фундамента, для которого нагрузки определяют на 1 м длины. После вычисления значения b принимают размеры фундамента с учетом модульности и унификации конструкций и проверяют давление. Найденная величина рII должна быть по возможности близка к значению расчетного R.

Внецентренно нагруженный фундамент. Внецентренно нагруженным считают фундамент, у которого равнодействующая внешних нагрузок не проходит через центр тяжести площади его подошвы. При расчете давление по подошве внецентренно нагруженного фундамента принимают изменяющимся по линейному закону, а его краевые значения при действии момента сил относительно одной из главных осей. рmax=(NII/A)(1±6e/b), где NII - суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его уступах; А — площадь подошвы фундамента; е — эксцентриситет равнодействующей относительно центра тяжести подошвы; b — размер подошвы фундамента в плоскости действия момента.

Поскольку при внецентренном нагружении относительно одной из центральных осей максимальное давление на основание действует только под краем фундамента, при подборе размеров подошвы; фундамента его допускается принимать на 20% больше расчетного и сопротивления грунта, т.е. рmax≤1,2R Одновременно среднее давление по подошве фундамента, определяемое как рII=NII/A должна удовлетворять условию pII≤R.

В тех случаях, когда точка приложения равнодействующей внешних сил смещена относительно обеих осей инерции прямоугольной подошвы фундамента, давление под ее угловыми точками находят по формуле. р с max=(NII/A)(1±6ex/l±6ey/b).

Поскольку в этом случае максимальное давление действует только в одной точке подошвы фундамента, допускается, чтобы его значение, удовлетворяло условию р с max≤1,5R.

Проверка давления на подстилающий слой слабого грунта. При наличии и в пределах сжимаемой толщи основания слабых грунтов •или грунтов с расчетным сопротивлением меньшим, чем давление на несущий слой, необходимо проверить давление на них, чтобы уточнить возможность применения при расчете основания теории линейной деформируемости грунтов. Последнее требует, чтобы полное давление на кровлю подстилающего слоя не превышало его расчетного сопротивления, т.е. σzp+ σzg≤Rz




Где σzp и σzg - вертикальные напряжения в грунте на глубине z от подошвы фундамента (соответственно дополнительное от нагрузки фундамент и от собственного веса грунта); Rz - расчетное сопротивление грунта на глубине кровли слабого слоя, величину Rz определяют как для условного фундамента шириной bz, и глубиной заложения dz. Коэффициенты условий работы γС1, γС2 и надежности k, а также коэффициенты Мq, Mc находят применительно к слою слабого грунта. Ширину условного фундамента назначают с учетом рассеивания напряжений в пределах слоя толщиной z. Если принять, что давление действует по подошве условного фундамента АВ, то площадь его подошвы должна составлять Az=NoIIzp, Зная Аz найдем ширину условного прямоугольного фундамента bz=(√Az+a 2 )-a, где а=(1-b)/2 (1 и b длина на и ширина подошвы проектируемого фундамента. Для ленточных фундаментов bzz/1.

Проектирование фундаментов мелкого заложения производится в следую­щей последовательности:

1.выбирают глубину заложения;

2. определяют размеры подошвы;

3. рассчитывают деформации основания;

4. конструируют фундамент;

5. производят расчет фундамента по прочности;

6. армируют фундамент.

ВЫБОР ГЛУБИНЫ ЗАЛОЖЕНИЯ ПОДОШВЫ ФУНДАМЕНТА

Глубина заложения фундамента с/ — это расстояние от поверхности плани­ровки (при срезке грунта) или пола подвала до подошвы фундамента. Подошва фундамента должна опираться на достаточно прочные слои грунта, обеспечи­вающие восприятие нагрузки от фундамента и долговременную эксплуатаци­онную надежность сооружения. Не рекомендуется опирать фундаменты на свеженасыпные, илистые и заторфованные грунты, рыхлые пески и грунты, содержащие растительные остатки. Для надежной передачи нагрузки на осно­вание фундамент заглубляют в несущий слой грунта не менее чем на 10—20 см.

Глубина заложения фундамента принимается с учетом следующего:

1) вида сооружения и его конструктивных особенностей (наличие подва­лов, фундаментов под оборудование);

2) значения и характера нагрузок, действующих на фундамент;

3) глубины заложения фундаментов примыкающих сооружений;

4) инженерно-геологических и гидрогеологических условий площадки;

5)возможности морозного пучения грунта основания при его промерзании.

Определение размеров подошвы центрально-нагруженных фундаментов

Ориентировочная площадь подошвы центрально-нагруженно-го фундамента А определяется исходя из условий равновесия по формуле


где Nm - расчетная нагрузка по II группе предельных состояний, приложенная к обрезу фундамента (в уровне планировочной поверхности земли), кН; R - принятое расчетное сопротивление грунта основания, рассчитанное для условного фундамента с шириной подошвы b = 1 м. утП - осредненное расчетное значение удельного веса грунта и материала фундамента, обычно принимаемое при наличии подвала - 17 кН/м при отсутствии подвала - 20 кН/м 3 . d - глубина заложения фундамента, считая от планировочной отметки или пола здания по грунту, м

По полученным значениям конструируют монолитный фундамент в соответствии с предъявляемыми конструктивными требованиями или выбирают больший ближайший размер блок-подушки сборного фундамента.

Расчет осадок фундаментов

Основными рекомендуемыми нормами (СНиП 2.02.01-83) методами определения конечной осадки фундаментов мелкого заложения являются метод послойного суммирования и метод линейно деформируемого слоя конечной толщины.

Метод послойного суммирования основан на том, что осадка основания фундамента по центральной оси подошвы определяется как сумма осадок отдельных слоев грунта п, на которые разбивается сжимаемая толща Нс в пределах каждого геологического слоя

23. Определение несущей способности свай методом статического зондирования.

Испытание грунта методом статического зондирования проводят с помощью специальной установки, обеспечивающей вдавливание зонда в грунт. При статическом зондировании по данным измерения сопротивления грунта определяют удельное сопротивление грунта под наконечником (конусом) зонда и удельное сопротивление грунта на участке боковой поверхности (муфте трения) зонда. Общее сопротивление зондированию включает сопротивление грунта конусу зонда и сопротивление грунта по муфте трения зонда.

По величине сопротивления погружению (Робщ = Рост + Рбок) судят о несущей способности сваи. Зонд может иметь уширенное относительно трубы остриё и в этом случае определяется только сопротивление под остриём (Рост).

В состав установки для испытания грунта статическим зондированием входят:

зонд (набор штанг и конический наконечник);

устройство для вдавливания и извлечения зонда;

устройства для измерения нагрузки и показателей сопротивления грунта.

Статическое зондирование выполняется путем непрерывного вдавливания зонда в грунт. Показатели сопротивления грунта регистрируются непрерывно или с интервалами по глубине погружения зонда не более 0,2 м. Скорость погружения зонда в грунт составляет (1,2+-0,3) м/мин. Испытание заканчивают после достижения заданной глубины погружения зонда или достижения предельных усилий для применяемого оборудования.

По данным измерений, полученных в процессе испытания, вычисляют значения удельного сопротивления грунта под конусом зонда и удельного сопротивление на муфте трения зонда, после чего строят графики изменения этих величин по глубине зондирования.

При расшифровке графиков статического зондирования выделяют характерные интервалы с одинаковыми или близкими значениями удельного сопротивления грунта под наконечником и на боковой поверхности.

Сопротивление конуса в песках и глинистых грунтах отличаются. В глинах и суглинках удельное сопротивление конуса возрастает медленно, равномерно и редко превышает 4-5 МПа. В песках сопротивление конуса увеличивается с глубиной быстро и скачкообразно и составляет более 5-15 МПа. Удельное сопротивление на боковой поверхности зонда в глинистых грунтах значительно больше, чем в песках, что обусловлено большим удельным сцеплением глин и суглинков.

Статическое зондирование позволяет не только оценить возможность и целесообразность применения свайных фундаментов, но и получить полный объем показателей, необходимых для составления рабочих чертежей свайного фундамента. Применение статического зондирования позволяет во многих случаях минимизировать объем дорогостоящих и трудоемких опытных испытаний свай статической нагрузкой.

Изучить материалы инженерно-геологических, гидрогеологических и геодезических изысканий на площадке будущего строительства. (Обязательно должно быть изучение архивных материалов, особенно в условиях городской застройки.)

Произвести анализ проектируемого здания с точки зрения оценки его чувствительности к неравномерным осадкам.

Определить нагрузки на фундаменты.

Выбрать несущий слой грунта.

Рассчитать предложенные варианты фундаментов по 2-м предельным состояниям (прочность и деформации).

Произвести экономическое сравнение вариантов и выбрать наиболее дешевый.

Произвести полный расчет и проектирование выбранного варианта фундамента.

§1. Фундаменты мелкого заложения

1.1. Основные сведения

К ФМЗ относятся фундаменты, имеющие отношение высоты к ширине подошвы, не превышающее 4, и передающие нагрузку на грунты основания преимущественно через подошву.

ФМЗ возводятся в открытых котлованах или в специальных выемках, устраиваемых в грунтовых основаниях.


Рис 10.1. Схема фундамента мелкого заложения:

1 – фундамент; 2 – колонна; 3 – обрез фундамента.

- ФМЗ по условиям изготовления разделяют на:

монолитные, возводимые непосредственно в котлованах.

сборные, монтируемые из элементов заводского изготовления.

- По конструктивным решениям ФМЗ разделяют на:

отдельно стоящие фундаменты:

под колонну (опору);

под стены (при малых нагрузках)

выполняются под протяженные конструкции (стены);

выполняются под ряды и сетки колонн в виде одинарных или перекрестных лент.

сплошные (плитные) фундаменты

Выполняются в виде сплошной железобетонной плиты, как правило, под тяжелые сооружения. Такие фундаменты разрезаются в плане только осадочными швами, что способствует уменьшению неравномерности осадки сооружения.

Выполняются в виде жесткого компактного железобетонного массива под небольшие в плане тяжелые сооружения (башни, мачты, дымовые трубы, доменные печи, устои мостов и т.п.).


Рис 10.2. Основные типы фундаментов мелкого заложения:

а – отдельный фундамент под колонну; б – отдельные фундаменты под стену; в – ленточный фундамент под стену; г – то же, под колонны; д – то же, под сетку колонн; е – сплошной (плитный) фундамент.

- ФМЗ изготовляют из следующих матреиалов:

каменные материалы (кирпич, бут, пиленные блоки из природных камней)

в отдельных случаях (временные здания) допускается применение дерева или металла.

Железобетон и бетон – основные конструкционные материалы для фундаментов.

Бутовый камень, кирпич и каменные блоки используются для устройства фундаментов, работающих на сжатие и для возведения стен подвалов.

Бутобетон и бетон целесообразно применять при устройстве фундаментов, возводимых в отрываемых полостях или траншеях при их бетонировании в распор со стенками.

Железобетон и бетон можно применять при устройстве всех видов монолитных и сборных фундаментов в различных ИГУ, т.к. они обладают достаточной морозостойкостью, прочностью на сжатие (а для железобетона и на растяжение → действие моментов).

Методические указания разработаны к курсовому проекту по дисциплине «Основания и фундаменты» для студентов специальности 270102 «Промышленное и гражданское строительство» и курсовой работе специальности 270115 «Экспертиза и управление недвижимостью» очной и заочной форм обучения.

Печатаются по решению методического семинара кафедры оснований, фундаментов и испытаний сооружений № 2 от 15.11.2009.

Утверждены и введены в действие проректором по учебной работе В.В. Дзюбо

с 11.01.10 до 11.01.15

Оригинал-макет подготовлен авторами

Подписано в печать Формат 60 90/16. Бумага офсет. Гарнитура Таймс.

Уч.-изд. л. 1,79 . Тираж 200 экз. Заказ №

Изд-во ТГАСУ, 634003, г. Томск, пл. Соляная, 2. Отпечатано с оригинал-макета в ООП ТГАСУ.

634003, г. Томск, ул. Партизанская, 15.

Оценка инженерно-геологических условий

Проектирование фундаментов мелкого заложения для

зданий (расчет оснований по деформациям) .

2.1. Назначение глубины заложения фундаментов.

2.2. Определение размеров подошвы фундаментов.

Проверка прочности подстилающего слоя.

Определение конечных осадок фундаментов.

2.5. Расчет фундаментов по первой группе

Список рекомендуемой литературы.

В настоящих указаниях на примерах показаны основные этапы проектирования фундаментов мелкого заложения для промышленных и гражданских зданий. Основное внимание уделено расчетам оснований фундаментов по деформациям (назначение глубины заложения, определение размеров подошвы фундаментов, конечных осадок и др.). Вопросы расчета устойчивости оснований и прочности конструкций фундаментов не рассматриваются. Для лучшего усвоения материала перед каждым примером даны краткие пояснения к расчетам, а также указаны источники, где можно более подробно с ними ознакомиться.

При подготовке указаний использована Международная система единиц (СИ). В скобках указаны расчетные величины в единицах технической системы (СГС). Основные соотношения между некоторыми единицами физических величин и единицами СИ приведены в приложении.

Задания к курсовому проекту для студентов специальности 270102 «Промышленное и гражданское строительство» всех форм обучения, выполнены в методическом указании «Фундаменты промышленного здания» / Составители А.А. Лобанов, С.В. Батищева. Задания для студентов специальности 270115 «Экспертиза и управление недвижимостью» всех форм обучения к курсовому проекту выдаются преподавателем. Порядок выполнения и защиты проекта указан в задании, которое выдается преподавателем.

1. ОЦЕНКА ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИХ УСЛОВИЙ СТРОИТЕЛЬНОЙ ПЛОЩАДКИ

Оценка инженерно-геологических условий производится с целью выяснения возможности использования грунтов предполагаемой площадки строительства в качестве основания проектируемого здания или сооружения. Для этого необходимо

иметь материалы инженерных изысканий, в которых должны быть указаны формы рельефа, особенности напластования, мощность отдельных пластов грунта, положение уровня грунтовых вод. Должны быть также приведены данные о физикомеханических свойствах грунтов, глубине сезонного промерзания, геологические разрезы и др. [1,18].

В курсовом проекте на основе данных о площадке строительства и физико-механических свойств грунтов (см. задание) необходимо построить геологический профиль строительной площадки, рассмотреть ее строение, определить наименование и состояние отдельных слоев (для глинистых грунтов), степень влажности (коэффициент водонасыщения) и другие показатели.

Для предварительной оценки загружения отдельных слоев основания определяется табличное значение расчетного сопротивления грунта основания R 0 , используя для этого таблицы

1. 5, приложения 3 СНиП 2.02.01–83* [1,18,19].

Сжимаемость основания в пределах площади проектируемого сооружения оценивается по результатам анализа и сопоставления модулей общей деформации грунтов Е 0 (или коэффициентов сжимаемости т 0 ) всех слоев по глубине залегания [7,9,10]. В заключении рассматриваемого раздела курсового проекта дается общая оценка грунтовых условий площадки строительства.

Пример 1. Оценить инженерно-геологические условия строительной площадки. Геологический профиль площадки представлен на рис. 1. 1. Данные о площадке строительства и свойствах грунтов приведены в табл. 1. 1.

Решение. Анализируем грунтовые условия площадки для каждого слоя [1, 18, 19, 3, 8].

Изучить материалы инженерно-геологических, гидрогеологических и геодезических изысканий на площадке будущего строительства. (Обязательно должно быть изучение архивных материалов, особенно в условиях городской застройки.)

Произвести анализ проектируемого здания с точки зрения оценки его чувствительности к неравномерным осадкам.

Определить нагрузки на фундаменты.

Выбрать несущий слой грунта.

Рассчитать предложенные варианты фундаментов по 2-м предельным состояниям (прочность и деформации).

Произвести экономическое сравнение вариантов и выбрать наиболее дешевый.

Произвести полный расчет и проектирование выбранного варианта фундамента

Расчет ФМЗ начинают с предварительного выбора его конструкции и основных размеров (это глубина заложения фундамента и размер его подошвы).

Далее производят расчет по двум предельным состояниям:

I – Расчет по прочности (устойчивость)

II – Расчет по деформациям, которые являются основным и обязательным для всех ФМЗ.

А расчет по I группе предельных состояний является дополнительным и производится в одном из следующих случаев:

Сооружение расположено на откосе (склоне) или вблизи него;

На основание передаются значительные по величине горизонтальные нагрузки;

В основании залегают очень слабые грунты (или текучие и текучепластичные глинистые грунты и т.п.), обладающие малому сопротивлению сдвигу;

В основании залегают наоборот, очень прочные – скальные грунты.

Установив окончательные размеры фундамента, удовлетворяющие двум группам предельного состояния, переходят к его конструированию (курс ЖБК).

1.3.а. Определение глубины заложения фундамента

Очевидно, что чем меньше глубина заложения фундамента, тем меньше объем затрачиваемого материала и ниже стоимость его возведения. Однако при выборе глубины заложения фундамента приходится руководствоваться целым рядом факторов:

Геологическое строение участка и его гидрогеология (наличие воды);

Глубина сезонного промерзания грунта;

Конструктивные особенности здания, включая наличие подвала, глубину прокладки подземных коммуникаций, наличие и глубину заложения соседних фундаментов.

1. Учет ИГУ строительной площадки заключается в выборе несущего слоя грунта. Этот выбор производится на основе предварительной оценки прочности и сжимаемости грунтов. По геологическим разрезам. Все многообразие напластования грунта можно

При выборе типа и глубины заложения фундамента придерживаются следующих общих правил:

Минимальная глубина заложения фундамента принимается не менее 0,5 мот планировочной отметки;

Глубина заложения фундамента в несущий слой грунта должна быть не менее 10-15 см;

По возможности закладывать фундаменты выше УГВ для исключения необходимости применения водопонижения при производстве работ;

В слоистых основаниях все фундаменты предпочтительно возводить на одном грунте или на грунтах с близкой прочностью и сжимаемостью. Если это условие невыполнимо, то размеры фундаментов выбираются главным образом из условия выравнивания осадок.

2. Глубина сезонного промерзания грунта.

Проблема заключается в том, что многие водонасыщенные глинистые грунты обладают пучинистыми свойствами, т.е. увеличивают свой объем при замерзании, за счет образования в них прослоек льда. Замерзание сопровождается подсосом грунтовой воды из ниже лежащих слоев за счет чего толщина прослоек льда еще более увеличивается. Это приводит к возникновению сил пучения по подошве фундамента. Которые могут вызвать подъем сооружения. Последующее оттаивание таких грунтов приводит к резкому их увлажнению, снижению их несущей способности и просадкам сооружения.

Наибольшему пучению подвержены грунты, содержащие пылеватые и глинистые частицы. К непучинистым грунтам относят: крупнообломочный грунт с песчаным заполнителем, пески гравелистые, крупные и средней крупности, глубина заложения фундаментов в них не зависит от глубины промерзания (в любых условиях).


Kh – коэффициент, учитывающий тепловой режим подвала здания.

dfn – нормативная глубина сезонного промерзания грунта


Mt – коэффициент, численно равный ∑ абсолютных значений (-) температур за зиму в данном районе.

do– коэффициент, учитывающий тип грунта под подошвой фундамента.

3. Конструктивные особенности сооружения.

Основными конструктивными особенностями возводимого сооружения, влияющими на глубину заложения его фундамента, являются:

Наличие и размеры подвальных помещений, приямков или фундаментов под оборудование;

Глубина заложения фундаментов примыкающих сооружений;

Наличие и глубина прокладки подземных коммуникаций и конструкций самого фундамента.

Глубина заложения фундамента принимается на 0,2-0,5 м ниже отметки пола подвала (или заглубленного помещения), т.е. на высоту фундаментного блока.

Фундаменты сооружения или его отсека стремятся закладывать на одном уровне.

В других случаях, разность отметок заложения расположенных рядом фундаментов (Δh) не должна превышать:


a – расстояние в свету между фундаментами;

p – среднее давление под подошвой расположенного выше фундамента.

Фундаменты проектируемого сооружения, непосредственно примыкающие к фундаментам существующего, рекомендуется закладывать на одном уровне, либо проведение специальных мероприятий (шпунтовые стены).

Ввод коммуникаций (трубы водопровода, канализации) должен быть заложен выше подошвы

1.3.б Форма и размер подошвы фундамента

Форма бывает любая (круглая, кольцевая, многоугольная, квадратная, прямоугольная, ленточная, табровая, крестообразная и более сложная форма), но, как правило, она повторяет форму опирающейся на нее конструкцию.

Площадь подошвы предварительно может быть определена из условия:

PII – среднее давление под подошвой фундамента от основного сочетания расчетных нагрузок при расчете по деформациям;

R – расчетное сопротивление грунта основания, определяемое по формуле СНиП.


Рис. 10.12. Расчетная схема центрально нагруженного фундамента.

Реактивная эпюра отпора грунта при расчете жестких фундаментов принимается прямоугольной. Тогда из уравнения равновесия:


Сложность в том, что обе части выражения содержат искомые геометрические размеры фундамента. Но в предварительных расчетах вес грунта и фундамента в ABCD заменяют приближенно на:


, где

γm – среднее значение удельного веса фундамента и грунта на его уступах; γm=20 кН/м 3 ;

d – глубина заложения фундамента, м.


- необходимая площадь подошвы фундамента.

Тогда ширина подошвы (b):

а) в случае ленточного фундамента; A=b·1п.м.:


б) в случае столбчатого квадратного фундамента; A=b 2 :


в) в случае столбчатого прямоугольного фундамента:


- задаемся отношением длины фундамента (l) к его ширине (b) (т.к. фундамент повторяет очертание опирающейся на него конструкции).


Отсюда:

После предварительного подбора ширины подошвы фундамента b=f(Ro) необходимо уточнить расчетное сопротивление грунта – R=f(b, φ, c, d, γ).


Зная точное R. Снова определяют b. Действия повторяют, пока два выражения не будут давать одинаковые значения для R и b.

После того. Как был подобран размер фундамента с учетом модульности и унификации конструкций проверяют действительное давление на грунт по подошве фундамента.


Чем ближе значение PII к R, тем более экономичное решение.

1.3.в. Внецентренно нагруженные фундаменты

Давление на грунт по подошве внецентренно нагруженного фундамента принимается изменяющимся по линейному закону, а его краевые значения определяются по формулам внецентренного сжатия.



Учитывая, что ,

Приходим к более удобному для расчета виду:


, где

NII – суммарная вертикальная нагрузка, включая Gf и Gg;

e – эксцентриситет равнодействующей относительно центра тяжести подошвы;

b – размер подошвы фундамента в плоскости действия момента.

Двузначную эпюру стараются не допускать, т.к. в этом случае образуется отрыв фундамента от грунта.

Поскольку в случае действия внецентренного нагружения максимальное давление на основание действует только под краем фундамента, при подборе размеров подошвы фундамента давление допускается принимать на 20% больше расчетного сопротивления грунта, т.е.

, но

В тех случаях, когда точка приложения равнодействующей внешних сил смещена относительно обеих осей фундамента (рис 10.14), давление под ее угловыми точками находят по формуле:



Рис. 10.14. внецентренное загружение фундамента относительно двух главных осей инерции:

а – смещение равнодействующих внешних сил; б – устройство несимметричного фундамента.

Поскольку в этом случае максимальное давление будет только в одной точке подошвы фундамента, допускается, чтобы его значение удовлетворяло условию:


, но при этом проверяются условия:

; - на наиболее нагруженной части.

Порядок расчета внеценренно нагруженного фундамента

Определяют размеры подошвы как для ценрально нагруженного фундамента.

;

Для принятых размеров подошвы определяют краевые напряжения при внецентренном приложении нагрузки



Проверяется условие

Если равнодействующая сил смещена относительно обеих осей, тогда еще определяют краевые напряжения в угловых точках фундамента



5. Проверяют условие

Читайте также: