Панели бетонные стеновые теплопроводность

Обновлено: 28.03.2024

Проведена серия теплотехнических испытаний наружных стеновых панелей нескольких московских домостроительных комбинатов. Основные задачи выполненных работ – выявление и оценка влияния «мостиков холода» на теплотехнические качества наружных стеновых панелей, разработка технических решений по их устранению, апробация теоретических методов расчета теплотехнических характеристик панельных зданий. Результаты теплотехнических

Теплотехнические испытания

Серия теплотехнических испытаний наружных стеновых панелей и фрагментов некоторых узлов проводилась в климатической камере ГУП «НИИМосстрой» (рис. 1).

Сопротивление теплопередаче панелей экспериментально определялось несколькими методами: согласно ГОСТ 26254–84, путем измерения температур и удельных тепловых потоков; прямым методом измерения коэффициента теплопередачи многофункциональным прибором Testo-435 по температурам в четырех выбранных точках и путем измерения температурного поля на поверхности панели прямым контактным методом (рис. 2) или с помощью откалиброванных термограмм.

Температурное поле поверхности панели (оконный проем вырезан). Видны «мостики холода», обусловленные жесткими дискретными связями, петлями и другими теплопроводными включениями

Сопротивление теплопередаче измеряемого фрагмента панели в третьем методе определяется из соотношения R0 пр = R0 эксп · r, где R0 эксп = (tinttext)/ /q эксп – сопротивление теплопередаче в выбранной точке; tint, text и q эксп – экспериментально измеренные температуры внутреннего и наружного воздуха, °C, и удельный тепловой поток, Вт/м 2 . Коэффициент вычисляется как отношение объемов

или оценивается из соотношения r = (tint – τ 0 int) / (tinttint сред ), где τ 0 int – экспериментально измеренная температура на поверхности выбранной точки, в которой определено сопротивление теплопередаче R0 эксп ; τint(x, y) – массив экспериментально измеренных температур поверхности фрагмента панели и tint сред – вычисленная на их основе средняя температура поверхности измеряемого фрагмента панели.

Некоторые результаты испытаний наружных стеновых панелей с гибкими металлическими связями приведены в табл. 1.

Совместно с конструкторами проектных мастерских и технологами-производителями разрабатывались технические решения по устранению наблюдаемых «мостиков холода».

Расчет приведенного сопротивления теплопередаче

Приведенное сопротивление передаче жилого панельного дома рассчитывается по чертежам типового этажа. Проведены расчеты сопротивлений теплопередаче типовых этажей для домов серий 111М, П44, КОПЭ-ПАРУС, П3М. В качестве фрагментов ограждающих конструкций здания выбираются все панели типового этажа, каждая из которых описывается по крайней мере тремя узлами связи с соседними панелями. Теплотехнические двухмерные и трехмерные расчеты узлов конструкций выполнялись путем решения стационарной задачи теплопроводности. Рассмотрим в качестве примера глухую трехслойную железобетонную панель типа МН-7 111М строительной системы. Выделим в ней три типа элементов по размерности их проекций: плоские, линейные и точечные [1–3].

Плоские элементы, суммарной площадью ∑Ai (2) ,– это участки однородной удельной плотности теплового потока – «гладь ограждающей конструкции». Теплотехнические характеристики плоских элементов можно оценить из простых аналитических выражений.

Линейные элементы, суммарной площадью ∑Aj (1) ,– стыки панелей, оконные и дверные откосы и т. д. – элементы, у которых один размер существенно меньше другого и мал по сравнению с размерами рассматриваемого элемента ограждающей конструкции. Линейные элементы могут моделироваться в декартовых координатах в виде двухмерных задач.

Точечные элементы, суммарной площадью ∑Ak (0) ,– металлические связи панелей, шпонки и т. д. – элементы, у которых размеры их проекций на поверхность ограждения малы по сравнению с площадью рассматриваемого фрагмента. Точечные элементы должны моделироваться в декартовых координатах в трехмерном виде, или двухмерном – в цилиндрических координатах. Таким образом, общая площадь панели – фрагмента ограждающей конструкции – A = ∑Ai (2) + ∑Aj (1) + ∑Ak (0) .

Запишем формулы для вычисления приведенного сопротивления теплопередаче панели:

где – приведенная удельная плотность теплового потока, Вт/м 2 ;
tint, text– расчетные температуры внутреннего и наружного воздуха, °C;
qj 2D = (∆qj 2D – q усл ) – величина дополнительных удельных тепловых потерь через линейную теплотехническую неоднородность j-вида, Вт/м 2 ;
qk 3D = (∆qk 3D – q усл ) – величины дополнительных удельных тепловых потерь через точечную теплотехническую неоднородность k-вида, Вт/м 2 .

Условный удельный тепловой поток q усл , Вт/м 2 вычисляется из соотношения: q усл = (tinttext)/R0 усл . Сопротивление теплопередаче панели по «глади» R0 усл , м 2 ·°C/Вт – условное сопротивление теплопередаче, может быть вычислено, как уже отмечалось, аналитически:.

Удельный тепловой поток qj 2D , Вт/м 2 определяется путем двухмерного компьютерного моделирования тепловых процессов для заданной конструкции. Удельный тепловой поток qk 3D , Вт/м 2 определяется путем трехмерного компьютерного моделирования тепловых процессов для заданной конструкции.

Введем величины:
ψj = hj (qj 2D – q усл )/(tinttext), Вт/м 2 ·°C – удельные потери теплоты через j-ю линейную неоднородность и
χk = Ak (0) (qk 3D – q усл )/(tinttext), Вт/°C – удельные потери теплоты через k-ю точечную неоднородность.

Пусть площадь линейного j-элемента ∑Aj (1) = Lj · hj, где Lj – его протяженность; hj – ширина. Тогда приведенное сопротивление теплопередаче панели R0 пр , м 2 ·°C/Вт, записанное в виде выражения (1), удобно представить в виде:

Коэффициент теплотехнической однородности панели r = q усл /q пр = R0 пр /R0 усл .

Теплотехнические двухмерные и трехмерные расчеты выполнены путем решения стационарной задачи теплопроводности в рамках конечно-элементного программного комплекса ANSYS. Граничные условия третьего рода выбирались согласно СНиП 23–02–2003, в виде конвективного теплообмена в узлах: на внутренней поверхности стены с коэффициентом теплоотдачи αint = 8,7 Вт/м 2 ·°C и температурой внутри помещения tint = +20 °C, на внешней поверхности стены αext = 23 Вт/м 2 ·°C и температурой окружающей среды text = –28 °C. В качестве конечных элементов использовались четырехугольные плоские квадратичные элементы PLANE77. Различным элементам конструкции присваивались соответствующие им теплотехнические характеристики материалов. Значения коэффициентов теплопроводностей материалов ограждающих конструкций выбирались согласно СП 23–101–2004: для утеплителя пенополистирола типа «Неопор» λБ = 0,037 Вт/м 2 ·°C; железобетона λБ = 2,04 Вт/м 2 ·°C; металлических связей λБ = 58 Вт/м 2 ·°C; утеплителя «Вилатерм» λБ = 0,06 Вт/м 2 ·°C; цементно-песчаного раствора λБ = 0,93 Вт/м 2 ·°C. Толщины трехслойной железобетонной панели: наружного бетонного слоя – 80 мм, утеплителя – 150 мм, внутреннего бетонного слоя – 170 мм.

Рассматриваемая стеновая панель типа МН-7 имеет два вертикальных стыка с обозначениями «узел 1–2» и «узел 1–4» и два горизонтальных стыка с обозначением «сечение Б–Б». Результаты расчетов распределений температурных полей изображены на рис. 3.

Результаты моделирования распределения температурных полей в двухмерных моделях узла «1–4» (вверху слева), узла «1–2» (вверху справа), «сечения Б–Б» (внизу слева) и трехмерной модели в области металлической связи (внизу справа) трехслойной железобетонной панели

Полученные распределения удельных плотностей тепловых потоков по внешней стороне панели использованы для получения величины удельной плотности теплового потока qj 2D , Вт/м 2 . Интегрирование проводилось в пределах размеров каждого узла и сечения. На рис. 4 приведены результаты расчетов удельной плотности теплового потока на внешней поверхности «сечения Б–Б». Условный удельный тепловой поток q усл характеризуется постоянным значением, но в области горизонтального стыка панелей удельный тепловой поток возрастает, образуя дополнительные удельные тепловые потери ∆qj 2D = (qj 2D – q усл ). Результаты двухмерных расчетов сведены в табл. 2.

Точечные неоднородности, образуемые в области металлической связи панели, моделируются в декартовых координатах в трехмерном виде (рис. 5 и 6). Приведенный удельный тепловой поток, полученный путем трехмерного компьютерного моделирования тепловых процессов в области металлической связи, равен q1 3D = 13,1 Вт/м 2 ; величина χ1 = 0,018, Вт/°C; радиус влияния одной связи rсв = 0,25 м.

В результате расчетов получено, что сопротивление теплопередаче панелей типа МН-7 с утеплителем «Неопор» равно R0 пр = 3,63 (м 2 ·°C)/Вт; сопротивление теплопередач по «глади» R0 усл = 4,34 (м 2 ·°C)/Вт; коэффициент теплотехнической однородности панели r = 0,84. Аналогично проводился расчет для всех панелей типового этажа, и далее вычислялась величина приведенного сопротивления теплопередаче ограждающих конструкций всего здания. Результаты расчетов достаточно хорошо согласуются с данными теплотехнических испытаний панелей.

Рассмотренный теоретический подход определения приведенного сопротивления теплопередаче позволяет определить вклад элементов каждого типа в потери теплоты через ограждающие конструкции здания, выявить наиболее слабые в теплотехническом отношении элементы ограждающих конструкций и принять меры по их утеплению. Результаты выполненных теплотехнических испытаний показали реальную возможность достижения требуемых показателей для наружных стеновых панелей. Показано, что современные методы моделирования тепловых процессов являются мощным инструментарием по улучшению теплотехнических качеств ограждающих конструкций зданий, выявлению и устранению «мостиков холода».

Распределение удельных плотностей теплового потока q, Вт/м 2 на внешней поверхности «сечения Б–Б»

Геометрическая трехмерная модель гибких металлических связей несущей панели 111М строительной системы

Распределение температуры на внутренней поверхности панели в области металлической связи

Литература

  1. ISO 10211:2007 Thermal bridges in building construction – Heat flows and surface temperatures – Detailed calculations.
  2. ISO 14683:2005 Thermal bridges in building construction – Linear thermal transmittance – Simplified methods and default values.
  3. Гагарин В. Г., Козлов В. В. Теоретические предпосылки расчета приведенного сопротивления теплопередаче ограждающих конструкций // Строительные материалы. – 2010. – № 12.

Все иллюстрации приобретены на фотобанке Depositphotos или предоставлены авторами публикаций.


Статья опубликована в журнале “АВОК” за №4'2012

распечатать статью

распечатать статью -->

Обсудить на форуме

Обсудить на форуме


Предыдущая статья


Следующая статья

ПАНЕЛИ СТЕНОВЫЕ ТРЕХСЛОЙНЫЕ ЖЕЛЕЗОБЕТОННЫЕ
С ЭФФЕКТИВНЫМ УТЕПЛИТЕЛЕМ

Общие технические условия

Wall three-layer reinforced concrete panels with energy-efficient insulation.
General specifications

____________________________________________________________________
Текст Сравнения ГОСТ 31310-2005 с ГОСТ 31310-2015 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

* Измененная редакция, Изм. N 1.

Дата введения 2007-06-01

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и МСН 1.01-01-96* "Система межгосударственных нормативных документов в строительстве. Основные положения"

* Документ не был принят на территории Российской Федерации. До 01.10.2003 действовал СНиП 10-01-94. - Примечание изготовителя базы данных.

Сведения о стандарте

1 РАЗРАБОТАН ОАО "Центральный научно-исследовательский и проектный институт жилых и общественных зданий" (ОАО "ЦНИИЭП жилища") и Федеральным государственным унитарным предприятием "Центр методологии нормирования и стандартизации в строительстве" (ФГУП ЦНС)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) (протокол N 28 от 13 октября 2005 г.)

За принятие проголосовали:

Сокращенное наименование органа государственного управления строительством

Агентство регионального развития

4 Приказом Федерального агентства по техническому регулированию и метрологии от 26 апреля 2006 г. N 79-ст межгосударственный стандарт ГОСТ 31310-2005 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2007 г.

5 ВЗАМЕН ГОСТ 11024-84 (в части требований к трехслойным железобетонным панелям)

Информация о введении в действие (прекращении действия) настоящего стандарта публикуется в указателе "Национальные стандарты".

Информация об изменениях к настоящему стандарту публикуется в указателе "Национальные стандарты", а текст изменений - в информационных указателях "Национальные стандарты". В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе "Национальные стандарты"

ВНЕСЕНО Изменение N 1, принятое Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) (протокол N 33 от 22.05.2008). Государство-разработчик Россия. Приказом Федерального агентства по техническому регулированию и метрологии от 09.04.2009 N 133-ст введено в действие на территории РФ с 01.09.2009

Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 6, 2009 год

1 Область применения

Настоящий стандарт распространяется на трехслойные бетонные и железобетонные панели с эффективными утеплителями для наружных стен жилых, общественных и производственных зданий (далее - панели), изготовляемые из тяжелого бетона или легкого бетона на пористых заполнителях. Стандарт устанавливает классификацию, типы, основные параметры панелей, общие технические требования к ним, общие правила их приемки, методы контроля, правила транспортирования и хранения.

Стандарт не распространяется на:

- панели стен помещений с мокрым режимом;

- заполнения оконных и дверных проемов в панелях.

Положения настоящего стандарта являются основополагающими при разработке рабочей документации, в том числе технических условий, на панели конкретных типов.

4 Приказом Федерального агентства по техническому регулированию и метрологии от 17 марта 2016 г. N 166-ст межгосударственный стандарт ГОСТ 31310-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2017 г.

5 ВЗАМЕН 31310-2005*

* Вероятно, ошибка оригинала. Следует читать: ГОСТ 31310-2005. - Примечание изготовителя базы данных.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 3, 2022

1 Область применения

Настоящий стандарт устанавливает классификацию, типы, основные параметры трехслойных стеновых панелей, общие технические требования к ним, общие правила их приемки, методы контроля, правила транспортирования и хранения.

Настоящий стандарт распространяется на трехслойные бетонные и железобетонные панели с эффективными утеплителями (далее - панели), предназначенные для наружных стен жилых, общественных и производственных зданий.

Требования настоящего стандарта не распространяются:

- на составные панели;

- панели стен помещений с мокрым режимом;

- заполнения оконных и дверных проемов в панелях.

Панели, предназначенные для эксплуатации в условиях воздействия агрессивной среды, должны удовлетворять требованиям настоящего стандарта и дополнительным указаниям проектной документации, установленным с учетом действующих нормативных документов и технической документации*.

* В Российской Федерации действует СП 50.13330.2012 "СНиП 23-02-2003 Тепловая защита зданий".

Требования настоящего стандарта следует учитывать при разработке нормативных документов и рабочей документации на панели конкретных типов.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 8.207-76 Государственная система обеспечения единства измерений. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения*

* В Российской Федерации действует ГОСТ Р 8.736-2011 "Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения".

ГОСТ 475-2016 Блоки дверные деревянные и комбинированные. Общие технические условия

ГОСТ 5781-82 Сталь горячекатаная для армирования железобетонных конструкций. Технические условия

ГОСТ 5802-86 Растворы строительные. Методы испытаний

ГОСТ 6727-80 Проволока из низкоуглеродистой стали холоднотянутая для армирования железобетонных конструкций. Технические условия

ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме

ГОСТ 8829-2018 Изделия строительные железобетонные и бетонные заводского изготовления. Методы испытаний нагружением. Правила оценки прочности, жесткости и трещиностойкости

ГОСТ 9573-2012 Плиты из минеральной ваты на синтетическом связующем теплоизоляционные. Технические условия

ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2014 Смеси бетонные. Методы испытаний

ГОСТ 10499-95 Изделия теплоизоляционные из стеклянного штапельного волокна. Технические условия

ГОСТ 10922-2012* Арматурные и закладные изделия, их сварные, вязаные и механические соединения для железобетонных конструкций. Общие технические условия

* В Российской Федерации действует ГОСТ Р 57997-2017 "Арматурные и закладные изделия сварные, соединения сварные арматуры и закладных изделий железобетонных конструкций. Общие технические условия".

ГОСТ 11214-2003 Блоки оконные деревянные с листовым остеклением. Технические условия

ГОСТ 12730.1-78 Бетоны. Методы определения плотности

ГОСТ 12730.2-78 Бетоны. Метод определения влажности

ГОСТ 12730.5-2018 Бетоны. Методы определения водонепроницаемости

ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 16381-77 Материалы и изделия строительные теплоизоляционные. Классификация и общие технические требования

ГОСТ 17177-94 Материалы и изделия строительные теплоизоляционные. Методы испытаний

ГОСТ 17623-87 Бетоны. Радиоизотопный метод определения средней плотности

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 18105-2018 Бетоны. Правила контроля и оценки прочности

ГОСТ 21519-2003 Блоки оконные из алюминиевых сплавов. Технические условия

ГОСТ 21779-82** Система обеспечения точности геометрических параметров в строительстве. Технологические допуски

** В Российской Федерации действует ГОСТ Р 58942-2020.

ГОСТ 21780-2006 Система обеспечения точности геометрических параметров в строительстве. Расчет точности

ГОСТ 22690-2015 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 22950-95 Плиты минераловатные повышенной жесткости на синтетическом связующем. Технические условия

ГОСТ 23009-2016 Конструкции и изделия бетонные и железобетонные сборные. Условные обозначения (марки)

ГОСТ 23166-1999 Блоки оконные. Общие технические условия

ГОСТ 23279-2012 Сетки арматурные сварные для железобетонных конструкций и изделий. Общие технические условия

ГОСТ 24700-99 Блоки оконные деревянные со стеклопакетами. Технические условия

ГОСТ 25097-2002 Блоки оконные деревоалюминиевые. Технические условия

ГОСТ 25820-2014 Бетоны легкие. Технические условия

ГОСТ 26433.1-89*** Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Элементы заводского изготовления

*** В Российской Федерации действует ГОСТ Р 58939-2020.

ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 27005-2014 Бетоны легкие и ячеистые. Правила контроля средней плотности

ГОСТ 28013-98 Растворы строительные. Общие технические условия

ГОСТ 28089-2012 Конструкции строительные стеновые. Метод определения прочности сцепления облицовочных плиток с основанием

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПАНЕЛИ СТЕНОВЫЕ НАРУЖНЫЕ БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ ДЛЯ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ

Общие технические условия

Concrete and reinforced concrete panels for external walls of residential and civil buildings. General specifications

_________________________________________________________________
Текст Сравнения ГОСТ 11024-84 с ГОСТ 11024-2012 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

Дата введения 1985-01-01

1 РАЗРАБОТАН И ВНЕСЕН Государственным комитетом по гражданскому строительству и архитектуре при Госстрое СССР

В.Г.Цимблер, канд. техн. наук (руководитель темы); И.И.Драгилев, канд. техн. наук; К.М.Оганян, канд. техн. наук; А.А.Шеренцис, канд. техн. наук; Л.С.Экслер; Н.С.Стронгин, канд. техн. наук; Н.Я.Спивак, канд. техн. наук; А.В. Цареградский; В.А.Пинскер, канд. техн. наук; Э.О.Кесли; В.Г.Довжик, канд. техн. наук; С.А.Каган, канд. техн. наук; Ю.В.Чиненков, д-р техн. наук; А.А.Евдокимов, канд. техн. наук; Л.И.Карпикова, канд. техн. наук; В.В.Макаричев, канд. техн. наук; К.М.Романовская, канд. техн. наук; Н.В.Морозов, д-р техн. наук; В.А.Камейко, канд. техн. наук; Н.И.Левин, канд. техн. наук; В.И.Деньщиков

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по делам строительства от 12 декабря 1983 г. N 319

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, подпункта

3.6.4, 3.11.5, 3.13.1, 5.12

5. ПЕРЕИЗДАНИЕ (январь 1992 г.) с Изменениями N 1 и 2, утвержденными в ноябре 1985 г., декабре 1987 г. (ИУС 3-86, 4-88)

Настоящий стандарт распространяется на бетонные и железобетонные панели, изготовляемые из легкого бетона, автоклавного ячеистого бетона и тяжелого бетона и предназначенные для наружных стен жилых и общественных зданий.

Панели, предназначенные для эксплуатации в условиях воздействия агрессивной среды, должны удовлетворять требованиям настоящего стандарта и дополнительным указаниям проектной документации, установленным с учетом требований СНиП 2.03.11.

Панели применяют в зданиях с учетом предела огнестойкости стены и предела распространения огня по стене согласно требованиям СНиП 2.01.02, СНиП 2.08.01 и СНиП 2.08.02 в зависимости от требуемой степени огнестойкости здания.

Применение однослойных панелей из автоклавного ячеистого бетона и двухслойных панелей с теплоизоляционным слоем из легкого бетона крупнопористой структуры не допускается в стенах цокольного этажа и технического подполья.

Стандарт не распространяется на панели межвидового применения (полосовой разрезки для общественных и производственных зданий и однорядной разрезки для общественных и вспомогательных зданий промышленных предприятий) в части типов, основных параметров, размеров и условных обозначений панелей, а также на предварительно напряженные панели, сплошные двухслойные панели с теплоизоляционным слоем из автоклавного ячеистого бетона, панели, являющиеся внутренними в составных наружных стенах, и панели для стен помещений с мокрым режимом.

Применяемые в стандарте термины и их пояснения приведены в приложении 1.

(Измененная редакция, Изм. N 1).

1. КЛАССИФИКАЦИЯ

1.1. Панели классифицируют по следующим признакам, характеризующим их типы:

Коэффициент теплопроводности бетона – одна из важных характеристик, учитываемых при проектировании здания. Эта величина применяется в теплотехнических расчетах, позволяющих точно определить минимально допустимую толщину стен.

Значение коэффициента теплопроводности бетона при строительстве зданий

Понятие коэффициента теплопроводности

Эта величина определяет количество тепла, проходимое через единицу объема образца при разнице температур в 1 градус Цельсия. Единица измерения – Вт/(м*C). Чем больше эта характеристика, тем выше способность материала передавать тепло и тем хуже он выполняет функции теплоизолятора.

Бетон имеет неоднородную структуру. Теплопередача определяется компонентами, входящими в состав строительного материала. Наименьшую теплопроводность имеет воздух, который находится в микропорах заполнителей и капиллярах цементного камня. Поэтому чем выше его содержание, тем лучше теплоизоляционные свойства бетонного элемента.

Факторы, влияющие на теплопропускаемость бетона

Из-за неоднородности структуры бетонных конструкций и разных условий эксплуатации коэффициент теплопроводности в этом случае – величина условная. На этот параметр оказывают влияние:

    . Чем плотнее материал, тем ближе друг к другу находятся его частицы, тем быстрее передается тепло. Это значит, что тяжелые бетоны имеют больший коэффициент теплопроводности, по сравнению с легкими (керамзитовыми, вермикулитовыми, перлитовыми).
  • Пористость и структура пор. Чем больше объем, занятый воздухом, тем лучше материал задерживает тепло. Но на теплоизоляционные характеристики влияет не только процентное содержание воздуха, но и размеры, а также замкнутость пор. Лучше всего прохождению тепла препятствуют мелкие замкнутые поры. Крупные поры, которые сообщаются между собой, увеличивают теплопередачу.
  • Влажность. Это еще один фактор, влияющий на коэффициент теплопередачи бетона. Вода способна проводить тепло в 20 раз лучше воздуха. Поэтому увлажненный материал резко теряет теплоизоляционные характеристики. При отрицательных температурах вода в увлажненном слое замерзает, вызывая не только повышенные теплопотери здания, но и быстрое разрушение строительного материала. В таблицах, применяемых при точных теплотехнических расчетах, часто указывают три значения коэффициента теплопроводности – в сухом виде, при нормальной влажности, в увлажненном состоянии.
  • Температура. С повышением температуры коэффициент теплопроводности увеличивается.

Сравнение коэффициента теплопроводности тяжелого бетона, пено- и газобетона, керамзитобетона, фибробетона.

Наиболее высоким коэффициентом теплопроводности обладает тяжелый бетон, армированный стальными стержнями или проволокой (железобетон) – до 2,04 Вт/(м*C). Немного ниже этот показатель у неармированных бетонных элементов.

Более низким коэффициентом теплопроводности и повышенными теплоизоляционными характеристиками обладают: керамзитобетон, изготовленный с использованием кварцевого или перлитового песка, сухой пено- и газобетон. Уровень теплопередачи фибробетона сравним с аналогичным показателем плотного керамзитобетона.

Теплопроводность керамзитобетона

Таблица коэффициентов теплопроводности различных видов бетона

Правильное проведение теплотехнических расчетов позволяет определить оптимальную толщину стен, что обеспечивает уменьшение расходов на отопление и комфортный микроклимат внутри здания.

Читайте также: