Определение активности цемента ускоренным методом

Обновлено: 18.04.2024

Одним из важнейших преимуществ применения сухих строительных смесей по сравнению с традиционными растворными и бетонными смесями является постоянство состава и соответствие свойств, заявляемых производителями. Качество работ, выполняемых с использованием ССС, определяется совокупностью свойств, придаваемых каждым компонентом сухой смеси. Прочностные же характеристики материалов определяются в основном качеством минеральных вяжущих — портландцемента, глиноземистого цемента.

Производители сухих строительных смесей сталкиваются со значительными колебаниями прочностных свойств цементов, особенно в ранние сроки твердения.
В соответствии с ГОСТ 10178 марка цемента определяется по результатам испытания стандартных образцов через 28 суток твердения. Испытание прочности через 3 суток твердения предусмотрено только для быстротвердеющих цементов. Введенный в 2003 г. ГОСТ 31108 подразделяет цементы по классу прочности и устанавливает дополнительные сроки испытаний в возрасте 2 и 7 суток. Однако к настоящему времени не все цементные заводы испытывают цементы на класс прочности по ГОСТ 30744. Отпускная прочность цемента на заводах-изготовителях оценивается по результатам испытаний предыдущих партий цемента, а также по результатам ускоренного испытания методом пропаривания образцов. Материалы, приготовленные с использованием сухих строительных смесей, твердеют преимущественно в атмосферных условиях, то есть при температуре от +30°С до -20°С, поэтому корреляция с результатами испытаний цементов при пропаривании отсутствует.

При разработке же рецептур ССС (ремонтные составы, составы для устройства полов, гидроизоляционные составы), для которых важнейшей характеристикой является прочность в ранние сроки твердения (часы, сутки), необходимо контролировать именно раннюю прочность цемента. Экспресс-метод оценки активности цементов, основанный на кондуктометрических измерениях, не дает воспроизводимых результатов, что связано с различиями в химических и вещественных составах цементов.

Поэтому для экспресс-оценки активности цементов на кафедре химической технологии строительных и специальных вяжущих веществ СПбГТУ применяется следующая методика. Испытания проводятся на стандартных образцах-балочках (40х40х160 мм) или на образцах-кубиках (30х30х30 мм). Образцы готовятся из цементного теста нормальной густоты по ГОСТ 310.3. Формы заполняются цементным тестом, встряхиваются, избыток теста срезается ножом. Образцы в формах выдерживаются над водой в течение 24 часов при t=(20±2)°С и относительной влажности воздуха (95±5)%. Через 24 часа после затворения образцы освобождаются из форм и не позднее чем через 20 минут испытываются на прочность при сжатии. Активность цементов через 24 часа твердения оценивается по формуле: R24ч=P / S • 98 (МПа), где R24ч — прочность при сжатии, МПа; P — усилие (кгс), S — площадь образца (см2).

По результатам испытаний активности портландцементов и глиноземистых цементов различных производителей цементы условно разделены на три группы. Активность малоактивных цементов меньше 20 МПа. У цементов средней активности эта характеристика лежит в пределах от 20 до 30 МПа. А у высокоактивных она превышает 30 МПа.

В I группу входят портландцементы ПЦ 600-Д0 (Санкт-Петербург), ШПЦ 400 (Липецкцемент), ПЦ 400 (Кузнецкцемент), а также глиноземистые цементы ГЦ- 40 (Пашийский завод), ВГЦ II 250 и 350 (Осколцемент, Санкт-Петербург), ВГКЦ-75 (Челябинский завод).

Во II — портландцементы ПЦ 500-Д0 (Осколцемент, Белгородцемент), ПЦ 400-Д20 (Михайловцемент), ПЦ 400-Д0 («Цесла», Сланцы), глиноземистый цемент ГЦ-50 (Осколцемент, Санкт-Петербург).

В III — портландцементы ПЦ 600-Д0 (Осколцемент, Санкт-Петербург), ПЦ 500-Д0 (Мордовцемент, Сухоложскцемент, Искитимцемент, Ангарскцемент), ПЦ 400-Д20 (Искитимцемент), глиноземистые цементы ГМЦ-60 («Цемдекор», Подольск), ГЦ-60 (Пашийский завод), Fondu, Secar 51, Secar 71 (Lafarge, Франция), Isidac-40 (Турция), Istra-40 (Германия).

Следует отметить, что представленное разделение цементов по активности условно, так как для ряда цементов колебания абсолютных величин прочности различных партий составляло от 10 до 40 МПа. С учетом характеристики активности цементов возможно проектирование рецептур сухих строительных смесей оптимального состава. Так, для проектирования стяжек для полов необходимо использовать портландцемент как минимум II группы. Для разработки самовыравнивающихся полов с минимальным (до 4 часов) сроком начала хождения оптимальным является сочетание глиноземистого цемента III группы и портландцемента II или III группы. Составы для мгновенной (в течение 60 секунд) остановки водных протечек — это сочетание цементов III группы. Для составления сухих смесей для упрочнения промышленных полов используется портландцемент III группы. А для ремонтных составов — портландцемент II или III группы, глиноземистый цемент III группы.

Применение цементов высокой активности позволяет снизить содержание вяжущих в рецептуре сухих смесей, ускорить введение в эксплуатацию затвердевших растворов, снизить усадочные деформации в процессе эксплуатации.

2. Корнеев В.И., Медведева И.Н. Вяжущие свойства композиций на основе портландского и алюминатного цементов.//3-я международная конференция "Современные технологии сухих смесей в строительстве", СПБ, 2001, С.115-121.

Методы испытаний с использованием полифракционного песка

Methods of testing with using polyfraction standard sand

Дата введения 2002-03-01

1 РАЗРАБОТАН ЗАО "Концерн Цемент", Фирмой "Цемискон", ОАО "НИИЦЕМЕНТ"

ВНЕСЕН Госстроем России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) 30 мая 2001 г.

За принятие проголосовали

Наименование органа государственного управления строительством

Госстрой Азербайджанской Республики

Министерство градостроительства Республики Армения

Казстройкомитет Республики Казахстан

Государственный Комитет по архитектуре и строительству при Правительстве Кыргызской Республики

Госархитектстрой Республики Узбекистан

3 ВВЕДЕН ВПЕРВЫЕ

4 ВВЕДЕН В ДЕЙСТВИЕ с 1 марта 2002 г. в качестве государственного стандарта Российской Федерации постановлением Госстроя России от 20 августа 2001 г. N 98

ВНЕСЕНА поправка, опубликованная в ИУС N 7, 2003 год и Информационном бюллетене о нормативной, методической и типовой проектной документации N 7, 2003 год

Поправка внесена изготовителем базы данных

Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 8, 2021

Введение

В разных странах применяют существенно различающиеся методы определения основных физико-механических свойств цемента - прочности, водопотребности, сроков схватывания, равномерности изменения объема, которые дают различные результаты при испытаниях одних и тех же цементов.

Настоящий стандарт разработан с целью нормативного обеспечения производителей цемента в странах СНГ методиками испытаний своей продукции, позволяющими получить аналогичные со странами ЕС результаты для сопоставимой оценки строительно-технических свойств цемента в процессе научно-технического и экономического сотрудничества.

1 Область применения

Настоящий стандарт распространяется на все виды цемента и устанавливает методы их испытаний с использованием полифракционного песка.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 6139-2020 Песок для испытаний цемента. Технические условия

ГОСТ 6613-86 Сетки проволочные тканые с квадратными ячейками. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 25706-83 Лупы. Типы, основные параметры. Общие технические требования

ГОСТ 30515-2013 Цементы. Общие технические условия

ГОСТ OIML R 76-1-2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

3 Определения

Термины и определения - по ГОСТ 30515.

4 Общие положения

4.1 Отбор проб выполняют по ГОСТ 30515.

4.2 В рабочем журнале записывают вид и состояние тары, в которой доставлена проба.

4.3 Пробы цемента до испытания хранят в сухом помещении при относительной влажности воздуха не более 50%.

4.4 Перед испытанием каждую пробу цемента просеивают через сито с сеткой N 09 по ГОСТ 6613. Остаток на сите взвешивают и отбрасывают. Массу остатка в процентах, а также его характеристику (наличие комков, кусков дерева, металла и пр.) заносят в рабочий журнал. После просеивания пробу цемента перемешивают.

4.5 При изготовлении стандартного цементного раствора применяют стандартный полифракционный песок (далее - песок) по ГОСТ 6139. Могут применяться другие пески, удовлетворяющие требованиям ГОСТ 6139 по соответствию эталонному песку, при этом содержание в стандартном песке должно быть не ниже 96%.

4.6 Для приготовления цементного теста и изготовления образцов применяют дистиллированную воду или воду, соответствующую ГОСТ 6709 в части требований к массовой доле ионов хлора и кальция. Для хранения образцов допускается использовать водопроводную воду из систем централизованного хозяйственно-питьевого водоснабжения, соответствующую требованиям нормативных документов.

Сосуд для отмеривания или взвешивания воды тарируют в смоченном состоянии.

4.8 Перед испытанием цемент, песок и воду выдерживают до принятия ими температуры помещения.

4.9 Испытания следует проводить в помещениях с температурой воздуха (20±2) °С и относительной влажностью не менее 50% при изготовлении образцов для определения прочности, не менее 65% - при определении сроков схватывания и равномерности изменения объема и не более 65% - при определении тонкости помола.

Температура и влажность воздуха помещений должны ежедневно отмечаться в рабочем журнале.

4.10 Температура в камере (шкафу) влажного хранения должна быть (20±1) °С, относительная влажность - не менее 90%. Температуру и влажность следует регистрировать непрерывно или периодически не реже, чем через каждые 4 ч.

4.11 Цемент и песок взвешивают, воду взвешивают (отмеривают) с погрешностью, не превышающей указанную в таблице 1.

6 ПЕРЕИЗДАНИЕ. Ноябрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт распространяется на активные минеральные добавки для цементов (далее - добавки) и устанавливает метод определения активности по прочности на сжатие.

Настоящий стандарт не распространяется на доменные гранулированные шлаки, применяемые для производства цементов.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 3306 Сетки с квадратными ячейками из стальной рифленой проволоки. Технические условия

ГОСТ 4013 Камень гипсовый и гипсоангидритовый для производства вяжущих материалов. Технические условия

ГОСТ 6139 Песок для испытаний цемента. Технические условия

ГОСТ 6613 Сетки проволочные тканые с квадратными ячейками. Технические условия

ГОСТ 24104 Весы лабораторные. Общие технические требования

ГОСТ 30515 Цементы. Общие технические условия

ГОСТ 30744 Цементы. Методы испытаний с использованием полифракционного песка

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 30515.

4 Средства контроля и вспомогательное оборудование

Смеситель для приготовления раствора, трехгнездовые разъемные формы размерами 4040160 мм для изготовления образцов-балочек, насадка к формам, приспособления для укладки раствора в форму, встряхивающий стол для уплотнения раствора в форме, пластинки для накрывания формы с раствором, прибор для испытания на изгиб образцов-балочек, машина для испытания на сжатие половинок образцов-балочек - по ГОСТ 30744.

Пропарочная камера любой конструкции, обеспечивающая создание в ней среды насыщенного пара заданной температуры.

Лабораторная мельница для помола материалов. Лабораторную мельницу используют также для смешивания материалов при замене мелющих тел на резиновые шарики, пробки и аналогичные тела, не вызывающие дополнительного измельчения материалов.

Сито с контрольной сеткой N 008 по ГОСТ 6613.

Прибор для определения удельной поверхности методом воздухопроницаемости по ГОСТ 30744.

Сушильный лабораторный электрошкаф.

5 Подготовка к испытанию и проведение испытания

5.1 Общие положения

Погрешность средств контроля при взвешивании материалов при приготовлении смесей не должна превышать ±1 г.

Общие положения при определении тонкости помола материалов и испытании смесей на прочность - по ГОСТ 30744.

5.2 Подготовка материалов

5.2.1 Для проведения испытаний от каждой партии добавки отбирают не менее пяти точечных проб.

5.2.2 Из точечных проб составляют объединенную пробу. Масса объединенной пробы должна быть не менее 12 кг. Масса объединенной пробы кусковой дробленой добавки должна быть не менее 12 кг, недробленой - не менее 30 кг.

Объединенную пробу недробленой добавки дробят до кусков размером не более 50 мм.

Объединенную пробу дробят так, чтобы проба без остатка прошла через сито N 10 по ГОСТ 3306.

5.2.3 Из объединенной пробы сокращением получают среднюю лабораторную пробу массой 6 кг.

5.2.4 Пробу добавки массой 6 кг высушивают в сушильном электрошкафу при температуре (100±5)°С до постоянной массы и измельчают в лабораторной мельнице. Тонкость помола должна быть такой, чтобы остаток на сите с сеткой N 008 составлял не менее 13% и не более 15% массы просеиваемой пробы.

Добавки, обладающие высокой исходной дисперсностью и имеющие остаток на сите с сеткой N 008 менее 13% и удельную поверхность более 300 м/кг, могут быть использованы без предварительного помола.

Подготовленную пробу добавки хранят до испытаний в герметичной таре.

5.2.5 Портландцементный клинкер, предназначенный для испытаний, стандартный песок по ГОСТ 6139 и гипсовый камень по ГОСТ 4013 раздельно измельчают в лабораторной мельнице. Тонкость помола должна быть такой, чтобы остаток на сите с сеткой N 008 составлял:

- для портландцементного клинкера не менее 6% и не более 8% массы просеиваемой пробы;

- для стандартного песка не менее 13% и не более 15% массы просеиваемой пробы;

- для гипсового камня не менее 4% и не более 6% массы просеиваемой пробы.

Допускается измельчать гипсовый камень растиранием в фарфоровой ступке до требуемой тонкости помола.

5.3 Определение прочности

5.3.1 Из материалов, подготовленных по 5.2, путем перемешивания в лабораторной мельнице в течение 2 ч готовят смеси, соответствующие по составам приведенным в таблице 1.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОПРЕДЕЛЕНИЮ ПЕРВОНАЧАЛЬНОГО СОСТАВА БЕТОНА

Утверждены директором НИИЖБ 27 июня 1983 г.

Методические рекомендации содержат описание методов экспериментального определения вещественного состава затвердевшего раствора и бетона, изготовленных как на чистом портландцементе, так и на цементе с активными минеральными добавками. Приведен пример расчета.

Предназначены для инженерно-технических работников строительных лабораторий и научно-исследовательских организаций.

Определение первоначального состава затвердевшего бетона и раствора имеет важное значение в строительной практике. Оно требуется в тех случаях, когда возникает необходимость установить в готовом изделии, соответствовала ли дозировка составляющих, в первую очередь - цемента, заданной марке бетона. Такая необходимость возникает, например, в случаях аварий или обнаружения недостаточной прочности бетона. Подобные случаи, хотя и являются сравнительно редкими, все же имеют место в строительной практике, поэтому методы определения первоначального состава затвердевшего бетона представляют значительный интерес как для строительных организаций, непосредственно отвечающих за качество бетона, так и для органов контроля (арбитража и т.д.).

Именно этим можно объяснить, что в ряде стран подобные методы узаконены в форме государственных или ведомственных стандартов (США, ГДР, Венгрия, Великобритания, Австралия и др.).

В 1969 г. были изданы разработанные НИИЖБ "Рекомендации методов анализа затвердевшего бетона и раствора для определения их первоначального состава" (М., 1969), в которых были обобщены все известные в литературе методы определения состава бетона и результаты обширных исследований, связанных с проверкой этих методов.

В настоящих Методических рекомендациях учтен многолетний опыт применения разработанных ранее методов для анализа затвердевших растворов и бетонов, поэтому они содержат некоторые изменения и дополнения.

Настоящие Методические рекомендации разработаны лабораторией физико-химических исследований бетонов НИИЖБ Госстроя СССР (инж. А.И.Лапшина и канд.техн.наук Л.В.Никитина).

Все замечания и предложения по содержанию настоящих Методических рекомендаций просим направлять в НИИЖБ по адресу: 109389, Москва, 2-я Институтская ул., д.6.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Основным условием надежности предлагаемых методов определения состава затвердевшего бетона является представительность отобранной для анализа пробы, т.е. возможно более близкое соответствие анализируемого образца фактическому составу бетона в данной части сооружения. Эта представительность достигается большим количеством отбираемых для анализа проб и достаточной массой отдельной пробы.

1.2. Большинство известных методов анализа затвердевшего бетона основано на растворении тонкорастертой пробы бетона соляной кислотой с последующим определением в растворе и , по значению которых рассчитывается содержание цемента. Нерастворившуюся часть пробы бетона обычно относят за счет заполнителей. При этом неизбежно имеет место частичное растворение в кислоте песка и крупного заполнителя, что снижает точность анализа. Проведенная в НИИЖБ проверка указанных методик показала, что относительная ошибка анализа при их применении может достигать 10-20%.

1.3. Учитывая вышесказанное, в настоящих Методических рекомендациях за основу принят комбинированный метод анализа затвердевшего раствора и бетона, состоящий из следующих операций:

определения количества крупного заполнителя;

анализа растворной части с целью определения содержания цемента;

определения содержания песка - по разности.

Метод предусматривает предварительное отделение от пробы крупного заполнителя, для чего используется термическая обработка, в результате которой бетон распадается на составные части.

Учитывая, что крупный заполнитель составляет обычно около половины массы бетона, притом он более растворим, чем песок, исключение его из химической обработки способствует повышению точности анализов.

1.4. Проверка предлагаемого в настоящих Методических рекомендациях метода определения состава бетона показала, что он обеспечивает относительную точность 5-10%.

1.5. В Методических рекомендациях приводятся также некоторые варианты указанного основного метода применительно к бетонам с различными вяжущими и заполнителями.

2. ОБЛАСТЬ ПРИМЕНЕНИЯ

2.1. Настоящие Методические рекомендации распространяются на анализ затвердевшего портландцементного раствора и бетона, включая бетоны, содержащие цементы с активными минеральными добавками и заполнителями из карбонатных пород.

2.2. Методические рекомендации не распространяются на бетоны, в которых вяжущими являются глиноземистые, известково-пуццолановые и известково-шлаковые (бесклинкерные) цементы, а также на бетоны, подвергавшиеся воздействию агрессивных сред.

3. РЕКОМЕНДУЕМЫЕ МЕТОДЫ АНАЛИЗА

3.1. Для определения содержания цемента в пробах бетона предлагаются два метода:

метод непосредственного определения содержания цемента (химический метод);

метод определения содержания цемента по разности между массой исследуемой пробы бетона и массой заполнителей (ситовой метод).

3.2. Метод с непосредственным определением содержания цемента состоит из следующих операций:

определения количества крупного заполнителя;

определения количества цемента с помощью химического анализа;

определения количества мелкого заполнителя (песка) - по разности.

Количество крупного заполнителя определяется путем термического разложения бетона и отсеивания распавшейся массы через сито с размером ячейки 5 мм.

Количество цемента определяется путем растворения фракции, прошедшей через сито 5 мм (растворной части), в , а затем в щелочи (для растворения выпавшего при обработке кислотой геля ). При такой обработке частично будут растворяться и заполнители, поэтому результаты анализа будут более точными лишь в том случае, если имеются в наличии и будут проанализированы также исходные материалы бетона. В противном случае при расчете приходится принимать условные величины, что снижает точность анализа.

3.3. Метод определения содержания цемента по разности слагается из следующих операций:

разложения бетона нагреванием, иногда с последующей химической обработкой для отделения цемента с поверхности зерен заполнителя;

разделения (на ситах) полученных заполнителей и определение количеств отдельных фракций;

определения содержания цемента по разности.

Метод не требует специальной лаборатории и высокой квалификации исполнителей, но менее точен, так как неточности отдельных прямых определений отражаются на величине, определяемой по разности (т.е. содержании цемента).

3.4. Выбор того или иного метода или же применение обоих производится лабораторией в зависимости от поставленной задачи и местных условий.

4. ОТБОР ПРОБЫ ДЛЯ АНАЛИЗА

4.1. Проба, взятая для анализа, должна наиболее точно отражать состав бетона в данной части сооружения. Для этого отбирается 6-8 проб в разных точках сооружения или конструкции.

4.2. В зависимости от крупности заполнителей в бетоне, размеров конструктивного элемента и других факторов масса каждой пробы может изменяться от 1 до 5 кг.

4.3. Для установления причин местных дефектов, выцветов и т.п. пробы могут отбираться по месту дефекта в меньших размерах и числе (иногда в виде единичной пробы).

5. КАЧЕСТВЕННЫЙ АНАЛИЗ ПРОБЫ

5.1. Если не имеется точных сведений о том, какой цемент и заполнитель были использованы в данном бетоне, необходимо провести качественный анализ пробы для установления:

минералогического состава заполнителей, в частности - наличия в них карбонатных зерен;

наличия и вида активных минеральных добавок.

5.2. Для установления наличия карбонатных зерен в крупном заполнителе следует выделить из бетона несколько щебенок и испытать их на вскипание при действии концентрированной соляной кислоты.

Эта проба необходима и в отношении песка (в растворной части бетона). Если песок карбонатный, раствор разложится почти полностью.

5.3. Установление наличия и вида минеральных добавок в цементе производится с помощью микроскопического анализа и по данным микрохимических реакций. Для распознавания отдельных видов добавок могут служить следующие специфические признаки:

а) характерными признаками наличия в бетоне доменных шлаков (шлакопортландцемента) является синеватый цвет на свежем изломе бетона и запах сероводорода. Для доменных гранулированных шлаков характерно преобладание острогранных изотропных зерен шлакового стекла, часто аморфных. Для этих шлаков характерно наличие ольдгамита () и минералов из группы мелилита.

При обработке шлака раствором, содержащим в 10 мл дистиллированной воды 0,35 г треххлористой сурьмы (или хлорокиси сурьмы) и 1 г винной кислоты, он окрашивается в оранжево-красный цвет, при обработке раствором ацетата свинца и уксусной кислоты - в коричнево-черный;

б) для трепелов, опоки, диатомитов характерна скрытокристаллическая, часто аморфная, тонкозернистая структура. При обработке 0,1%-ным водным раствором родамина 6Ж появляется красная окраска зерен (зерна цемента остаются серыми или коричневыми);

в) туфы (трассы) определяются по ряду петрографических признаков, наиболее характерным из которых является пепловая структура (смесь обломков кристаллов и вулканического стекла).

При окрашивании родамином 6Ж появляется бордовый цвет;

г) в золах преобладают шаровидные зерна стекла, окрашенные в черный и желтовато-зеленый цвета. Так как специальных красителей для золы нет, для ее обнаружения можно использовать красители, окрашивающие цемент (например, 0,1%-ный водный раствор конго красного);

д) горелые породы, глиежи (природные горелые породы), котельные шлаки характеризуются присутствием остатков глинистых минералов.

5.4. Если строительная лаборатория не располагает необходимыми специалистами и оборудованием для петрографического анализа, последний поручается специализированной петрографической лаборатории.

6. ПОДГОТОВКА ПРОБЫ

6.1. Отобранные пробы бетона дробятся с помощью молотка или пресса на куски, не более максимального размера зерен крупного заполнителя в бетоне, причем стараются не повредить отдельных кусков крупного заполнителя.

6.2. Раздробленный таким образом бетон рассыпается ровным слоем на полу или на столе и подвергается квартованию до тех пор, пока оставшееся количество не станет равным 5-6 кг.

Из конечной пробы отбирают три навески по 0,5-1 кг (в зависимости от предельной крупности заполнителя), помещают их в фарфоровые чашки или на поддоны из неокисляющегося металла, сушат до постоянной массы при 110 °С и взвешивают с точностью до 1 г, получая массу сухой пробы бетона (масса А). Все дальнейшие операции производятся с этими тремя навесками параллельно.

7. ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ БЕТОНА

Подготовленные, как указано в п.6.2 настоящих Методических рекомендаций, пробы в чашках или поддонах вносят в муфельную печь и нагревают до 400-600 °С в течение 3 ч. При этом бетон распадается на составные части, чему способствует легкое постукивание и разминание кусков в чашке резиновым или деревянным пестиком.

7.1. Если после первого нагревания распада не произойдет, прокаливание нужно повторить еще 2-3 раза. Для улучшения дезагрегации бетона горячие куски бетона после каждого нагревания можно помещать в чашку с холодной водой. В этом случае перед каждым повторным нагреванием пробу собирают в ту же чашку или поддон и высушивают.

7.2. После окончания разложения проба бетона высушиваются и взвешивается с той же точностью (получаем массу Б).

7.3. Полученная таким образом потеря массы при прокаливании до 600 °С (п.п.п.), %, равная


(1)

характеризует собой, в основном, содержание гидратной воды в пробе бетона.

8. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА КРУПНОГО ЗАПОЛНИТЕЛЯ

8.1. Полученную сухую смесь (масса Б) просеивают через сито с отверствиями 5 мм для отделения крупного заполнителя от растворной части (цемент + песок). Остаток на сите с размером ячейки 5 мм взвешивают и получают массу крупного заполнителя (масса В). Масса материала, прошедшего через сито, представляет собой растворную часть бетона (масса Г).

8.2. Куски заполнителя, оставшиеся на сите 5 мм, тщательно просматриваются с помощью лупы и замеченные при этом кусочки прилипшего цемента или раствора осторожно удаляются вручную шпателем или щеткой. Снятые куски и пыль присоединяют к растворной части.

8.3. Все крупные куски щебня испытываются на присутствие карбонатов (вскипание капли на поверхности щебенки). Обнаруженные щебенки карбонатных пород (известняка, доломита) отбирают пинцетом и хранят отдельно.


8.4. Оставшиеся куски крупного заполнителя (за вычетом карбонатных зерен) обрабатывают два-три раза холодной разведенной (1:10) декантацией (споласкиванием), затем три раза водой, один раз 1%-ным раствором (декантацией) и опять два раза водой, после чего сушат, присоединяют отложенные карбонатные щебенки и взвешивают (масса Д). Промывные воды соединяют вместе и обрабатывают по п.8.6 настоящих Методических рекомендаций.

8.5. Если крупный заполнитель состоит, в основном, из карбонатных пород, обработка не применяется.

1.1. Настоящие Рекомендации предназначены для ускоренной оценки активности цемента в бетоне и прогнозирования ее соответствия гарантированной марке.

1.3. Методика ускоренной оценки активности цемента предусматривает два этапа: подготовительный и основной.

2.4. В подготовительном этапе устанавливают средний статистический переходный коэффициент эффективности цемента в пропаренном бетоне.

Одновременно на втором этапе по результатам определения прочности бетона рекомендуется назначать водоцементное отношение, обеспечивающее получение бетона с заданной отпускной или передаточной прочностью, например, в соответствии с «Рекомендациями по ускоренной оценке качества цемента в бетоне и назначению его состава» (М., Стройиздат, 1975) * .

* Следует обратить внимание на то, что указанные «Рекомендации» должны быть использованы только для назначения водоцементного отношения, но не для проверки активности цемента.

2.1. Для установления коэффициента эффективности цемента при пропаривании необходимо знать активность цемента в возрасте 28 сут нормального твердения по ГОСТ 310.4-81 и прочность пропаренного бетона эталонного состава, приготовленного на этом цементе.

2.2. Активность цемента принимают по данным, полученным при испытании цемента на заводе-поставщике или в арбитражном лаборатории по государственным испытаниям.

В подготовительном этапе данные об активности цемента необходимо запросить у цементного завода-поставщика, который в соответствии с ГОСТ 22236-85 обязан выслать их потребителю.

2.3. В качестве эталонного состава следует принимать состав бетона, соответствующий наиболее массовому виду бетона, выпускаемому на данном предприятии.

Бетон эталонного состава приготавливают на испытываемом цементе и заполнителях, характерных для данного предприятия, и подвергают пропариванию по принятому на данном предприятии режиму. Образцы испытывают через 4 ч после окончания тепловой обработки.

Для повышения точности прогнозирования активности цемента и снижения вариации прочности бетона при экспериментальных определениях прочности эталонного состава необходимо иметь определенное количество заранее заготовленных заполнителей, характерных для данного предприятия. Кроме того, погрешность дозирования состава всех составляющих в лабораторных замесах при этом должна быть не выше 1 %, погрешность поддерживания режима тепловой обработки - не выше ± 2 °С по температуре и ± 5 мин по длительности отдельных этапов и времени испытания образцов после окончания тепловой обработки.


2.4. Коэффициент эффективности цемента при пропаривании Кэ i для каждой из испытанных партий цемента рассчитывают по формуле (1), а средний коэффициент эффективности при пропаривании для всех испытанных партий - по формуле (2).


где - активность цемента в возрасте 28 сут по данным завода-поставщика или арбитражной лаборатории, МПа; R в i - прочность эталонного состава, приготовленного на цементе той же партии, определяемая по ГОСТ 10180-78, МПа; п - количество испытанных партий цемента.


2.5. Коэффициент вариации коэффициента эффективности цемента при пропаривании определяют по формуле

2.6. Коэффициент эффективности цемента при пропаривании следует рассчитывать по каждым последовательно поступающим на завод 15 партиям данной видо-марки цемента, что обеспечивает необходимую надежность прогнозирования.

При изменении качества заполнителей, условий твердения или испытаний эталонного состава бетона необходимо вновь определять переходный коэффициент.

В табл. 1 приведены результаты определения прочности после пропаривания бетона проектной марки М300 с отпускной прочностью, равной 24 МПа. Бетон изготовлен на 15-ти последовательно поступивших партиях портландцемента с минеральными добавками марки М400 одного завода-поставщика. В табл. 1 приведены также полученные от завода-поставщика результаты определения активности цемента по ГОСТ 310.4-81 и рассчитанный по этим данным по формуле (1) коэффициент эффективности цемента при пропаривании для каждой партии цемента, а также средний коэффициент , рассчитанный по формуле (2), и коэффициент вариации , рассчитанный по формуле (3).

Таблица 1. Определение коэффициентов эффективности цементов при пропаривании

Читайте также: