Определение прочности кирпича неразрушающим методом гост

Обновлено: 24.04.2024

Собственно интересуют приборы неразрушающего контроля для определения прочности камня и раствора.

Какими кто пользуется, каковы области применения?

Пытался найти на сайте ВНИРа, ничего вразумительного не нашел.
Делать лабораторию не всегда удобно, а оценить прочности раствора и кладки по действующим ГОСТам надо очень часто.

Для кирпича cклерометр типа N (proceq), для раствора склерометр типа Pm!
Можно пользоваться ИПС, но я ему не очень доверяю!

Но в любом случае, если обследование проводится для проектных нужд (с изменением нагрузок), необходимо отбирать образцы и испытывать в прессе!

Но в любом случае, если обследование проводится для проектных нужд (с изменением нагрузок), необходимо отбирать образцы и испытывать в прессе!

Формально нет такой необходимости. В СП написано чётко: неразрушающие методы по ГОСТ или разрушающие опять же по ГОСТ.
На практике согласен - только так можно определить реальные характеристики

Не всегда лабораторию делать удобно, а учитывая что каменные конструкции обычно имеют значительный запас по нагрузке, достаточно хотя бы ориентировочное определение марок, скажем М100-М150 для камня и М25-М50 для раствора.

Можно ли "стукачами" добиться такой погрешности? Формально опять же да. А на практике?

И еще один насущный вопрос: как то надо отбивать деньги заказчика, т.к. в техзадании заложена инструменталка

P.S.
Склерометр N - для бетона.
По керамике нашел молоток LB.
Для раствора PM маятниковый насколько я понял?
А для силикатного кирпича?
Как быть с щелевым глиняным кирпичом? Как учесть пустоты?

Да, прочность кладки нынче определять дорого - 1 прибор на керамику. 1 на силикат, 1 на раствор.

Есть ли разница при использовании LB щелевой кирпич или нет?

Кстати обратившись вновь к СП, обратил внимание что про неразрушающие методы для каменных конструкций ДЕЙСТВИТЕЛЬНО ничего не написано . Возникает вопрос, в соответствии с какими ГОСТами производятся измерения всеми этими молотками шмидта. И есть ли такие ГОСТы вообще?

Обследование зданий и сооружений

На сколько мне известно гостированна только одна методика неразрушающего контроля кирпича силикатного ультразвуком.

Написано, что в определенных случаях допускается оценивать неразрушающими методами. А какими не написано .. Оригиналы однако.
Если при обследовании прочность кладки имеет решающее значение - лаборатория.


SomeBody, Видимо речь о ГОСТ 24332.

Тогда возникает резонный вопрос: на каком основании в РФ реализуются данные склерометры и прочие молотки фидзеля, тарированные на кладку?

Все-таки наверно что-то есть, надо только найти

Обследование зданий и сооружений

У нас в городе есть институт в котором применяют молотки по кладке, так вот они ссылаются при испытаниях на методику разработанную в Лененграде. В которой написано что нужно делать таррировку показаний молотков по испытания на прессе.

А все молотки просто молотят без каких либо на то ГОСТов (точно также по таррировкам в лабораториях своих).

Провел некоторые изыскания по приборам:
1. ИПМ-1Э – бетон , стяжка , строительная керамика. Дешево
2. Beton Pro Condtrol – бетон, раствор, кирпич. Однако название нам как бэ намекает…. Дешево.
3. ОНИКС-2.5 – бетон, “контроль?” кирпича, раствора. Средней ценовой категории.
4. ИПС-МГ4 и ИПС-МГ4+. В чем разница не понял… - бетон, раствор, силикатный и керамический кирпич. При сравнительно низкой цене. (Находка обследователя)
5. УКС-МГ4С – бетон и силикат ультразвуком. Средней ценовой категории.
6. Молоток Шмидта электронный модель PC L – бетон, строительный раствор, камень. Средняя ценовая категория.
7. Молоток Шмидта модель PM – раствор. Дорого.
8. Молоток Шмидта модель LB – из обожженной глины. Средней ценовой категории.
При этом напрашивается следующее,
1. Что касается кладки, ГОСТирован только УКС-МГ4С и только для силиката!
2. В описании к некоторым приборам вероятно, в рекламных целях, добавили кирпич и раствор, а на деле он ничего этого не делает
3. Если реально определяет некие прочностные характеристики кладки, но не по ГОСТу, то какой в этом смысл? Никуда не приложишь

Вот такие пироги

Somebody, ну если продают такие приборы, наверно тарировку производитель делал, график к прибору предоставляют?
Или мне надо покупать молоток, потом самому делать тарировку, строить зависимость и только тогда работать?

Обследование зданий и сооружений

Да вы правы производителе предоставляют тарировки, но они испытывают (скорее всего) кирпич с завода (то есть новый марочный без эксплуатационных дефектов). А вам по хорошему придется еще и самому делать таррировку, но для поверхностной оценки пойдут и зоводские.

4. ИПС-МГ4 и ИПС-МГ4+. В чем разница не понял… - бетон, раствор, силикатный и керамический кирпич. При сравнительно низкой цене. (Находка обследователя)

Посмотрел на сайте производителя. Отличие в том, что тот что с плюсом сам выдаёт класс бетона, имеется подстветка и помоему к ниму больше тарировочных зависимостей идет

ЗЫ
ИПМ-1Э не очень хочется, ибо ВНИРовский, а о качестве произведенных ими приборов можно слогать легенды

Прочность кладки можно проверить методом отрыва по ГОСТ 24992-81
такой прибор есть у "Стройприбор" Челябинск, называтся ПСО-10МГ4КЛ и ПСО-30МГ4КЛ

Прочность кладки можно проверить методом отрыва по ГОСТ 24992-81
такой прибор есть у "Стройприбор" Челябинск, называтся ПСО-10МГ4КЛ и ПСО-30МГ4КЛ

Але, этим прибором определяется прочность сцепления кирпича с раствором.
читаем название ГОСТа


Вобщем разговаривал с директором Челябинского "Стройприбора"
Могу доложить следующее:
1. При неразрушающем контроле при помощи ИПС-МГ4, да и остальными приборами (кроме вырыва со скалыванием)
обязательно надо делать уточнение базовой тарировочной зависимости. Например делать 3-5 скалываний, затем стучать, строить фактический график и вносить изменения. (касается и бетона)
2. Прочность растворных швов кладки не определяет за счет того, что шов утоплен на несколько мм и ссотв. энергия удара будет другая + неровная поверхность самого шва. Можно стучать стяжку, штукатурку и т.д.

Соответственно смысл применять приборы есть когда параллельно делаешь вырыв со скалыванием. Например при больших объёмах работ (сделал по 3 вырыва на каждом участке и обстучал по выявленной тарировочной зависимости).
В заключении предоставлять акт сверки.

Определить прочность кирпичной кладки участка стены прибором ИПС-МГ4 - просто. Нужно просто уметь ручками проводить вскрытия,а точнее - подготавливать участки стены под вскрытия. По подготовленному участку, а точнее - нескольким, расположенным по методике для метода отрыва, отстукивание и проводится. Хреново, что нужно Знать, где и как провести испытания,разобраться в приборе и натюкать им не менее десятка объектов для сбора статистики. Понимать, чем занимаешься - и зачем. Зачищенный растворный шов пробивает с погрешностью 5-10%, кирпич так же. Настроил один раз правильно и погнал. Со свежей кладкой проще - швы зачищаются отрезной, чуть захватывая кирпич, бьется нужное количество раз на участке и раствор и кирпич. Старая кладка готовится методами, близкими к археологическим, значитца - дольше.
Пистолет весит 900 грамм. Пару испытаний на каждую стенку, два-три на каждый элемент, согласно ГОСТа. Можно им (читай - ИПСом) работать. Учитывая арматуру, которую предварительно нужно найти - прибор нужен. 15 поднятий с передергиванием затвора на участок. Минимум сотня на этаж. 14 тонн. Не так прижал - может быть безрезультатно. Тихая, кабинетная работа в офисе, с офигительной зарплатой. Какая, нафиг, качалка. Обследователи и проектировщики - два разных типа людей, специфика, видете ли, правда, данных всегда мало. Инфы много не бывает.
С бетоном история темная, весь бетон у нас в стране , сцуко, разный. Мотался года 3 от Питера до Читы, все результаты в разные времена года при различном состоянии бетона - разные, но загоняй в расчетный софт обмеры в электронке с заданными характеристиками и все. Правда,нужно уметь пользоваться той же Лирой, причем правильно. Тащить из другого города образцы в лабораторию со всех положенных вскрытий - это нужно грузовичокс, типа джип. Если честно, одни обмеры в электронке чего стоят, а это сумма всех размеров здания помноженная на 10 пешкодралом + более-менее хороший ноут для графики. Дорого нынче обследование и определение прочности кирпичной кладки )).
Естественно, что просто тюкнуть и сделать волшебным образом выводы + получить правильно оформленный отчет с более-менее реальными результатами не получится)). Да и зданий одинаковых не попадалось, все, сцуко, даже типовые - разные.

КИРПИЧ, КАМНИ, БЛОКИ И ПЛИТЫ ПЕРЕГОРОДОЧНЫЕ СИЛИКАТНЫЕ

Общие технические условия

Silicate bricks, stones, blocks and partition blocks. General specifications

Дата введения 2015-10-01

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Некоммерческим партнерством "Ассоциация производителей силикатных изделий" (НП "АПСИ"), ОАО НИЦ "Строительство" - ЦНИИСК им.Кучеренко, Обществом с ограниченной ответственностью "ВНИИСТРОМ "Научный центр керамики" (ООО "ВНИИСТРОМ "НЦК")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 января 2015 г. N 74-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 9 апреля 2015 г. N 246-ст межгосударственный стандарт ГОСТ 379-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 октября 2015 г.

1 Область применения

Настоящий стандарт распространяется на силикатные кирпич, камни, блоки и плиты перегородочные (далее - изделия), изготовляемые способом прессования увлажненной смеси из кремнеземистых материалов и извести или других известесодержащих компонентов с применением пигментов, легких заполнителей и без них и последующим твердением в условиях гидротермальной обработки в автоклаве.

Силикатные изделия применяют для кладки и облицовки несущих, самонесущих и ненесущих стен и других элементов жилых, общественных и производственных зданий и сооружений.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 162-90 Штангенглубиномеры. Технические условия

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 530-2012 Кирпич и камень керамические. Общие технические условия

ГОСТ 3344-83 Щебень и песок шлаковые для дорожного строительства. Технические условия

ГОСТ 3560-73 Лента стальная упаковочная. Технические условия

ГОСТ 3749-77 Угольники поверочные 90°. Технические условия

ГОСТ 7025-91 Кирпич и камни керамические и силикатные. Методы определения водопоглощения, плотности и контроля морозостойкости

ГОСТ 8273-75 Бумага оберточная. Технические условия

ГОСТ 8462-85 Материалы стеновые. Методы определения пределов прочности при сжатии и изгибе

ГОСТ 8736-2014 Песок для строительных работ. Технические условия

ГОСТ 9179-77 Известь строительная. Технические условия

ГОСТ 10354-82 Пленка полиэтиленовая. Технические условия

ГОСТ 15846-2002 Продукция, отправляемая в районы Крайнего Севера и приравненные к ним местности. Упаковка, маркировка, транспортирование и хранение

ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 23421-79 Устройство для пакетной перевозки силикатного кирпича автомобильным транспортом. Основные параметры и размеры. Технические требования

ГОСТ 24332-88 Кирпич и камни силикатные. Ультразвуковой метод определения прочности при сжатии

ГОСТ 25592-91 Смеси золошлаковые тепловых электростанций для бетонов. Технические условия

ГОСТ 25951-83 Пленка полиэтиленовая термоусадочная. Технические условия

ГОСТ 26644-85 Щебень и песок из шлаков тепловых электростанций для бетона. Технические условия

ГОСТ 27296-2012 Здания и сооружения. Методы измерения звукоизоляции ограждающих конструкций

ГОСТ 28574-2014 Защита от коррозии в строительстве. Конструкции бетонные и железобетонные. Методы испытаний адгезии защитных покрытий

ГОСТ 30244-94 Материалы строительные. Методы испытаний на горючесть

ГОСТ 32496-2013 Заполнители пористые для легких бетонов. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 силикатный одинарный кирпич: Силикатное изделие в форме прямоугольного параллелепипеда с номинальными размерами 250x120x65 мм.

3.2 силикатный утолщенный (полуторный) кирпич: Силикатное изделие в форме прямоугольного параллелепипеда с номинальными размерами 250x120x88 мм.

3.3 силикатный камень: Силикатное изделие в форме прямоугольного параллелепипеда с номинальными размерами 250x120x138 мм.

3.4 силикатный блок: Силикатное изделие в форме прямоугольного параллелепипеда с шириной тычка более 130 мм.

3.5 перегородочная силикатная плита: Силикатное изделие в форме прямоугольного параллелепипеда с шириной тычка не более 130 мм и высотой более 138 мм.

3.6 полнотелое изделие: Изделие, в котором отсутствуют пустоты.

3.7 пустотелое изделие: Изделие, имеющее сквозные и несквозные пустоты различной формы и размеров.

3.8 лицевые кирпич и камень: Кирпич и камень, обеспечивающие эксплуатационные характеристики кладки и выполняющие декоративные функции.

3.9 рядовые кирпич и камень: Кирпич и камень, обеспечивающие эксплуатационные характеристики кладки.

3.10 декоративный кирпич: Кирпич с нанесенным на лицевую поверхность декоративным покрытием (краски, глазури, полимерного материала и др.).

3.11 колотый кирпич: Кирпич с рельефной поверхностью грани, получаемой путем раскалывания полнотелого кирпича.

Примечание - Лицевая поверхность колотого кирпича может быть гидрофобизирована составами, уменьшающими его водопоглощение.

3.12 рустированный кирпич: Кирпич с поверхностью граней под природный камень, полученной в процессе механической обработки.

Примечание - Лицевая поверхность рустированного кирпича может быть гидрофобизирована составами, уменьшающими его водопоглощение.

3.13 объемно окрашенный кирпич: Кирпич, в котором красящий пигмент распределен по всему объему.

3.14 фактурный кирпич: Кирпич с лицевой поверхностью, получаемой путем механической обработки (колотый и рустированный кирпич).

3.15 пазогребневое соединение: Соединение, при котором гребень (вертикальный выступ) на тычке одного блока или перегородочной плиты, входит в вертикальный паз (вертикальную выемку) на тычке другого блока или другой перегородочной плиты.

3.16 половняк/бой: Части изделия, образовавшиеся при его раскалывании.

Примечание - Изделие, имеющее трещину, проходящую через всю высоту изделия и протяженностью свыше половины ширины изделия, относят к половняку.

3.17 отбитость: Механическое повреждение грани, ребра, угла изделия.

3.18 трещина: Разрыв изделия без нарушения его целостности.

3.19 проколы постели пустотелых изделий: Дефекты пустотелых изделий по несквозным пустотам, приводящие к разрушению постели изделий и образованию сквозных отверстий.

3.20 шелушение: Разрушение изделия в виде отслоения от его поверхности тонких пластинок.

3.21 постель: Рабочая грань изделия, расположенная параллельно основанию кладки (см. рисунки 1-3).

3.22 ложок: Наибольшая грань изделия, расположенная перпендикулярно к постели (см. рисунки 1-3).

3.23 тычок: Наименьшая грань изделия, расположенная перпендикулярно к постели (см. рисунки 1-3).

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КИРПИЧ И КАМНИ СИЛИКАТНЫЕ

Ультразвуковой метод определения прочности при сжатии

Silica bricks and stones. Ultrasonic method of compressive strength determination

ОКП 57 4120; 57 4124

Дата введения 1989-07-01

1. РАЗРАБОТАН И ВНЕСЕН Министерством промышленности строительных материалов СССР

Л.А.Дикарев, канд. техн. наук (руководитель темы); А.С.Бычков, канд. техн. наук (руководитель темы); Г.Н.Бабикова; Л.А.Хохлова; М.И.Шиманская; И.Н.Нагорняк

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 15.08.88 N 162

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ (НТД)

Обозначение НТД, на который дана ссылка

Номер пункта, подпункта, приложения

3.3.5, приложения 2-5

ВНЕСЕНА поправка, опубликованная в ИУС N 1, 1990 год

Поправка внесена изготовителем базы данных

Настоящий стандарт распространяется на рядовые и лицевые кирпич и камни силикатные, изготовленные способом прессования (далее - изделия), и устанавливает ультразвуковой импульсный метод (далее - ультразвуковой метод) определения предела прочности при сжатии (далее - прочности) этих изделий.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Ультразвуковой метод применяют для определения прочности изделий при их приемке техническим контролем предприятия-изготовителя, а также при контрольной проверке качества изделий государственными и ведомственными инспекциями по качеству или потребителем.

1.2. Ультразвуковой метод основан на связи между временем распространения ультразвуковых колебаний в изделии и его прочностью.

1.3. Ультразвуковые измерения в изделиях проводят способом сквозного соосного прозвучивания согласно черт.1 и 2.

Схемы расположения преобразователей

Кирпич


Камень (кирпич) пустотелый


1.4. Прочность изделий определяют по экспериментально установленным градуировочным зависимостям первого и (или) второго типа.

Градуировочную зависимость первого типа устанавливают по результатам ультразвуковых измерений горячих образцов непосредственно после автоклавирования и механических испытаний тех же образцов после их остывания не менее чем через 24 ч.

Градуировочную зависимость второго типа устанавливают по результатам ультразвуковых измерений остывших образцов не менее чем через 24 ч после автоклавирования и механических испытаний тех же образцов.

Градуировочную зависимость первого типа устанавливают для определения прочности изделий в производственных условиях. Градуировочную зависимость второго типа устанавливают для экспертного определения прочности, а также для определения прочности изделий на стройке или в других случаях.

1.5. Прочность изделий, определенная по градуировочной зависимости первого типа, соответствует прочности тех же изделий, определенной по градуировочной зависимости второго типа.

2. АППАРАТУРА И МАТЕРИАЛЫ

2.1. Ультразвуковые измерения проводят при помощи приборов, предназначенных для измерения времени распространения ультразвука в кирпиче, камнях и бетоне, аттестованных по ГОСТ 8.383-86*.

2.2. Предел допускаемой абсолютной погрешности измерения () времени распространения ультразвука на стандартных образцах, входящих в комплект прибора, не должен превышать значения


, (1)

где - время распространения ультразвука, мкс.

2.3. Типы ультразвуковых приборов и их технические характеристики приведены в приложении 1.

Допускается применение других ультразвуковых приборов, предназначенных для испытания кирпича, камней и бетона, если эти приборы удовлетворяют требованиям пп.2.1 и 2.2.

2.4. Между поверхностями изделия и рабочими поверхностями ультразвуковых преобразователей должен быть обеспечен надежный акустический контакт, для чего применяют вязкие контактные материалы (солидол по ГОСТ 4366-78*, технический вазелин по ГОСТ 5774-76 и др.).

* На территории Российской Федерации действует ГОСТ 4366-76. - Примечание изготовителя базы данных.

Допускается применение переходных устройств или прокладок, обеспечивающих сухой способ акустического контакта и удовлетворяющих требованиям пп.2.1 и 2.2.

2.5. При ультразвуковых измерениях для установления градуировочной зависимости и определения прочности изделия ультразвуковым методом способ контакта должен быть одинаков.

3. ПОДГОТОВКА И ПРОВЕДЕНИЕ ИСПЫТАНИЯ

3.1. Перед испытанием проводят проверку используемых приборов в соответствии с документацией по эксплуатации и установлению градуировочной зависимости для испытываемых изделий.

3.2. Изделия, предназначенные для испытаний и установления градуировочной зависимости, по размерам и внешнему виду должны соответствовать ГОСТ 379-79* и не должны иметь в зоне контакта ультразвуковых преобразователей с поверхностью изделия раковин и воздушных пор глубиной более 3 мм и диаметром более 6 мм, выступов более 0,5 мм, а также трещин. Поверхность изделия должна быть очищена от пыли.

* На территории Российской Федерации документ не действует. Действует ГОСТ 379-95, здесь и далее по тексту. - Примечание изготовителя базы данных.

3.3. Установление градуировочных зависимостей

3.3.1. Для установления градуировочной зависимости отбирают не менее чем по 5 изделий одного вида от каждой из 20 или более партий, изготовленных из одного сырья и по одной и той же технологии. При этом изделия нумеруют.

3.3.2. Измерения времени распространения ультразвука в изделиях проводят спустя 0,5 ч, но не более 1 ч после их выгрузки из автоклава при установлении градуировочной зависимости первого типа и (или) спустя не менее 24 ч после выгрузки изделий из автоклава при установлении зависимости второго типа.

3.3.3. За время распространения ультразвука в изделии принимают среднее арифметическое значение результатов измерений при трех последовательных установках преобразователей на этом изделии в одних и тех же точках.

3.3.4. Отклонение отдельного результата измерения времени распространения ультразвука в изделии от среднего арифметического значения для этого изделия не должно превышать 2%.

Результаты измерения времени распространения ультразвука в изделии, не удовлетворяющие этому условию, исключают, а это изделие заменяют другим изделием того же вида.

3.3.5. Прочность прозвученных изделий определяют по ГОСТ 8462-85 не ранее чем через 24 ч после автоклавной обработки. При этом прочность кирпича определяют на образцах, состоящих из двух половинок одного кирпича.

3.3.6. Результаты измерений по пп.3.3.3, 3.3.4 вносят в журнал по форме, приведенной в приложении 2.

3.3.7. Градуировочную зависимость в первый год применения стандарта устанавливают четыре раза через каждые 3 мес, объединяя каждый раз результаты измерений с последующими результатами, используемыми для установления зависимостей:

первый раз - по результатам измерений не менее чем 100 изделий;

второй раз - по объединенным результатам измерений первого раза и измерений второго раза, но не менее 200 изделий в общей совокупности;

третий раз - по объединенным результатам предшествующих измерений, но не менее 300 изделий в общей совокупности;

четвертый раз - по объединенным результатам предшествующих измерений, но не менее 400 изделий в общей совокупности.

3.3.8. Градуировочную зависимость, построенную по объединенным результатам измерений за год, принимают за итоговую.

3.3.9. Расчет, оценку пригодности и поверку зависимостей, построенных по пп.3.3.8, 3.3.9, проводят в соответствии с приложением 3 или 4.

3.3.10. Примеры расчета, оценки пригодности и поверки зависимостей приведены в приложении 5.

3.4. Для проведения испытаний отбор изделий проводят по ГОСТ 379-79.

3.5. Схемы установки преобразователей принимают согласно п.1.3 (черт.1 и 2).

3.6. Время распространения ультразвука в изделиях определяют согласно пп.3.3.4, 3.3.5.

3.7. Прочность контролируемого изделия находят по градуировочной зависимости в соответствии со средним значением времени распространения ультразвука, определенным для данного изделия, и типом градуировочной зависимости.

Градуировочную зависимость используют на участке между минимальным и максимальным значениями времени распространения ультразвука, полученными при установлении зависимости.

4. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ

4.1. Результаты измерений по пп.3.3.3-3.3.5 заносят в журнал испытаний по форме, приведенной в приложении 6.

4.2. По полученным индивидуальным значениям прочности изделий, отобранных от данной партии, находят их среднее арифметическое и минимальное значения прочности.

Марку прочности изделий в партии назначают в соответствии с ГОСТ 379-79.

ПРИЛОЖЕНИЕ 1
Справочное

Технические характеристики ультразвуковых приборов для определения прочности кирпича и камней

О материале: кирпич используется в качестве строительного материала уже около 5000 лет, и до настоящего времени строительный кирпич продолжает оставаться конкурентоспособной продукцией. Изготавливается как пустотелым, так и полнотелым, камень только пустотелым. Применяются главным образом в качестве стенового материала, а также для кладки фундаментов. Одинарный сплошной кирпич имеет размеры: 250х120х65 (мм).

Актуальность испытаний: все строительные материалы должны соответствовать заявленным характеристикам, от которых зависит эксплуатационные свойства здания (срок службы и безопасность сооружения). Результатом лабораторных испытаний является выявление фактических свойств кирпича. На начальном этапе строительства при проверке свойств материала можно предотвратить дальнейшие глобальные неблагоприятные последствия, если материал был низкого качества. Испытание кирпича для будущей постройки дает застройщику дополнительную гарантию, что для строительства будут использоваться качественные материалы, соответствующие всем нормам и стандартам.

Перечень испытаний и услуг:

прочность при сжатии и изгибе

морозостойкость

водопоглощение

средняя плотность

Исследования в лаборатории проводятся:

  • для оценки качества и пригодности партии при приемке и производстве материалов для дальнейшего строительства;
  • для определения степени износа, несущей способности, необходимости в ремонтных работах (отбор проб из конструкции).

Испытания в лаборатории: аккредитованная в системе Росаккредитации научно-испытательная лаборатория Политех-СКиМ-Тест проводит испытания стеновых материалов (кирпич и камни керамические и силикатные) в соответствии с действующими и актуальными нормативными документами Российской Федерации (ГОСТ 530-2012; ГОСТ 8462-85; ГОСТ 7025-91, ГОСТ Р 57349-2016, ГОСТ Р 57347-2016). Лаборатория оснащена необходимым поверенным оборудованием, что является гарантом точности и достоверности результатов.

Выезд на объект: перед проведением испытаний необходимо отобрать образцы из партии или из существующей кладки, Вы можете самостоятельно провести данную процедуру, предоставив акт отбора образцов, либо согласовать с нами удобное время и организовать допуск на объект для отбора нашими сотрудниками необходимого количества образцов.

С расценками на проведение лабораторных испытаний кирпича Вы можете ознакомиться на странице с ценами.

Прочность кирпича при сжатии и изгибе

Прочность кирпича при сжатии и изгибе определяют, руководствуясь ГОСТ 8462-85, ГОСТ Р 57349-2016 и ГОСТ 530-2012, ГОСТ 379-2015. Прочность кирпича - способность воспринимать нагрузки или другие воздействия, вызывающие в нем внутренние напряжения, без разрушения.

Марки по прочности: кирпич - М300, М250, М200, М175, М150, М125, М100; клинкерный кирпич - М1000, М800, М600, М500, М400, М300; камни - М300, М250, М200, М175, М150, М125, М100, М75, М50, М35, М25; кирпич и камень с горизонтальными пустотами - М100, М75, М50, М35, М25. Чем выше марка, тем большую нагрузку материал способен выдержать, например, марка М100 обозначает, что кирпич выдерживает нагрузку 10 МПа, что достаточно для строительства малоэтажного дома. Для высотного строительства (более 3 этажей), как правило используют марку не ниже М150.

Минимальное количество образцов для испытаний:

Этапы проведения испытаний:

  • Если образцы находились во влажном состоянии, то их выдерживают не менее трёх суток при положительной температуре 20±5 °С, или высушивают в электросушильном шкафу в течение 4 часов при температуре 105±5 °С, кроме образцов, содержащих гипс, их необходимо сушить в течение 8 часов при температуре не более 50 °С;
  • Кирпичи, отобранные из кладки, подрезаются на камнерезном станке Cedima CTS-57 G, чтобы удалить остатки шовного раствора;
  • В нашей лаборатории для выравнивания поверхностей мы используем метод шлифования на автоматической машине для шлифовки C299, т.к. данный способ гарантирует наиболее достоверные результаты. При арбитражных испытаниях необходимо проводить шлифование, за исключением клинкерного кирпича, его допускается выравнивать цементным раствором (п7.10.1 ГОСТ 8462-84). По требованию Заказчика поверхность может быть выравнена и другими способами: цементным или гипсовым раствором, или прокладками из технического войлока;
  • Образцы замеряются с погрешностью до ±1 мм.

При сжатии:

  • При испытаниях на сжатие, образец изготавливают из двух целых кирпичей, допускается определять предел прочности при сжатии на половинках кирпича, в том числе, полученных после испытания его на изгиб;
  • Кирпичи укладываются друг на друга постелями;
  • Затем устанавливаются в центре плиты пресса и нагружаются следующим образом: после достижения примерно половины ожидаемого значения разрушающей нагрузки, разрушение должно произойти не ранее чем через 1 мин;

При изгибе:

  • Предел прочности при изгибе определяют на целом кирпиче, используя специальную вставку;


  • Специальная вставка с двумя опорами Схема испытания на изгиб устанавливается на плиту пресса и центрируется. Кирпич симметрично ставится на две опоры, работающие по всей ширине кирпича;
  • Сосредоточенная нагрузка прикладывается в середине пролета равномерно по всей ширине кирпича с помощью специального круглого стержня. Продолжительность нагружения составляет 20-60 секунд;
    Камеральная обработка результатов в соответствии с ГОСТ и выпуск протокола.

Сроки проведения испытаний: 1-2 рабочих дня.

Морозостойкость кирпича

Морозостойкость кирпича и камня, керамического и силикатного, пустотелых и полнотелых (ГОСТ 7025-91) является одним из важных параметров материала, т.к. она влияет на способность образца сопротивляться воздействию замерзшей воды внутри пор. На данный параметр влияет качество обжига, объем и размер пор, степень водонасыщения.

Марки на морозостойкость: F25, F35, F50, F75, F100, F200, F300. Чем выше марка, тем дольше срок службы материала. Чаще всего в нашем регионе встречается марка F50.

В нашей лаборатории проводится прямой стандартный метод попеременного объемного замораживания и оттаивания образцов в специальных камерах.

Минимальное количество образцов для испытаний:

Этапы проведения испытаний:

  • На образцах несмываемым маркером фиксируют все имеющиеся дефекты (трещины, сколы, каверны);
  • В сушильном элетрошкафу при температуре 105°С кирпичи высушивают до постоянной массы и взвешивают;
  • Образцы насыщают водой в специальной камере;
  • Замораживание образцов проводят в морозильной камере при отрицательной температуре 15-20°С в течение не менее 4 часов;
  • Образцы полностью погружают в камеру универсальную пропарочную (КУП) с водой, температура которой должна быть положительной 20±5 °С, на срок не менее 2 часов;
  • Каждые 5 циклов образцы осматривают на предмет появления дефектов и фиксируют в журнал. Испытания прерывают в случае достижения проектной марки или разрушения образцов. Заказчику помимо протокола с данными, предоставляются фотографии образцов каждого пятого цикла со всех 6 сторон.

Сроки проведения испытаний: за сутки проходит 2 цикла.

Водопоглощение кирпича

Водопоглощение кирпича в процентном соотношении показывает сколько воды может впитать материал. Испытания проводятся в соответствии с ГОСТ 7025-91. Клинкерный кирпич обладает низким водопоглощением (не более 6,0%).

Минимальное количество образцов для испытаний: 3 шт.

Этапы проведения испытаний:

  • Образцы высушивают в электросушильном шкафу при температуре 105±5 °С до достижения постоянной массы, кроме силикатных изделий, их испытывают без предварительно высушивания;
  • В КУП с водой укладываются образцы с зазорами не менее 2 см, так чтобы уровень был выше верхнего кирпича на 2-10 см;
  • Образцы в условиях атмосферного давления насыщаются водой при температуре 20±5 °С в течении 48 часов;
  • После их вынимают из воды, протирают влажной тряпкой и взвешивают;
  • Силикатные изделия высушивают до постоянной массы после взвешивания; Камеральная обработка результатов в соответствии с ГОСТ и выпуск протокола.

Сроки проведения испытаний: 4 рабочих дня.

Средняя плотность кирпича

Плотность кирпича – это отношение массы кирпича к его объему. Испытания проводятся в соответствии с ГОСТ 7025-91. Чем выше плотность, тем выше прочность и теплоэффективность.

Классы по показателю средней плотности: 0,7; 0,8; 1,0; 1,2; 1,4; 2,0; 2,4.

Метод определения прочности сцепления в каменной кладке

Masonry structures. Method of estimating bonding strength in masonry

Дата введения 2015-07-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения", ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Открытым акционерным обществом "Научно-исследовательский центр "Строительство", Центральным научно-исследовательским институтом строительных конструкций им.В.А.Кучеренко (ОАО "НИЦ "Строительство" ЦНИИСК им.В.А.Кучеренко)

2 ВНЕСЕН Техническим комитетом ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 5 декабря 2014 г. N 46)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

6 ПЕРЕИЗДАНИЕ. Декабрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт распространяется на все виды каменной кладки, в том числе на панели и блоки из кирпича, природных и искусственных камней, стен строящихся зданий, в том числе в сейсмических районах, когда монолитность кладки определяется техническими требованиями по условиям эксплуатации.

Стандарт устанавливает метод определения прочности нормального сцепления (далее прочность сцепления) раствора с кирпичом или камнем в кладке стен строящихся зданий или на специальных образцах в лабораторных условиях.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 380-88 Сталь углеродистая обыкновенного качества. Марки

ГОСТ 5781-82 Сталь горячекатаная для армирования железобетонных конструкций. Технические условия

ГОСТ 5802-86 Растворы строительные. Методы испытаний

ГОСТ 6727-80 Проволока из низкоуглеродистой стали холоднотянутая для армирования железобетонных конструкций

ГОСТ 9467-75 Электроды покрытые металлические для ручной дуговой сварки конструкционных и теплоустойчивых сталей. Типы

ГОСТ 28840-90 Машины для испытания материалов на растяжение, сжатие и изгиб. Общие технические требования

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

испытания: Экспериментальное определение количественных и (или) качественных характеристик свойств объекта испытаний как результата воздействия на него, при его функционировании, при моделировании объекта и (или) воздействий.

образец для испытаний: Продукция или ее часть, или проба, непосредственно подвергаемые эксперименту при испытаниях.

испытательное оборудование: Средство испытаний, представляющее собой техническое устройство для воспроизведения условий испытаний.

3.4 прочность сцепления: Сопротивление кладки осевому растяжению по неперевязанным швам.

4 Общие положения

4.1 Определение прочности сцепления проводят путем испытания на осевое растяжение элементов кладки стен на строительной площадке или на специальных образцах, изготовленных в лаборатории.

4.2 Испытания прочности сцепления в кладке стен строящихся зданий проводят строительные лаборатории с целью контроля соответствия требованиям проекта.

4.3 Лабораторные испытания по определению прочности сцепления на контрольных образцах проводят специализированные лаборатории, строительные организации, научно-исследовательские институты, а при изготовлении виброкирпичных панелей и блоков - заводские лаборатории.

5 Сущность метода

Сущность метода заключается в определении характеристики удельной работы для разделения кирпича (камня) и раствора при действии осевого растягивающего усилия, направленного перпендикулярно плоскости их контакта (по неперевязанным швам).

6 Определение прочности сцепления в кладке стен строящихся зданий

6.1 Средства испытаний и измерений

Для испытания кладки на сцепление применяют следующее оборудование:

- установку, указанную на рисунке 1. Перечень приборов и приспособлений, необходимых для изготовления установки, приведен в таблице А.1 (приложение А);

- гидравлическое испытательное оборудование с возможностью автоматической записи результатов испытаний, рисунок 2;

- скребок угловой 5 мм, 250 мм, скребок прямой 5 мм, 250 мм;

- гаечный ключ 10x12 мм, молоток.


1 - испытуемый кирпич (камень); 2 - захват (тросовый); 3 - перекладина; 4 - регулировочный болт; 5 - тяга; 6 - гидравлический домкрат; 7 - манометр; 8 - регулируемые опоры; 9 - траверса; 10 - шарнир; 11 - рама; 12 - переходник; 13 - узел троса

Рисунок 1 - Сборное гидравлическое испытательное оборудование


1 - испытуемый кирпич (камень); 2 - захват (заводской); 3 - манометр; 4 - регулируемые опоры; 5 - тяга; 6 - гидравлический домкрат

Рисунок 2 - Гидравлическое испытательное оборудование с возможностью автоматической записи результатов испытаний

6.2 Отбор образцов

6.2.1 Для проведения контрольных испытаний на сцепление кладки из кирпича или камня на строительной площадке следует выбирать участки стен по указанию представителя технического надзора.

6.2.2 Число таких участков в каждом здании должно быть не менее одного на этаж с отрывом по пять кирпичей (камней) на каждом участке.

6.2.3 На участках стен, где была выполнена замена применяемых материалов или резко менялись погодные условия, необходимо проводить дополнительные испытания.

6.3 Подготовка к испытаниям

6.3.1 Вертикальные швы расчищают вокруг испытуемого кирпича (камня) при помощи скребков, не допуская сильных толчков и ударов.

6.3.2 При испытании кладки на сцепление необходимо определять прочность раствора на сжатие, взятого из шва кладки, по методике в соответствии с приложением Б.

6.3.3 Схема захвата кирпича и камня, подготовленного к испытанию, показана на рисунке 3. Испытуемый кирпич 1 охватывают петлей из троса (захватом) 2 по боковым граням, затем петлю подтягивают перекладиной 3 при помощи регулировочного болта 4.

Читайте также: