Определение деформаций оснований фундаментов

Обновлено: 19.04.2024

Целью расчета оснований по деформациям является ограничение абсолютных и (или) относительных перемещений фундаментов и надфундаментных конструкций такими пределами, при которых гарантируется нормальная эксплуатация сооружения и не снижается его долговечность (вследствие появления недопустимых осадок, подъемов, кренов, изменений проектных уровней и положений конструкций, расстройств их соединений и т.п.). При этом имеется в виду, что прочность и трещиностойкость фундаментов и надфундаментных конструкций проверена расчетом, учитывающим усилия, которые возникают при взаимодействии сооружения с основанием.

Деформации основания могут быть следующими:

  • – осадки-деформации, происходящие в результате уплотнения грунта под воздействием внешних нагрузок (и в отдельных случаях собственного веса грунта) и не сопровождающиеся коренным изменением его структуры;
  • – просадки-деформации, происходящие в результате уплотнения и, как правило, коренного изменения структуры грунта под воздействием как внешних нагрузок и собственного веса грунта, так и дополнительно с ними действующих факторов, таких как замачивание просадочного грунта, оттаивание ледовых прослоек в замерзающем грунте и т.п.;
  • – подъемы и осадки — деформации, связанные с изменением объема некоторых грунтов при увеличении их влажности или воздействии химических веществ (набухание и усадка) и при замерзании воды в порах грунта (морозное пучение и оттаивание грунта);
  • – оседания — деформации земной поверхности, вызываемые разработкой полезных ископаемых, изменением гидрогеологических условий и т.п.;
  • – горизонтальные перемещения — деформации, связанные с действием горизонтальных нагрузок на основание (фундаменты распорных систем, подпорные стены и т.д.) или со значительными вертикальными перемещениями поверхности при оседаниях, просадках грунтов от собственного веса и т.п.

Деформации основания в зависимости от причин их возникновения подразделяются на два вида:

  • первый — деформации от внешней нагрузки на основание (осадки, просадки, горизонтальные перемещения);
  • второй — деформации, не связанные с внешней нагрузкой на основание и проявляющиеся в виде вертикальных и горизонтальных перемещений поверхности основания (оседания, просадки грунтов от собственного веса).

При проектировании следует учитывать, что деформации основания первого вида вызывают тем большие усилия в конструкциях сооружения, чем больше сжимаемость грунтов основания; при деформациях второго вида с увеличением сжимаемости грунтов основания усилия снижаются.

Наиболее опасны для конструкций сооружения неравномерные деформации основания, главными причинами возникновения которых для первого вида являются:

  • – неравномерная сжимаемость грунтов из-за их неоднородности, выклинивания и непараллельности залегания отдельных слоев, наличия линз, прослоев и других включений, неравномерного уплотнения грунтов, в том числе искусственных подушек и т.п.;
  • – различие в осадках основания в пределах и за пределами площадки загружения (особенно часто это происходит с основаниями, сложенными сильносжимаемыми грунтами, чем и объясняются многие случаи повреждений существующих зданий при возведении вблизи них новых сооружений);
  • – неравномерное увлажнение грунтов, в частности просадочных и набухающих;
  • – различие нагрузок на отдельные фундаменты, их размеров в плане и глубины заложения;
  • – неравномерное распределение нагрузок па полы производственных зданий, а также загрузка территории в непосредственной близости от сооружения;
  • – нарушения правил производства строительных работ, приводящие к ухудшению свойств грунтов; ошибки, допущенные при инженерно-геологических изысканиях и проектировании оснований и фундаментов, а также нарушение предусмотренных проектом условий эксплуатации сооружения.

Основные причины возникновения неравномерных деформаций оснований для второго вида — это повышение влажности грунтов в грунтовых условиях II типа по просадочности, наличие подземных горных выработок, изменение температурно-влажностного режима некоторых грунтов (например, набухающих), изменение гидрогеологических условий площадки, влияние динамических воздействий, например от городского транспорта и т.д.

Таким образом, среди причин, вызывающих неравномерные деформации основания, которые необходимо учитывать при проектировании, имеются не только инженерно-геологические и гидрогеологические факторы, но также конструктивные и технологические особенности проектируемых сооружений, способы производства работ по устройству оснований и фундаментов, особенности эксплуатации сооружений.

Расчет оснований по деформациям, как уже указывалось, должен производиться из условия совместной работы сооружения и основания. Деформации основания допускается определять без учета совместной работы сооружения и основания, т.е. без учета перераспределения нагрузок на основание конструкцией сооружения, в случаях, оговоренных в п. 5.3.

Совместная деформация основания и сооружения может характеризоваться: абсолютной осадкой основания отдельного фундамента si , средней осадкой основания сооружения ; относительной неравномерностью осадок Δs/L двух соседних фундаментов, т.е. разностью их вертикальных перемещений, отнесенной к расстоянию между ними (рис. 5.17); креном фундамента или сооружения в целом i — отношением разности осадок крайних точек фундамента к его ширине или длине (рис. 5.18); относительным прогибом или выгибом f/L — отношением стрелы прогиба или выгиба к длине однозначно изгибаемого участка сооружения (рис. 5.19); кривизной изгибаемого участка сооружения ρ = 1/R (см. рис. 5.19); относительным углам закручивания сооружения = Δβ/L (рис. 5.20); горизонтальным перемещением фундамента или сооружения в целом u . Аналогичные характеристики могут устанавливаться также и для просадок грунтов, подъемов их при набухании, оседаний земной поверхности и других деформаций.

Сложная деформация сооружения, возникающая вследствие неравномерных осадок основания, может быть разложена на отдельные составляющие, как это показано на рис. 5.21, где крен сооружения i = (s6s1)/L .

ОСНОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ

Soil bases of buildings and structures

Дата введения 2017-07-01

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛИ - Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова (НИИОСП им.Н.М.Герсеванова) - институт АО "НИЦ "Строительство"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет

Изменения N 1, 2, 3, 4 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2019; М.: Стандартинформ, 2020; М.: ФГБУ "РСТ", 2022

Введение

Настоящий документ содержит указания по проектированию оснований зданий и сооружений, в том числе подземных, возводимых в различных природных условиях, для различных видов строительства.

Разработаны НИИОСП им.Н.М.Герсеванова - институтом ОАО "НИЦ "Строительство" (д-р техн. наук , д-р техн. наук Е.А.Сорочан, канд. техн. наук И.В.Колыбин - руководители темы; д-р техн. наук Б.В.Бахолдин, д-р техн. наук А.А.Григорян, д-р техн. наук П.А.Коновалов, д-р техн. наук В.И.Крутов, д-р техн. наук Н.С.Никифорова, д-р техн. наук Л.Р.Ставницер, д-р техн. наук В.И.Шейнин; канд. техн. наук А.Г.Алексеев, канд. техн. наук Г.И.Бондаренко, канд. техн. наук В.Г.Буданов, канд. техн. наук A.M.Дзагов, канд. техн. наук Ф.Ф.Зехниев, канд. техн. наук М.Н.Ибрагимов, канд. техн. наук О.И.Игнатова, канд. техн. наук О.Н.Исаев, канд. техн. наук В.А.Ковалев, канд. техн. наук В.К.Когай, канд. техн. наук М.М.Кузнецов, канд. техн. наук И.Г.Ладыженский, канд. техн. наук , канд. техн. наук Д.Е.Разводовский, канд. техн. наук В.В.Семкин, канд. техн. наук А.Н.Труфанов, канд. техн. наук В.Г.Федоровский, канд. техн. наук М.Л.Холмянский, канд. техн. наук А.В.Шапошников, канд. техн. наук Р.Ф.Шарафутдинов, канд. техн. наук О.А.Шулятьев; инж. Д.А.Внуков, инж. А.Б.Мещанский, инж. О.А.Мозгачева, инж. А.Б.Патрикеев, инж. А.И.Харичкин).

Изменение N 1 к СП 22.13330.2016 разработано АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (руководитель темы - канд. техн. наук И.В.Колыбин; исполнители - канд. техн. наук Буданов, канд. техн. наук В.А.Ковалев, канд. техн. наук И.Г.Ладыженский, канд. техн. наук Д.Е.Разводовский, канд. техн. наук А.Н.Труфанов, канд. техн. наук О.А.Шулятьев, канд. техн. наук С.О.Шулятьев; инж. А.Б.Патрикеев).

Изменение N 2 разработано авторским коллективом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский - руководители разработки; канд. техн. наук А.Г.Алексеев, канд. техн. наук В.А.Ковалев, канд. техн. наук В.В.Семкин, канд. техн. наук А.Н.Труфанов, канд. техн. наук А.В.Шапошников, инж. А.Б.Патрикеев).

Изменение N 3 разработано авторским коллективом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский - руководители разработки; канд. техн. наук В.А.Ковалев, канд. техн. наук М.Л.Холмянский, канд. техн. наук Р.Ф.Шарафутдинов, А.Б.Патрикеев).

Изменение N 4 разработано авторским коллективом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский - руководители разработки; д-р техн. наук В.И.Шейнин; канд. техн. наук В.А.Ковалев, канд. техн. наук А.Г.Алексеев, канд. техн. наук О.Н.Исаев, канд. техн. наук И.К.Попсуенко, канд. техн. наук А.В.Скориков, канд. техн. наук А.Н.Труфанов, канд. техн. наук О.А.Шулятьев, канд. техн. наук С.О.Шулятьев, А.Б.Патрикеев, В.С.Поспехов).

1 Область применения

Настоящий свод правил распространяется на проектирование оснований вновь строящихся и реконструируемых зданий и сооружений в котлованах, траншеях и открытых выработках, а также на подземные сооружения, возводимые закрытым способом, в части оценки их влияния на окружающую застройку.

Примечание - Далее вместо термина "здания и сооружения" используется термин "сооружения", в число которых входят также подземные сооружения, в том числе устраиваемые закрытым способом.

Настоящий свод правил не распространяется на проектирование оснований гидротехнических сооружений, дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, а также оснований глубоких опор и фундаментов машин с динамическими нагрузками.

2 Нормативные ссылки

В настоящем своде правил приведены ссылки на следующие документы:

ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 12248.1-2020 Грунты. Определение характеристик прочности методом одноплоскостного среза

ГОСТ 12248.2-2020 Грунты. Определение характеристик прочности методом одноосного сжатия

ГОСТ 12248.3-2020 Грунты. Определение характеристик прочности и деформируемости методом трехосного сжатия

ГОСТ 12248.4-2020 Грунты. Определение характеристик деформируемости методом компрессионного сжатия

ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава

ГОСТ 17177-94 Материалы и изделия строительные теплоизоляционные. Методы испытаний

ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276.1-2020 Грунты. Методы испытания штампом

ГОСТ 20276.2-2020 Грунты. Метод испытания радиальным прессиометром

ГОСТ 20276.4-2020 Грунты. Метод среза целиков грунта

ГОСТ 20276.5-2020 Грунты. Метод вращательного среза

ГОСТ 20276.6-2020 Грунты. Метод испытания лопастным прессиометром

ГОСТ 20276.7-2020 Грунты. Метод испытания прессиометром с секторным приложением нагрузки

ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 21153.2-84 Породы горные. Методы определения предела прочности при одноосном сжатии

ГОСТ 23740-2016 Грунты. Методы определения содержания органических веществ

ГОСТ 24846-2019 Грунты. Методы измерения деформаций оснований зданий и сооружений

ГОСТ 24847-2017 Грунты. Методы определения глубины сезонного промерзания

ГОСТ 25584-2016 Грунты. Методы лабораторного определения коэффициента фильтрации

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

ГОСТ 30416-2020 Грунты. Лабораторные испытания. Общие положения

ГОСТ 30672-2019 Грунты. Полевые испытания. Общие положения

ГОСТ EN 826-2011 Изделия теплоизоляционные, применяемые в строительстве. Методы определения характеристик сжатия

ГОСТ EN 12087-2011 Изделия теплоизоляционные, применяемые в строительстве. Методы определения водопоглощения при длительном погружении

СП 14.13330.2018 "СНиП II-7-81* Строительство в сейсмических районах"

СП 15.13330.2020 "СНиП II-22-81* Каменные и армокаменные конструкции"

СП 21.13330.2012 "СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах" (с изменением N 1)

СП 24.13330.2011 "СНиП 2.02.03-85 Свайные фундаменты" (с изменениями N 1, N 2, N 3)

СП 25.13330.2020 "СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах"

СП 26.13330.2012 "СНиП 2.02.05-87 Фундаменты машин с динамическими нагрузками" (с изменением N 1)

СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии" (с изменениями N 1, N 2)

СП 31.13330.2012 "СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения" (с изменениями N 1, N 2, N 3, N 4, N 5)

СП 32.13330.2018 "СНиП 2.04.03-85 Канализация. Наружные сети и сооружения" (с изменением N 1)

СП 45.13330.2017 "СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты" (с изменениями N 1, N 2)

СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения" (с изменением N 1)

СП 48.13330.2019 "СНиП 12-01-2004 Организация строительства"

СП 63.13330.2018 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменением N 1)

СП 70.13330.2012 "СНиП 3.03.01-87 Несущие и ограждающие конструкции" (с изменениями N 1, N 3, N 4)

СП 71.13330.2017 "СНиП 3.04.01-87 Изоляционные и отделочные покрытия" (с изменением N 1)

СП 100.13330.2016 "СНиП 2.06.03-85 Мелиоративные системы и сооружения" (с изменением N 1)

СП 103.13330.2012 "СНиП 2.06.14-85 Защита горных выработок от подземных и поверхностных вод"

СП 116.13330.2012 "СНиП 22-02-2003 Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения" (с изменением N 1)

Методы измерения деформаций оснований зданий и сооружений

Soils. Methods of measuring the strains of structure and building bases

Дата введения 2013-07-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений имени Н.М.Герсеванова (НИИОСП им.Н.М.Герсеванова) ОАО "НИЦ "Строительство"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (приложение В к протоколу от 4 июня 2012 г. N 40)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 октября 2012 г. N 599-ст межгосударственный стандарт ГОСТ 24846-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2013 г.

6 ПЕРЕИЗДАНИЕ. Сентябрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт распространяется на грунты всех видов и устанавливает методы определения деформаций (осадок, наклонов, сдвигов и т.п.) оснований фундаментов строящихся и эксплуатируемых зданий и сооружений.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий межгосударственный стандарт:

ГОСТ 22268 Геодезия. Термины и определения

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 22268, а также следующие термины с соответствующими определениями:

3.1 деформация: Изменение положения грунтов или конструкций, определяемое по вертикальным и горизонтальным перемещениям в сравнении с первоначальным положением.

3.2 горизонтальное перемещение грунта или конструкций: Сдвиг грунта или конструкций в целом, происходящий под действием сил и других факторов.

3.3 крен фундамента и сооружения: Деформация, происходящая в результате неравномерной осадки, просадки, подъема, горизонтального воздействия и т.п.

3.4 точность измерений: Характеристика измерений, отражающая близость к истинному значению.

3.5 погрешность измерений: Отклонение результата измерения от истинного значения измеряемой величины.

3.6 репер: Геодезический знак, закрепляющий пункт нивелирной сети.

3.7 репер глубинный: Геодезический глубинный знак, опирающийся на скальные, полускальные или другие коренные практически несжимаемые грунты.

3.8 репер грунтовый: Геодезический знак, опирающийся на плотные грунты, или ниже глубины сезонного промерзания.

3.9 репер стенной: Геодезический знак, устанавливаемый на несущих конструкциях зданий и сооружений, осадка которых стабилизировалась.

3.10 деформационная марка: Геодезический знак, жестко укрепленный на конструкции здания или сооружения (фундаменте, колонне, стене), меняющий свое положение вследствие осадки, просадки, подъема, сдвига, крена и т.п. фундамента (сооружения).

3.11 опорный знак: Знак, практически неподвижный в горизонтальной плоскости, относительно которого определяются сдвиги и крены фундаментов зданий или сооружений.

3.12 центрировочное устройство: Устройство на опорном знаке для многократной фиксированной установки геодезических инструментов в одном и том же положении.

3.13 ориентирный знак: Знак, используемый для обеспечения исходного ориентирного направления при определении сдвигов и кренов фундаментов зданий и сооружений.

3.14 геометрическое нивелирование: Метод определения разности высот точек при помощи геодезического прибора с горизонтальной визирной осью и отвесно установленных в этих точках реек.

3.15 тригонометрическое нивелирование: Метод определения превышений при помощи геодезического прибора с наклонной визирной осью.

3.16 гидростатическое нивелирование: Метод определения разности высот наблюдаемых точек посредством разностей уровней жидкости в сообщающихся сосудах.

3.17 стационарная гидростатическая система: Прибор для определения осадок фундаментов, состоящий из большого числа водомерных стаканов-пьезометров, жестко укрепленных на фундаментах или конструкциях здания (сооружения).

3.18 способ совмещения при нивелировании: Способ отсчета по рейке, при котором вращением элевационного винта совмещают изображение концов пузырька уровня нивелира, а затем, изменяя наклон плоско-параллельной пластинки микрометром, совмещают биссектор со штрихом рейки.

3.19 способ наведения при нивелировании: Способ отсчета по рейке, когда нивелиром, приведенным в горизонтальное положение, сетка нитей визирной трубы наводится на ближайшие деления рейки.

3.20 метод створных наблюдений: Метод измерений отклонений деформационных марок во времени, установленных на здании (сооружении), от линии створа, концы которого закрепляются неподвижными опорными знаками.

3.21 метод отдельных направлений: Метод измерений отклонений деформационных марок по изменению горизонтального угла и расстоянию от опорных знаков до марок во времени.

3.22 замыкание горизонта: Вторичное наведение визирной оси теодолита (нивелира) на начальный ориентирный пункт и отсчета по горизонтальному кругу и в целях контроля неподвижности круга в течение полуприема угловых измерений.

3.23 триангуляция: Метод определения планового положения точек, являющихся вершинами построенных на местности смежно-расположенных треугольников, в которых измеряют их углы и некоторые из сторон, а координаты вершин и длины других сторон получают тригонометрически.

3.24 трилатерация: Метод определения планового положения точек, являющихся вершинами построенных на местности смежно-расположенных треугольников, в которых измеряют все стороны, а координаты вершин и горизонтальные углы между сторонами определяют тригонометрически.

3.25 полигонометрия: Метод определения планового положения точек здания (сооружения) по разностям координат, полученных путем проложения полигонометрического хода по опорным знакам и деформационным маркам, в котором измеряются все стороны, связывающие эти точки, и горизонтальные углы между ними.

3.26 способ малых (параллактических) углов: Способ смещения точек здания (сооружения), при котором расстояния определяются тригонометрическим путем по точно измеренному малому базису и лежащему против него острому (параллактическому) углу.

3.27 способ струны: Способ фиксирования направления какой-либо оси с помощью калиброванной стальной (капроновой, нейлоновой) струны, натягиваемой между закрепленными на местности точками, и стационарных или переносных отсчетных приспособлений с верньерами, индикаторами часового типа и т.п., закрепленными под струной в местах установки деформационных марок.

3.28 полуприем измерения: Однократное измерение угла при одном (любом) положении вертикального круга теодолита.

3.29 прием измерения: Двукратное измерение угла при двух положениях вертикального круга теодолита.

3.30 метод проецирования: Метод измерения наклонов здания (сооружения), при котором на двух взаимно перпендикулярных осях объекта закладываются опорные знаки, с которых теодолитом проецируют заметную верхнюю точку на какую-либо горизонтально установленную палетку (рейку), закрепленную внизу здания (сооружения). Зафиксированный в течение времени на палетке ряд точек представляет собой проекцию траектории верхней наблюдаемой точки на плоскость.

3.31 метод координирования: Метод измерения наклонов здания (сооружения), при котором вокруг объекта прокладывают замкнутый полигонометрический ход и вычисляют координаты трех или четырех постоянно закрепленных точек, с которых через определенные промежутки времени засечкой находят координаты хорошо заметной наверху здания, сооружения точки. По разности координат между циклами наблюдений находят значение наклона и его направление.

3.32 кренометр: Прибор, основной частью которого является точный уровень с измерительным винтом на одном из его концов, позволяющий определить крен в градусной и относительной мере.

3.33 обратный отвес: Натянутая струна, закрепленная в нижних горизонтах. С помощью уровней или поплавка в жидкости струна приводится в отвесное положение, что позволяет передавать в верхний горизонт координаты нижней точки.

3.34 маяк, щелемер: Приспособление для наблюдения за развитием трещин: гипсовая или алебастровая плитка, прикрепляемая к обоим краям трещины на стене; две стеклянные или плексигласовые пластинки, имеющие риски для измерения величины раскрытия трещины и др.

4 Общие положения

4.1 Определения деформаций грунта оснований фундаментов зданий и сооружений должны проводиться по программе, отвечающей требованиям, приведенным в приложении А, в целях:

- определения абсолютных и относительных значений деформаций и сравнения их с расчетными;

- выявления причин возникновения и степени опасности деформаций для нормальной эксплуатации зданий и сооружений;

- принятия своевременных мер по борьбе с возникающими деформациями или устранению их последствий;

- получения необходимых характеристик устойчивости оснований и фундаментов;

- уточнения расчетных данных физико-механических характеристик грунтов;

- уточнения методов расчета и установления предельных допустимых значений деформаций для различных грунтов оснований и типов зданий и сооружений.

Программа проведения измерений составляется организацией, проводящей измерения, на основе технического задания (см. приложение Б), выдаваемого проектно-изыскательской или научно-исследовательской организацией по согласованию с организациями, осуществляющими строительство или эксплуатацию.

4.2 С точки зрения геоинформационных систем определение деформаций оснований фундаментов строящихся зданий и сооружений является мониторингом деформаций и входит в состав геотехнического мониторинга. Мониторинг деформаций следует проводить в течение всего периода строительства и в период эксплуатации до достижения состояния стабилизации деформаций. Значение деформаций принимается по расчету, нормативным документам или устанавливается проектной или эксплуатирующей организацией с включением в техническое задание.

Для уникальных зданий и сооружений, а также при выполнении наблюдений, требующих непрерывного получения результатов измерений, рекомендуется использовать автоматизированные системы наблюдений. Оценка результатов измерений, полученных при помощи автоматизированной системы, должна проводиться специализированной организацией.

Мониторинг деформаций зданий и сооружений, находящихся в эксплуатации, следует проводить в случае появления недопустимых трещин, раскрытия швов, а также резкого изменения условий работы здания или сооружения.

4.3 В процессе мониторинга деформаций оснований фундаментов должны быть измерены (отдельно или совместно) следующие величины:

- вертикальные перемещения (осадки, сдвиги, просадки, подъемы, прогибы и т.п.);


Относительная разность осадок

Максимальная или средняя осадка, см

1 Производственные и гражданские одноэтажные и многоэтажные здания с полным каркасом:

то же, с устройством железобетонных поясов или монолитных перекрытий, а также здания монолитной конструкции

то же, с устройством железобетонных поясов или монолитных перекрытий

2 Здания и сооружения, в конструкциях которых не возникают усилия от неравномерных осадок

3 Многоэтажные бескаркасные здания с несущими стенами из:

крупных блоков или кирпичной кладки без армирования

то же, с армированием, в том числе с устройством железобетонных поясов или монолитных перекрытий, а также здания монолитной конструкции

4 Сооружения элеваторов из железобетонных конструкций:

рабочее здание и силосный корпус монолитной конструкции на одной фундаментной плите

то же, сборной конструкции

отдельно стоящий силосный корпус монолитной конструкции

то же, сборной конструкции

5 Дымовые трубы высотой Н, м:


100200


200300

6 Жесткие сооружения высотой до 100 м, кроме указанных в пунктах таблицы 4 и 5

7 Антенные сооружения связи:

стволы мачт заземленные

то же, электрически изолированные

башни коротковолновых радиостанций

башни (отдельные блоки)

8 Опоры воздушных линий электропередачи:

анкерные и анкерно-угловые,

промежуточные угловые, концевые, порталы открытых распределительных устройств специальные переходные

1 Значение предельной максимальной осадки основания фундаментов применяется к сооружениям, возводимым на отдельно стоящих фундаментах на естественном (искусственном) основании или на свайных фундаментах с отдельно стоящими ростверками (ленточные, столбчатые и т.п.).

2 Значение предельной средней осадки основания фундаментов применяются к сооружениям, возводимым на едином монолитном железобетонном фундаменте неразрезной конструкции (перекрестные ленточные и плитные фундаменты на естественном или искусственном основании, свайные фундаменты с плитным ростверком, плитно-свайные фундаменты и т.п.).

3 Предельные значения относительного прогиба зданий, указанных в пункте 3 таблицы, принимают равными 0,5, а относительного выгиба - 0,25.


4 При определении относительной разности осадок в пункте 8 таблицы Г.1 за L принимают расстояние между осями блоков фундаментов в направлении горизонтальных нагрузок, а в опорах с оттяжками - расстояние между осями сжатого фундамента и анкера.

5 Если основание сложено горизонтальными (с уклоном не более 0,1), выдержанными по толщине слоями грунтов, предельные значения максимальных и средних осадок допускается увеличивать на 20%.


6 Предельные значения подъема основания, сложенного набухающими грунтами, допускается принимать: максимальный и средний подъем в размере 25% и относительную разность осадок в размере 50% соответствующих предельных значений деформаций, приведенных в настоящем приложении, а относительный выгиб - в размере 0,25.

7 На основе обобщения опыта проектирования, строительства и эксплуатации отдельных видов сооружений допускается принимать предельные значения деформаций основания фундаментов, отличающиеся от указанных в настоящем приложении.

Предельные значения совместной деформации основания и сооружения устанавливаются исходя из необходимости соблюдения:

а) технологических или архитектурных требований к деформациям сооружения (изменение проектных уровней и положений сооружения в целом, отдельных его элементов и оборудования, включая требования к нормальной работе лифтов, кранового оборудования, подъемных устройств элеваторов и т.п.) sus ;

б) требований к прочности, устойчивости и трещиностойкости конструкций, включая общую устойчивость сооружения suf .

Предельные значения совместной деформации основания и сооружения по технологическим или архитектурным требованиям sus должны устанавливаться соответствующими нормами проектирования зданий и сооружений, правилами технической эксплуатации оборудования или заданием на проектирование с учетом в необходимых случаях рихтовки оборудования в процессе эксплуатации. Проверка соблюдения условий ssus производится в составе расчетов сооружений во взаимодействии с основанием после соответствующих расчетов конструкций сооружения по прочности, устойчивости и трещиностойкости.

Предельные значения совместной деформации основания и сооружения по условиям прочности, устойчивости и трещиностойкости конструкций suf должны устанавливаться расчетом сооружения во взаимодействии с основанием. Такой расчет, как правило, выполняется при разработке типовых проектов сооружений для нескольких вариантов грунтовых условий, отличающихся прочностными и деформационными характеристиками грунтов, а также степенью изменчивости сжимаемости основания в плане сооружения. Проверка соблюдения условия ssuf в стадии привязки типовых проектов к местным грунтовым условиям является косвенной проверкой прочности, устойчивости и трещиностойкости конструкций сооружений.

При разработке индивидуальных проектов сооружений, конструкции которых рассчитываются во взаимодействии с основанием, значения suf не требуется устанавливать. Указанные величины допускается не устанавливать и для сооружений значительной жесткости и прочности (например, зданий башенного типа, домен), а также для сооружений, в конструкциях которых не возникает усилий от неравномерных осадок основания (например, различного рода шарнирных систем).

Для упрощения расчета оснований по деформациям при привязке типовых проектов к местным грунтовым условиям рекомендуется в процессе разработки типовых проектов сооружений по значениям sus и suf устанавливать следующие критерии допустимости применения этих проектов:

  • – предельные значения степени изменчивости сжимаемости грунтов α E , соответствующие различным значениям среднего модуля деформации грунтов в пределах плана сооружения или средней осадки основания сооружения ;
  • – предельную неравномерность деформаций основания Δs0 , соответствующую нулевой жесткости сооружения.

В типовых проектах рекомендуется указывать перечень грунтов (с указанием простейших характеристик их свойств, а также характера напластований), при наличии которых в основании сооружений не требуется выполнять расчет оснований по деформациям.


Степень изменчивости основания αE определяется отношением наибольшего значения приведенного по глубине модуля деформации грунтов основания в пределах плана сооружения к наименьшему значению. Среднее значение модуля деформации грунтов основания в пределах плана сооружения определяется как средневзвешенное (с учетом изменения сжимаемости грунтов по глубине и в плане сооружения).


Зависимость предельных значений αE от среднего модуля деформации грунтов основания или от средней осадки основания сооружения используется преимущественно для протяженных жилых зданий.

Зависимость предельных значений α


Рис. 5.31. Зависимость предельных значений αE от (кривые 1, 2 и 3 соответствуют ширине подошвы фундаментов под несущие стены b1 , b2 , b3 , причем b1 > b2 > b3 )


Пример такой зависимости для пятиэтажных крупнопанельных жилых домов серии I-464 приведен на рис. 5.31. Для облегчения вычисления средних осадок зданий при привязке типовых проектов к местным грунтовым условиям рекомендуется в типовых проектах приводить их расчетные значения в виде , где k — коэффициент, зависящий от принятого конструктивного решения фундаментов и действующих на них нагрузок, кН/м.

ТАБЛИЦА 5.26. ПРЕДЕЛЬНЫЕ ДЕФОРМАЦИИ ОСНОВАНИЯ

Сооружения Относительная разность осадок

Крен iu Средняя
или максимальная smax,u (в скобках) осадка, см
1. Производственные и гражданские одноэтажные
и многоэтажные здания с полным каркасом:
железобетонным
стальным

Примечания: 1. Предельные значения относительного прогиба (выгиба) зданий, указанных в п. 3, принимаются равными 0,5 (Δs/L)u .

2. При определении относительной разности осадок Δs/L в п. 8 за L принимается расстояние между осями блоков фундаментов в направлении горизонтальных нагрузок, а в опорах с оттяжками — расстояние между осями сжатого фундамента и анкера.

3. Если основание сложено горизонтальными (с уклоном не более 0,1), выдержанными по толщине слоями грунтов, предельные значения максимальных и средних осадок допускается увеличивать на 20 %.

4. Предельные значения подъема основания, сложенного набухающими грунтами, допускается принимать: максимальный и средний подъем в размере 25 % и относительную неравномерность осадок (относительный выгиб) здания в размере 50 % соответствующих предельных значений деформаций, приведенных в таблице.

5. Для сооружений, перечисленных в пп. 2—3, с фундаментами в виде сплошных плит предельные значения средних осадок допускается увеличивать в 1,5 раза.

6. На основе обобщения опыта проектирования, строительства и эксплуатации отдельных видов сооружений допускается принимать предельные значения деформаций основания, отличные от указанных в таблице.

Значения Δs 0 u устанавливаются при разработке типовых проектов протяженных зданий на основе сопоставления неравномерных деформаций основания, вычисленных с учетом и без учета жесткости надфундаментных конструкций (соответственно Δs и Δs 0 ). Отношение Δss 0 зависит от приведенной гибкости здания λ = Lω или его участка λ1 = L1ω (где L и L1 — длина здания и участка его локального искривления; , здесь с — среднее значение коэффициента жесткости основания, равное отношению среднего давления на основание к его средней осадке; — приведенная ширина продольных фундаментов здания; EI — обобщенная изгибная жесткость поперечного сечения коробки здания). Пример указанной зависимости для пятиэтажных крупнопанельных жилых домов серии I-464 приведен на рис. 5.32.


Перечень грунтов, при которых можно не рассчитывать деформации основания, устанавливается на основе полученных при разработке типового проекта зависимостей , При этом рекомендуется использовать соотношения между физическими и механическими характеристиками грунтов, приведенные в справочных таблицах (см. гл. 1).

Предельные значения деформаций оснований допускается принимать по табл. 5.26, если конструкции сооружений не рассчитаны на усилия, возникающие в них при взаимодействии с основанием, и в задании на проектирование не установлены значения sus .

ТАБЛИЦА 5.27. ВАРИАНТЫ ГРУНТОВЫХ УСЛОВИЙ, В КОТОРЫХ РАСЧЕТ ДЕФОРМАЦИЙ ОСНОВАНИЯ ДОПУСКАЕТСЯ НЕ ВЫПОЛНЯТЬ

Здания Вариант грунтовых условий
Производственные:
одноэтажные с несущими конструкциями, малочувствительными к неравномерным осадкам (например, со стальным или железобетонным каркасом на отдельных фундаментах при шарнирном опирании ферм, ригелей и т.п.), и с мостовыми кранами грузоподъемностью до 50 т включительно
многоэтажные до 6 этажей включительно с сеткой колонн не более 6×9
Жилые и общественные прямоугольной формы в плане без перепадов по высоте с полным каркасом и бескаркасные с несущими стенами из кирпича крупных блоков или панелей:
протяженные многосекционные высотой до 9 этажей включительно
несблокированные башенного типа высотой до 14 этажей включительно
1. Крупнообломочные грунты при содержании песчаного наполнители менее 40 %, пылевато-глинистого — менее 30 %
2. Пески любой крупности, кроме пылеватых, плотные и средней плотности
3. Пески любой крупности, только плотные
4. Пески любой крупности, только средней плотности
при коэффициенте пористости e ≤ 0,65
5. Супеси при e ≤ 0,65, суглинки при e ≤ 0,85 и глины при e ≤ 0,95, если диапазон изменения коэффициента пористости этих грунтов на площадке не превышает 0,2
6. Пески, кроме пылеватых, при e ≤ 0,7 в сочетании с пылевато-глинистыми грунтами моренного происхождения при e < 0,5 и IL < 0,5 независимо от порядка их залегания

Примечания: 1. Таблицей допускается пользоваться при проектировании сооружении, в которых площадь отдельных фундаментов под несущие конструкции отличается не более чем в 2 раза, а также для сооружений иного назначения, чем указано в таблице, при аналогичных с ними конструкциях и нагрузках,

2. Таблицей не допускается пользоваться при проектировании производственных зданий с нагрузками до полы более 20 кПа.

Расчет деформаций основания допускается не выполнять, если среднее давление под фундаментами проектируемого сооружения не превышает расчетного сопротивления основания (см. п. 5.5.2) и выполняется одно из следующих условий:

  • – степень изменчивости сжимаемости основания меньше предельной;
  • – инженерно-геологические условия площадки строительства соответствуют области применения типового проекта;
  • – грунтовые, условия площадки строительства зданий, перечисленных в табл. 5.27, относятся к одному из шести приведенных вариантов.

Зависимость отношения Δs/Δs0 от приведенной гибкости здания

Рис. 5.32. Зависимость отношения Δss 0 от приведенной гибкости здания в целом λ (1) или его участка λ1 (2)

Читайте также: