Определить относительную деформацию сжатия бетона находящегося при

Обновлено: 24.04.2024

Виды деформаций. Под деформативностью бетона понимается изме­нение его формы и размеров под влиянием различных воздействий (в том числе в результате взаимодействия бетона с внешней средой).

Бетон является упруго-пластическим материалом, в котором, на­чиная с малых напряжений, помимо упругих деформаций (ee), появля­ются и неупругие остаточные или пластические (epl), т.е. полная дефор­мация (eb) без учёта усадки равна:

В бетоне различают деформации двух основных видов: объём­ные, развивающиеся во всех направлениях под влиянием усадки или изменения температуры, и силовые, развивающиеся главным образом в направлении действия сил. Силовым продольным деформациям также соответствуют некоторые поперечные деформации бетона; начальный коэффициент поперечной деформации бетона v равен 0,2 (коэффициент Пуассона). Причём v остаётся практически по­стоянным вплоть до напряжений . При этом относительная продольная деформация будет , апоперечная деформация .

Силовые деформации в зависимости от характера приложения нагрузки и длительности её действия подразделяются на следующие три вида:

- при однократном первичном загружении кратковременной на­грузкой;

- при длительном действии нагрузки;

- при многократном повторяющемся действии нагрузки.

Наибольший практический интерес представляют продольные деформации бетона при осевом сжатии. Для изучения деформативности бетона при сжатии используют бетонные призмы с h/a = 4, чтобы исключить влияние на получаемые результаты сил трения, возникающих между опорными гранями образца и плитами пресса. На боковые грани призм в средней их части по высоте устанавли­вают приборы для замера деформаций (рис. 12, а) или наклеивают электротензодатчики.

Нагрузка к призме прикладывается постепенно по этапам или ступеням (ступень обычно составляет 1/10. 1/20 от ожидаемой раз­рушающей нагрузки). Если деформации на каждой ступени прило­жения нагрузки замерять дважды: первый раз сразу после приложе­ния нагрузки и второй раз через некоторое время после выдержки под нагрузкой (обычно около 5 минут), то на диаграмме полу­чим ступенчатую линию, изображенную на рис. 12, б. Деформации, измеренные сразу после приложения нагрузки, упругие и связаны с напряжениями линейным законом, а деформации, развивающие­ся за время выдержки под нагрузкой, неупругие и на диаграмме имеют вид горизонтальных площадок. При достаточно боль­шом числе ступеней загружения зависимость между напряжениями и деформациями может изображаться плавной кривой (рис. 12, б).

Деформации бетона при однократном первичном загружении кратковременной нагрузкой. Длительность загружения обычно не превышает 60 минут. Диаграмма для этого случая показана на рис. 13.

Степень её криволинейности зависит от продолжительности действия нагрузки, уровня напряжений и класса бетона, т. е. .

В связи с этим целесообразно выделить исходные (эталонные) диаграммы, полученные на стандартных призмах, испытываемых скоростью роста деформаций 2%, а затем уже переходить к кор­ректировке (трансформированию) диаграмм. Такая скорость изме­нения деформаций позволяет достигать вершины диаграммы при­мерно за 1 час.

Если по мере падения сопротивления бетона удаётся в той же мере снижать нагрузку, то может быть получен нисходящий участок диаграммы. Знать как работает бетон на этом участке важно для ряда конструкций и видов нагружения.

Полная относительная деформация при однократном загружении бетонной призмы кратковременно приложенной нагрузкой без учёта усадки бетона равна , т.е. она состоит из упругой части, равной и неупру­гой , которая после снятия нагрузки практически не исчезает. Точнее небольшая доля неупругих деформаций (около 10%) в течение некоторого времени после разгрузки исчезает. Эта часть пластической деформации называется деформацией упруго­го последействия εер. Кроме того, исчезает упругая составляющая пластической деформации εе1,характеризующая обратимое сплю­щивание пустот цементного камня. Таким образом, после разгрузки бетона окончательно остается остаточная деформация, возникаю­щая из-за необратимого сплющивания пустот цементного камня и излома их стенок εрl1 (рис. 13). R2 напряжение в момент, пред­шествующий началу интенсивного разрушения бетона (условная ве­личина).






Рис. 12. К определению продольных деформаций бетона при сжа­тии:

а – опытный образец (призма) с наклеенными на боковых по­верхностях электротензодатчиками; б – диаграмма при при­ложении нагрузки ступенями; 1 – прямая упругих деформаций, 2 – кривая полных деформаций

При невысоких напряжениях ( ) превалируют упругие деформации ( ), а при бетон можно рассмат­ривать как упругий материал. При осевом растяжении диаграмма имеет тот же характер что и при сжатии.

Необходимо обратить внимание на предельные деформации, при которых бетон разрушается (точнее начинает разрушаться). Неза­висимо от режима нагружения за предельное значение деформации бетона принимают величину, соответствующую максимальному на­пряжению. Считают приближенно, что средние значения предель­ных деформаций тяжёлого бетона любого класса составляют при кратковременном действии нагрузки:

- при сжатии еиЬ = 0, 002 (2 мм на 1 м);

- при растяжении еиbt = 0,00015 (0,15 мм на 1 м).

Знание предельных деформаций бетона необходимо, так как от их величин зависит диапазон совместной работы арматуры с бето­ном и эффективность её использования.

Деформации бетона при длительном действии нагрузки. При длительном действии нагрузки (t > 60 минут), даже постоянной, неупругие деформации с течением времени значительно увеличива­ются. В реальных же условиях в процессе строительства зданий и сооружений идёт постепенное ступенчатое нагружение железобетонных элементов.

Нарастание неупругих деформаций при длительном действии на­грузки называется ползучестью бетона. Впервые ползучесть бетона была обнаружена И. Самовичем в 1885 г. Деформации ползуче­сти состоят из двух частей: пластической, протекающей почти од­новременно с упругой, и вязкой, для развития которой требуется определённое время. При длительном загружении бетона постоян­ной нагрузкой, которая меньше разрушающей, диаграмма сжатия выглядит так, как показано на рис. 14, а. Участок 0 - 1 этой диа­граммы соответствует деформации, возникающей при загружении; кривизна этого участка зависит, главным образом, от скорости загружения. Участок 1 - 2 характеризует нарастание неупругих де­формаций при постоянном значении напряжений. Наибольшая ин­тенсивность нарастания деформаций ползучести наблюдается в пер­вые 3. 4 месяца после загружения бетона (рис. 14, б). Они достига­ют к концу этого периода 40. 45% от eupl,через год они составляют приблизительно 65. 75% от eupl,и через два года 80. 90%. Затем на­растание этих деформаций по мере приближения к предельной для данных условий величине eupl постепенно затухает. Замечено, что нарастание деформаций ползучести прекращается одновременно с окончанием нарастания прочности бетона. Опыты показывают, что независимо от того, с какой скоростью достигнуто напряжение σь, конечные неупругие деформации, соответствующие этому напряже­нию, всегда будут одинаковы (рис. 14, в).


Рис. 14. Неупругие деформации бетона в зависимости:

а, б – от длительности действия нагрузки; в – от скорости начального загружения

Деформации ползучести развиваются главным образом в на­правлении действия усилий и могут превышать упругие в 3. 4 раза, т. е. εирlе - 3. 4. Это обстоятельство заставляет с ними считаться при проектировании железобетонных конструкций.

Одновременно с ползучестью развиваются и деформации усадки, т. е.:


(1.13)

Природа ползучести бетона объясняется его структурой, дли­тельным процессом кристаллизации и постепенным уменьшением количества геля при твердении цементного камня. Под нагрузкой происходит постепенное перераспределение напряжений с испыты­вающей вязкое течение гелевой структурной составляющей на кри­сталлический сросток и зёрна заполнителей. Развитию деформаций ползучести способствуют также капиллярные явления, связанные с перемещением в микропорах и капиллярах избыточной воды под нагрузкой. С течением времени процесс перераспределения напря­жений затухает и деформирование прекращается.

Ползучесть бетона условно разделяют на линейную и нелиней­ную. Считают, что линейная ползучесть имеет место при ( напряжение, соответствующее нижней границе микрораз­рушений). В этом случае деформацию ползучести определяют по формуле:


(1.14)

где с – мера ползучести бетона при сжатии .

В практических расчётах используют обычно предельную меру ползучести бетона спр, отнесенную ко времени t → ∞ (практически t = 3. 4 годам). Её значения при для различных сроков загружения бетона приведены в СНиП 2.05.03-84 «Мосты и трубы» в табл. 3.

Обозначим через v= εе/εь коэффициент упругопластичности бетона, а через λ = εpl /εь – коэффициент пластичности бетона, тогда отношение


(1.15)

будет называться характеристикой ползучести бетона φ, которая из­меняется от 0 до 4.

Зависимость между с и φ можно получить из (1.14) и (1.15), учитывая, что , тогда φ = сЕb; φ и с вводятся в расчёт для количественной оценки деформаций линейной ползучести при сжатии.

Величина деформации ползучести зависит от многих факторов.

Загруженный в раннем возрасте бетон (при прочих равных усло­виях) обладает большей ползучестью, чем старый бетон. Ползучесть бетона в сухой среде значительно больше, чем во влажной. Техно­логические факторы также влияют на ползучесть бетона: с увели­чением W/C и расхода цемента на единицу объёма бетонной смеси ползучесть возрастает; с повышением прочности зёрен заполнителя ползучесть уменьшается; с повышением класса бетона ползучесть уменьшается. Бетоны на пористых заполнителях обладают несколь­ко большей ползучестью, чем тяжёлые бетоны. Ползучесть зависит от вида цемента: наибольшей ползучестью обладают бетоны, при­готовленные на шлакопортландцементе или портландцементе. Пол­зучесть тем меньше (при прочих равных условиях), чем больше размеры поперечного сечения бетонного элемента. Максимальные деформации ползу­чести (при прочих равных условиях) достигаются при водонасыщении бетона в пределах 20. 35%. Пропаривание бетона снижает его ползучесть на 10. 20%, а автоклавная обработка – на 50. 80%. Ползучесть бетона оказывает существенное влияние на ра­боту железобетонных конструкций под нагрузкой, что учитывают, например, при расчете внецентренно сжатых элементов, при оценке деформативности конструкций и при определении внутренних уси­лий в статически неопределимых конструкциях.

Деформации бетона при многократно повторяющемся действии нагрузки. Многократное повторение циклов нагрузки и разгрузки бетонного образца приводит к постепенному накоплению неупругих деформаций. Линии нагрузки и разгрузки образуют петлю гистере­зиса, площадь которой характеризует энергию, затраченную за один цикл на преодоление внутреннего трения.

При напряжениях, не превышающих предел выносливости , после достаточно большого числа циклов неупругие дефор­мации бетона, соответствующие данному уровню напряжений, по­степенно выбираются и бетон начинает работать упруго (рис. 15).

При высоких напряжениях после некоторого числа циклов кривая достигает прямолинейного вида, а затем на­чинает искривляться снова, но уже в обратном направлении, т.е. вогнутостью в сторону оси напряжений. Искривление начинается с верхней части прямой (т.е. вблизи наивысшего напряжения) и появ­ляется точка перегиба. При продолжающемся повторении приложении нагрузки точка перегиба опускается всё ниже по кривой, пока не исчезнет. Тогда вся кривая оказывается вогнутой в сторону оси напряжений. При этом остаточные деформации после каждой разгрузки неогра­ниченно растут, а кривая всё больше наклоняется к оси абс­цисс. Петля гистерезиса всё больше увеличивается и, наконец, обра­зец хрупко разрушается.

Физические явления, происходящие в бетоне при повторных нагружениях, близки к явлениям, происходящим при действии очень длительных нагрузок, т.е. длительное нагружение можно рассмат­ривать как многократно повторное с .

При вибрационных нагрузках с большим числом повторений в минуту (200. 600) наблюдается ускоренное развитие ползучести бе­тона, называемое виброползучестью или динамической ползучестью бетона.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 2 500 дидактических материалов для школьного и домашнего обучения

Столичный центр образовательных технологий г. Москва

Получите квалификацию учитель математики за 2 месяца

от 3 170 руб. 1900 руб.

Количество часов 300 ч. / 600 ч.

Успеть записаться со скидкой

Форма обучения дистанционная

  • Онлайн
    формат
  • Диплом
    гособразца
  • Помощь в трудоустройстве

311 лекций для учителей,
воспитателей и психологов

Получите свидетельство
о просмотре прямо сейчас!

КОНТРОЛЬНАЯ РАБОТА ПО ТЕМЕ

«ДЕФОРМАЦИИ. ЗАКОН ГУКА.»

1. Чему равно удлинение медной проволоки длиной 10 м, име­ющей площадь поперечного сечения 20 мм 2 , при продольной нагрузке 500 Н?

2. Под действием растягивающей силы длина стержня изме­нилась от 80 до 80,2 см. Определить абсолютную и относительную деформации стержня.

3. Сравнить твердость двух материалов по способу Бринелля по следующим данным: при действии силы F 1 = 800 H , внедряю­щей шарик в поверхность первого материала, образовался от­печаток площадью S 1 = 16 мм 2 ; при действии силы F 2 = 3000 H на поверхности второго материала образовался отпечаток площадью S2 =20 мм 2 .

1. Стержень длиной 7 м, имеющий площадь поперечного сече­ния 50 мм 2 , при растяжении силой 1 к H удлинился на 0,2 см. Определить модуль Юнга для вещества стержня.

2. При деформации всестороннего сжатия объем шара изме­нился от 50 см 3 до 45 см 3 . Определить абсолютную и относитель­ную деформации шара.

3. Как объяснить с точки зрения молекулярно-кинетической теории явление упругой деформации тел?

2. Стальная пружина под действием силы 100 H удлинилась на 2 см. Какой потенциальной энергией будет обладать пружина при растяжении на 10 см? Деформация упругая.

3. Перечислить различные виды деформаций и привести примеры.

1. При каком наибольшем диаметре стальная проволока под действием силы в 7850 Н разорвется? Напряжение прочности ста­ли, предшествующее разрыву, равно 4-10 8 н/м 2 .

2, Найти нормальное напряжение у основания свободно стоя­щей мраморной колонны высотой 10 м. Плотность мрамора 2700 кг/м 3 ?.

8, При какой наименьшей нагрузке бетонный куб, ребро кото­рого равно 10 см, разрушится, если предельное напряжение проч­ности бетона при сжатии оп=3,4-10 7 Н/м 2 ?

1. Под каким нормальным напряжением находится нижний слой кирпича в кирпичном здании высотой 30 м ? Плотность кир­пича 1800 кг/м 3 ?.

2. Под действием силы 2000 Н пружина сжимается на 4 см. Какую работу необходимо совершить, чтобы сжать эту пружину на 10 см? Деформация пружины упругая.

3. Какую нагрузку можно прилагать к стальному тросу диа­метром 1 см, чтобы обеспечить пятикратный запас прочности? Предельное напряжение стали равно 4-10 8 н/м 2 .

1. При какой величине деформирующей силы стальная про­волока площадью поперечного сечения 10 мм 2 будет испытывать относительную деформацию ε = 10 -4 ? Модуль Юнга для стали E =2, l *10 11 Н/м 2 .

2, Каково должно быть наименьшее сечение стальной прово­локи длиной 4,2 м, чтобы при действии растягивающей силы, равной 10 4 Н, ее абсолютная деформация не превышала 4 мм? Модуль Юнга для стали Е= 2,1 • 10 11 Н/м 2 .

Определить относительное сжатие бетона при нормальном механическом напряжении равном 8 * 10 Па.

Модуль Юнга 40 ГПа.


Я бы решила так :

ε = d / E⇒ε = 8·10⁶ / 40·10⁹ = 0, 2·10⁻³.


На сколько удлинится стальная проволка длиной 2м и диаметром 0, 15 мм под действием силы 2, 25Н?

На сколько удлинится стальная проволка длиной 2м и диаметром 0, 15 мм под действием силы 2, 25Н?

Модуль юнга для стали Е = 200 ГПа.


Выразите нормальное атмосферное давление в гектопаскалях(гПа) помогите пожалуйста?

Выразите нормальное атмосферное давление в гектопаскалях(гПа) помогите пожалуйста.


Выразите нормальное атмосферное давление в гектопаскалях (гПа)?

Выразите нормальное атмосферное давление в гектопаскалях (гПа).


1. Какую силу надо приложить к оси стержня диаметром 0, 4 см, чтобы в нем возникло механическое напряжение 1, 5 * 10 ^ 8 Па?

1. Какую силу надо приложить к оси стержня диаметром 0, 4 см, чтобы в нем возникло механическое напряжение 1, 5 * 10 ^ 8 Па?

2. Длина медного провода диаметром 0, 8 мм равна 3, 6 м.

Под действием силы 25 Н провод удлинился на 2 мм.

Найдите модуль Юнга меди.

3. Провод длиной 5 м и площадью поперечного сечения 2, 5 мм ^ 2 под действием силы 100 Н удлинился на 1 мм.

Определите напряжение, возникшее в проводе, и модуль Юнга.


Балка длиной 5м с площадью поперечного сечения 100см в квадрате под деймтвием сил по 10кН , приложенных к ее концам, сжались на 1 см?

Балка длиной 5м с площадью поперечного сечения 100см в квадрате под деймтвием сил по 10кН , приложенных к ее концам, сжались на 1 см.

Найдите относительное сжатие и механическое напряжение.


1. Какое механическое напряжение возникает у основания бетонной колонны, если её высота 10м?

1. Какое механическое напряжение возникает у основания бетонной колонны, если её высота 10м?

Плотность бетона принять равной 2500 кг / м³.


Груз весом 5 кН висит на стальном тросе диаметром поперечного сечения 28 мм?

Груз весом 5 кН висит на стальном тросе диаметром поперечного сечения 28 мм.

Определите модуль Юнга стали, если относительное удлинение оказалось равным 4 ·.


Вычислите модуль Юнга для латуни, если при механическом напряжении 50 МПа удлинение образца составляет 1, 5 мм?

Вычислите модуль Юнга для латуни, если при механическом напряжении 50 МПа удлинение образца составляет 1, 5 мм.

Начальная длина образца 3 м.


1) Чему равно механическое напряжение, возникающие в стальной проволоке при ее относительном удлинении 0, 004?

1) Чему равно механическое напряжение, возникающие в стальной проволоке при ее относительном удлинении 0, 004?

Модуль Юнга стали 2, 01011 Па.

1) 0, 51014 Па ; 2) 2, 01011 Па ; 3) 1, 6109 Па ; 4) 8, 0108 Па.

2) Запас прочности дерева равен 8.

Это означает, что : 1) предел прочности дерева в 8 раз больше модуля Юнга ; 2) предел прочности дерева в 8 раз меньше модуля Юнга ; 3) допустимое механическое напряжение в 8 раз больше предела прочности ; 4) допустимое механическое напряжение в 8 раз меньше предела прочности.


Выразительно нормальное атмосфере давление в гПа?

Выразительно нормальное атмосфере давление в гПа.


Vo = 3 м / с v = 0 t = 6 c a = ? = = = a = (v - vo) / t = (0 - 3) / 6 = - 0. 5 м / с² v - - - - > X = = = = = = = = = = = = = = = = = = = = = = = = = = =.

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

6.1.14 Значения предельных относительных деформаций тяжелого, мелкозернистого и напрягающего бетонов принимают равными:

при продолжительном действии нагрузки - по таблице 6.10 в зависимости от относительной влажности воздуха окружающей среды.

Относительные деформации тяжелого, мелкозернистого и напрягающего бетона при продолжительном действии нагрузки

Значения предельных относительных деформаций для легких, ячеистых и поризованных бетонов следует принимать по специальным указаниям.

Допускается принимать значения предельных относительных деформаций легких бетонов при продолжительном действии нагрузки по таблице 6.4 с понижающим коэффициентом (здесь - плотность бетона.)

6.1.15 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.11. Значения модуля сдвига бетона принимают равным .

6.1.16 Значения коэффициента ползучести бетона принимают в зависимости от условий окружающей среды (относительной влажности воздуха) и класса бетона. Значения коэффициентов ползучести тяжелого, мелкозернистого и напрягающего бетонов приведены в таблице 6.12.

Значения коэффициента ползучести легких, ячеистых и поризованных бетонов следует принимать по специальным указаниям.

Допускается принимать значения коэффициента ползучести легких бетонов по таблице 6.12 с понижающим коэффициентом .

6.1.18 Значение коэффициента линейной температурной деформации бетона при изменении температуры от минус 40°С до плюс 50°С принимают:

- для тяжелого, мелкозернистого, напрягающего бетонов и легкого бетона при мелком плотном заполнителе;

Значения начального модуля упругости бетона при сжатии и растяжении , , при классе бетона по прочности на сжатие

6.1.19 Диаграммы состояния бетона используют при расчете железобетонных элементов по нелинейной деформационной модели.

В качестве расчетных диаграмм состояния бетона, определяющих связь между напряжениями и относительными деформациями, могут быть использованы любые виды диаграмм бетона: криволинейные, в том числе с ниспадающей ветвью (приложение А), кусочно-линейные (двухлинейные и трехлинейные), отвечающие поведению бетона. При этом должны быть обозначены основные параметрические точки диаграмм (максимальные напряжения и соответствующие деформации, граничные значения и т.д.).

В качестве рабочих диаграмм состояния тяжелого, мелкозернистого и напрягающего бетона, определяющих связь между напряжениями и относительными деформациями, принимают упрощенные трехлинейную и двухлинейную диаграммы (рисунки 6.1, а, б) по типу диаграмм Прандтля.

6.1.20 При трехлинейной диаграмме (рисунок 6.1 а) сжимающие напряжения бетона в зависимости от относительных деформаций укорочения бетона определяют по формулам:

5.3.3 Предельное усилие, воспринимаемое железобетонным элементом при образовании нормальных трещин, следует определять исходя из расчета железобетонного элемента как сплошного тела с учетом упругих деформаций в арматуре и неупругих деформаций в растянутом и сжатом бетоне при максимальных нормальных растягивающих напряжениях в бетоне, равных расчетным значениям сопротивления бетона осевому растяжению Rbt,ser.

5.3.4 Расчет железобетонных элементов по образованию нормальных трещин по нелинейной деформационной модели производят на основе диаграмм состояния арматуры, растянутого и сжатого бетона и гипотезы плоских сечений. Критерием образования трещин является достижение предельных относительных деформаций в растянутом бетоне.

5.3.5 Предельное усилие, которое может быть воспринято железобетонным элементом при образовании наклонных трещин, следует определять исходя из расчета железобетонного элемента как сплошного упругого тела и критерия прочности бетона при плоском напряженном состоянии "сжатие-растяжение".

5.4 Требования к расчету железобетонных элементов по раскрытию трещин

5.4.1 Расчет железобетонных элементов производят по раскрытию различного вида трещин в тех случаях, когда расчетная проверка на образование трещин показывает, что трещины образуются.

5.4.2 Расчет по раскрытию трещин производят из условия, по которому ширина раскрытия трещин от внешней нагрузки acrc не должна превосходить предельно допустимого значения ширины раскрытия трещин acrc,ult.

5.4.3 Ширину раскрытия нормальных трещин определяют как произведение средних относительных деформаций арматуры на участке между трещинами и длины этого участка. Средние относительные деформации арматуры между трещинами определяют с учетом работы растянутого бетона между трещинами. Относительные деформации арматуры в трещине определяют из условно упругого расчета железобетонного элемента с трещинами с использованием приведенного модуля деформации сжатого бетона, установленного с учетом влияния неупругих деформаций бетона сжатой зоны, или по нелинейной деформационной модели. Расстояние между трещинами определяют из условия, по которому разность усилий в продольной арматуре в сечении с трещиной и между трещинами должна быть воспринята усилиями сцепления арматуры с бетоном на длине этого участка.

Ширину раскрытия нормальных трещин следует определять с учетом характера действия нагрузки (повторяемости, длительности и т.п.) и вида профиля арматуры.

5.4.4 Предельно допустимую ширину раскрытия трещин acrc,ult следует устанавливать исходя из эстетических соображений, наличия требований к проницаемости конструкций, а также в зависимости от длительности действия нагрузки, вида арматурной стали и ее склонности к развитию коррозии в трещине (с учетом СП 28.13330).

5.5 Требования к расчету железобетонных элементов по деформациям

5.5.1 Расчет железобетонных элементов по деформациям производят из условия, по которому прогибы или перемещения конструкций f от действия внешней нагрузки не должны превышать предельно допустимых значений прогибов или перемещений fult.

5.5.2 Прогибы или перемещения железобетонных конструкций определяют по общим правилам строительной механики в зависимости от изгибных, сдвиговых и осевых деформационных характеристик железобетонного элемента в сечениях по его длине (кривизна, углы сдвига и т.д.).

5.5.3 В тех случаях, когда прогибы железобетонных элементов в основном зависят от изгибных деформаций, значения прогибов определяют по кривизнам элементов или по жесткостным характеристикам.

Кривизну железобетонного элемента определяют как частное деления изгибающего момента на жесткость железобетонного сечения при изгибе.

Жесткость рассматриваемого сечения железобетонного элемента определяют по общим правилам сопротивления материалов: для сечения без трещин - как для условно упругого сплошного элемента, а для сечения с трещинами - как для условно упругого элемента с трещинами (принимая линейную зависимость между напряжениями и деформациями). Влияние неупругих деформаций бетона учитывают с помощью приведенного модуля деформаций бетона, а влияние работы растянутого бетона между трещинами - с помощью приведенного модуля деформаций арматуры.

Расчет деформаций железобетонных конструкций с учетом трещин производят в тех случаях, когда расчетная проверка на образование трещин показывает, что трещины образуются. В противном случае производят расчет деформаций как для железобетонного элемента без трещин.

Кривизну и продольные деформации железобетонного элемента также определяют по нелинейной деформационной модели исходя из уравнений равновесия внешних и внутренних усилий, действующих в нормальном сечении элемента, гипотезы плоских сечений, диаграмм состояния бетона и арматуры и средних деформаций арматуры между трещинами.

5.5.4 Расчет деформаций железобетонных элементов следует производить с учетом длительности действия нагрузок, устанавливаемых соответствующими нормативными документами.

При вычислении прогибов жесткость участков элемента следует определять с учетом наличия или отсутствия нормальных к продольной оси элемента трещин в растянутой зоне их сечения.

5.5.5 Значения предельно допустимых деформаций принимают в соответствии с указаниями 8.2.20. При действии постоянных и временных длительных и кратковременных нагрузок прогиб железобетонных элементов во всех случаях не должен превышать 1/150 пролета и 1/75 вылета консоли.

6 Материалы для бетонных и железобетонных конструкций

6.1 Бетон

6.1.1 Для бетонных и железобетонных конструкций, проектируемых в соответствии с требованиями настоящего свода правил, следует предусматривать конструкционные бетоны:

Читайте также: