Однородность бетона по прочности

Обновлено: 12.05.2024

Однородность бетона по прочности и другим свойствам — важнейший фактор надежности бетонных и железобетонных конструкций.

Расчетные сопротивления бетона по действующим нормам проектирования конструкций составляют лишь около половины проектных значений прочности, поскольку приходится ориентироваться не на средние показатели, а на статистически вероятную минимальную прочность бетона, качество которого подвержено случайным колебаниям.

Повышение однородности бетона открывает возможность его более, эффективного использования при требуемой обеспеченности его заданных параметров.

Однородность бетона по прочности наряду с другими факторами зависит от содержания и качества применяемых заполнителей, особенно если какие-либо свойства последних ограничивают получение бетона требуемой прочности.

При попытке получить высокопрочный бетон на гладком окатанном гравии слабым местом является контакт цементного камня с заполнителем, и чем больше будет в бетоне заполнителя, тем меньшей окажется прочность бетона. В этом случае неточность дозирования и неравномерное распределение заполнителя по объему бетона будут снижать однородность бетона по прочности и тем значительнее, чем выше проектная прочность бетона.

Если свойства заполнителя обеспечивают надлежащее сцепление с цементным камнем в бетоне, а прочность заполнителя достаточно высока в соответствии с условием (4.6), то возможные колебания содержания такого заполнителя в бетоне, как вытекает из вышеизложенного, сравнительно мало скажутся на прочности бетона и ее изменчивости.

Наконец, если прочность заполнителя недостаточна для получения бетона требуемой прочности, то и колебания содержания, и неоднородность заполнителя могут весьма резко снизить однородность бетона.

Поэтому однородность бетона обычно связывают с его прочностью, хотя имеющиеся опытные данные нередко противоречивы. Долгое время считалось, что чем выше прочность бетона, тем выше его однородность. Это объясняли повышением культуры производства, усилением технологического контроля. Однако последующие исследования (А. Е. Десова, В. А. Вознесенского) показали, что высокопрочные бетоны, наоборот, имеют меньшую однородность. Последнее соответствует и представлениям, вытекающим из вышеприведенного анализа влияния заполнителей на прочность бетона.

Согласно ГОСТ 10268—80, предел прочности горной породы заполнителей для тяжелого бетона должен превосходить проектный предел прочности бетона не менее чем в 1,5 раза, если последний ниже 30 МПа, и не менее чем в 2 раза, если он составляет 30 МПа и выше. Однако здесь имеется в виду средний предел прочности по результатам испытаний пяти контрольных образцов породы на сжатие или двух проб щебня на дробимость по ГОСТ 8269—76. Если исходная горная порода неодородна по прочности, то минимальный статистически вероятный предел прочности заполнителя может оказаться гораздо ниже среднего. Не исключено, что он окажется ниже требуемого по формуле (4.6) и даже ниже проектной прочности бетона, причем вероятность этого с увеличением проектной прочности бетона возрастает.

Однородность легких бетонов помимо общих технологических факторов зависит от того, насколько рационально выбрана область применения того или иного пористого заполнителя. Имеет значение соотношение заданной прочности бетона и прочности заполнителя в бетоне, причем последняя должна оцениваться не только интегрально по средним показателям, но и характеристикой однородности. Если заданный предел прочности бетона превышает минимальное статистически вероятное значение предела прочности заполнителя, а тем более среднее его значение, то однородность бетона снижается.

Нередко стремятся получить легкий бетон как можно более высокой прочности, не учитывая при этом, что при Re>R3 повышение прочности бетона сопровождается снижением его однородности, поэтому расчетное сопротивление нельзя повысить без риска снизить обычный запас прочности конструкций. Отсюда в дополнение к вышеизложенному вытекают повышенные требования к прочности заполнителей для бетона и их однородности.

Повышение однородности заполнителей, т. е. приближение минимального статистически вероятного предела прочности к среднему, столь же важно, как повышение среднего предела прочности. Поэтому в последующих главах даются рекомендации по выбору путей повышения однородности заполнителей методами обогащения.

Для легких теплоизоляционных и конструкционно-теплоизоляционных бетонов большое значение имеет однородность по теплопроводности. Учитывая связь теплопроводности с плотностью бетона, обычно для упрощения задачи определяют однородность бетона по плотности, причем вычисляют не минимальную, а максимальную статистически вероятную плотность бетона.

На стабильность всех показателей качества бетона влияет однородность применяемых заполнителей также по влажности, крупности, форме зерен и т. д.

Поскольку высокоразвитая цементная промышленность СССР обеспечивает стабильность качества цемента, а механизация и автоматизация процессов приготовления и укладки бетонной смеси позволяют обеспечить требуемые технологические параметры, неоднородность заполнителей остается существенным препятствием повышению однородности бетона. Именно из-за неоднородности заполнителей в основном приходится увеличивать коэффициенты запаса прочности, используя потенциальные возможности бетона в среднем только наполовину.

В научно-технической литературе понятие однородности бетона в последнее время расширяется. Помимо характеристики изменчивости результатов испытания отдельных образцов бетона вводится понятие структурной однородности как характеристики изменчивости прочностных, деформативных и иных свойств в объеме образца. В этом аспекте рассматривается распределение между структурными компонентами бетона внутренних напряжений от внешней нагрузки, усадочных, температурных, примеры которых описаны выше. Мелкозернистый бетон структурно более однороден, чем бетон с крупным заполнителем, что в некоторых случаях дает ему определенные преимущества. Бетон на пористых заполнителях, свойства которых близки к свойствам цементного камня, структурно более однороден, чем обычный тяжелый бетон.

Для получения бетона с требуемыми свойствами необходимо отчетливо представить влияние на свойства бетона заполнителей, их содержания и свойств. Понимание всех аспектов этого влияния обеспечивает правильный выбор заполнителей для достижения заданного качества бетона или выбор области рационального применения в бетонах того или иного заполнителя.

Однородность бетона по прочности и другим свойствам — важнейший фактор надежности бетонных и железобетонных конструкций.

Расчетные сопротивления бетона по действующим нормам проектирования конструкций составляют лишь около половины проектных значений прочности, поскольку приходится ориентироваться не на средние показатели, а на статистически вероятную минимальную прочность бетона, качество которого подвержено случайным колебаниям.

Повышение однородности бетона открывает возможность его более, эффективного использования при требуемой обеспеченности его заданных параметров.

Однородность бетона по прочности наряду с другими факторами зависит от содержания и качества применяемых заполнителей, особенно если какие-либо свойства последних ограничивают получение бетона требуемой прочности.

При попытке получить высокопрочный бетон на гладком окатанном гравии слабым местом является контакт цементного камня с заполнителем, и чем больше будет в бетоне заполнителя, тем меньшей окажется прочность бетона. В этом случае неточность дозирования и неравномерное распределение заполнителя по объему бетона будут снижать однородность бетона по прочности и тем значительнее, чем выше проектная прочность бетона.

Если свойства заполнителя обеспечивают надлежащее сцепление с цементным камнем в бетоне, а прочность заполнителя достаточно высока в соответствии с условием, то возможные колебания содержания такого заполнителя в бетоне, как вытекает из вышеизложенного, сравнительно мало скажутся на прочности бетона и ее изменчивости.

Наконец, если прочность заполнителя недостаточна для получения бетона требуемой прочности, то и колебания содержания, и неоднородность заполнителя могут весьма резко снизить однородность бетона.

Поэтому однородность бетона обычно связывают с его прочностью, хотя имеющиеся опытные данные нередко противоречивы. Долгое время считалось, что чем выше прочность бетона, тем выше его однородность. Это объясняли повышением культуры производства, усилением технологического контроля. Однако последующие исследования (А. Е. Десова, В. А. Вознесенского) показали, что высокопрочные бетоны, наоборот, имеют меньшую однородность. Последнее соответствует и представлениям, вытекающим из вышеприведенного анализа влияния заполнителей на прочность бетона.

Согласно ГОСТ 10268—80, предел прочности горной породы заполнителей для тяжелого бетона должен превосходить проектный предел прочности бетона не менее чем в 1,5 раза, если последний ниже 30 МПа, и не менее чем в 2 раза, если он составляет 30 МПа и выше. Однако здесь имеется в виду средний предел прочности по результатам испытаний пяти контрольных образцов породы на сжатие или двух проб щебня на дробимость по ГОСТ 8269—76. Если исходная горная порода неодородна по прочности, то минимальный статистически вероятный предел прочности заполнителя может оказаться гораздо ниже среднего. Не исключено, что он окажется ниже требуемого по формуле и даже ниже проектной прочности бетона, причем вероятность этого с увеличением проектной прочности бетона возрастает.

Однородность легких бетонов помимо общих технологических факторов зависит от того, насколько рационально выбрана область применения того или иного пористого заполнителя. Имеет значение соотношение заданной прочности бетона и прочности заполнителя в бетоне, причем последняя должна оцениваться не только интегрально по средним показателям, но и характеристикой однородности. Если заданный предел прочности бетона превышает минимальное статистически вероятное значение предела прочности заполнителя, а тем более среднее его значение, то однородность бетона снижается.

Нередко стремятся получить легкий бетон как можно более высокой прочности, не учитывая при этом, что при Re>R3 повышение прочности бетона сопровождается снижением его однородности, поэтому расчетное сопротивление нельзя повысить без риска снизить обычный запас прочности конструкций. Отсюда в дополнение к вышеизложенному вытекают повышенные требования к прочности заполнителей для бетона и их однородности.

Повышение однородности заполнителей, т. е. приближение минимального статистически вероятного предела прочности к среднему, столь же важно, как повышение среднего предела прочности. Поэтому в последующих главах даются рекомендации по выбору путей повышения однородности заполнителей методами обогащения.

Для легких теплоизоляционных и конструкционно-теплоизоляционных бетонов большое значение имеет однородность по теплопроводности. Учитывая связь теплопроводности с плотностью бетона, обычно для упрощения задачи определяют однородность бетона по плотности, причем вычисляют не минимальную, а максимальную статистически вероятную плотность бетона.

На стабильность всех показателей качества бетона влияет однородность применяемых заполнителей также по влажности, крупности, форме зерен и т. д.

Поскольку высокоразвитая цементная промышленность обеспечивает стабильность качества цемента, а механизация и автоматизация процессов приготовления и укладки бетонной смеси позволяют обеспечить требуемые технологические параметры, неоднородность заполнителей остается существенным препятствием повышению однородности бетона. Именно из-за неоднородности заполнителей в основном приходится увеличивать коэффициенты запаса прочности, используя потенциальные возможности бетона в среднем только наполовину.

В научно-технической литературе понятие однородности бетона в последнее время расширяется. Помимо характеристики изменчивости результатов испытания отдельных образцов бетона вводится понятие структурной однородности как характеристики изменчивости прочностных, деформативных и иных свойств в объеме образца. В этом аспекте рассматривается распределение между структурными компонентами бетона внутренних напряжений от внешней нагрузки, усадочных, температурных, примеры которых вписаны выше. Мелкозернистый бетон структурно более однороден, чем бетон с крупным заполнителем, что в некоторых случаях дает ему определенные преимущества. Бетон на пористых заполнителях, свойства которых близки к свойствам цементного камня, структурно более однороден, чем обычный тяжелый бетон. Для получения бетона с требуемыми свойствами необходимо отчетливо представить влияние на свойства бетона заполнителей, их содержания и свойств. Понимание всех аспектов этого влияния обеспечивает правильный выбор заполнителей для достижения заданного качества бетона или выбор области рационального применения в бетонах того или иного заполнителя.

Правила контроля и оценки прочности

Concretes. Rules for control and assessment of strength

____________________________________________________________________
Текст Сравнения ГОСТ 18105-2018 с ГОСТ 18105-2010 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

Дата введения 2020-01-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ им.А.А.Гвоздева) - структурным подразделением АО "НИЦ "Строительство"

2 ВНЕСЕН Техническим комитетом ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 29 ноября 2018 г. N 54)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

ЗАО "Национальный орган по стандартизации и метрологии" Республики Армения

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 апреля 2019 г. N 130-ст межгосударственный стандарт ГОСТ 18105-2018 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2020 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

ВНЕСЕНА поправка, опубликованная в ИУС N 10, 2021 год

Поправка внесена изготовителем базы данных

1 Область применения

Настоящий стандарт распространяется на все виды бетонов по ГОСТ 25192, для которых нормируется прочность, и устанавливает правила контроля и оценки прочности бетона при контроле качества бетонных смесей, бетонных и железобетонных изделий и конструкций, в том числе монолитных и сборно-монолитных.

Настоящий стандарт устанавливает общие правила контроля и оценки прочности бетона. Стандарты на отдельные виды бетонов, изделий или конструкций могут содержать дополнительные требования к правилам настоящего стандарта (массивные конструкции, подземные сооружения, торкрет-бетоны, аэродромные и дорожные покрытия, фибробетоны и т.п.).

Настоящий стандарт может быть использован при инспекционном контроле и проведении обследований бетонных и железобетонных изделий и конструкций.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 22690-2015 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования

ГОСТ 27006-86 Бетоны. Правила подбора состава

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

ГОСТ 31914-2012 Бетоны высокопрочные тяжелые и мелкозернистые для монолитных конструкций. Правила контроля и оценки качества

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

3.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1.1 анализируемый период: Период времени, в течение которого вычисляют среднее значение коэффициента вариации прочности бетона для партий бетонной смеси или изделий, изготовленных за этот период.

3.1.2 градуировочная зависимость: Графическая или аналитическая зависимость между косвенной характеристикой прочности и прочностью бетона, определенной одним из разрушающих или прямых неразрушающих методов.

3.1.3 группа конструкций: Несколько монолитных конструкций из бетона одного проектного класса, объединенных по общим принципам (технологии возведения и формования), изготовленных в течение определенного интервала времени.

3.1.4 единичное значение прочности: Значение фактической прочности бетона нормируемого вида, учитываемое при расчете характеристик однородности бетона:

- для бетонных смесей - среднее значение прочности бетона серий контрольных образцов одной пробы;

- сборных конструкций - среднее значение прочности бетона серий контрольных образцов одной пробы или значение прочности бетона контролируемого участка конструкции, или среднее значение прочности бетона одной конструкции;

- монолитных конструкций - значение прочности бетона контролируемого участка конструкции или среднее значение прочности бетона серий контрольных образцов одной пробы.

3.1.5 захватка: Объем бетона монолитной конструкции или ее части, уложенный при непрерывном бетонировании, ограниченный рабочими швами бетонирования или гранями конструкции.

3.1.6 зона конструкции: Часть контролируемой конструкции, прочность бетона которой отличается от средней прочности бетона этой конструкции более чем на 15%.

3.1.7 инспекционный контроль: Контроль, осуществляемый специально уполномоченными лицами с целью проверки эффективности ранее выполненного контроля.

3.1.8 контролируемый период: Период времени, в течение которого требуемая прочность бетона принимается постоянной и назначается в соответствии со средним коэффициентом вариации за предыдущий анализируемый период.

3.1.9 контролируемый участок: Часть изделия или конструкции размерами, обеспечивающими возможность определения единичного значения прочности бетона.

3.1.10 косвенные неразрушающие методы определения прочности бетона: Неразрушающие методы определения прочности бетона по предварительно устанавливаемым градуировочным зависимостям.

3.1.11 косвенные характеристики прочности (косвенный показатель): Показание прибора при измерении прочности бетона неразрушающими методами.

3.1.12 неразрушающие методы определения прочности бетона: Методы определения прочности бетона при локальном воздействии на бетон конструкций или образцов без их общего разрушения, основанные на связи косвенных показателей и прочности бетона.

3.1.13 нормируемая прочность бетона: Прочность бетона в проектном возрасте или ее доля в промежуточном возрасте, установленная в нормативном или техническом документе, по которому изготовляют бетонную смесь, изделие или конструкцию.

Примечание - В зависимости от требований нормативных или технических документов к нормируемым и контролируемым показателям качества бетона по прочности в проектном возрасте устанавливают класс бетона по прочности:


- осевое растяжение - ;


- растяжение при изгибе - .

3.1.14 партия бетонной смеси: Объем бетонной смеси одного номинального состава, изготовленный за определенное время.

3.1.15 партия изделий: Бетонные и железобетонные изделия одного типа, изготовленные по одной технологии из бетонной смеси одного вида в течение определенного интервала времени.

3.1.16 проба бетонной смеси: Объем бетонной смеси одного номинального состава, из которого одновременно изготовляют одну или несколько серий контрольных образцов.

3.1.17 прямые неразрушающие методы определения прочности бетона: Методы по ГОСТ 22690, предусматривающие стандартные схемы испытаний и допускающие применение известных градуировочных зависимостей без их привязки и корректировки.

3.1.18 разрушающие методы определения прочности бетона: Методы определения прочности бетона по контрольным образцам, изготовленным из бетонной смеси по ГОСТ 10180 или отобранным из конструкций по ГОСТ 28570.

3.1.19 серия контрольных образцов: Несколько образцов, изготовленных из одной пробы бетонной смеси или отобранных из одной конструкции, твердеющих в одинаковых условиях и испытанных в одном возрасте для определения одного вида фактической прочности.

3.1.20 скользящий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона, рассчитываемый как средний для текущей контролируемой партии и предыдущих проконтролированных партий бетонных смесей или изделий при контроле по схеме Б.

3.1.21 средний коэффициент вариации прочности бетона: Среднее значение коэффициента вариации прочности бетона за анализируемый период при контроле по схеме А.

3.1.22 текущий контроль: Контроль прочности бетона партии бетонной смеси или изделий, а также отдельных монолитных конструкций или их групп, при котором значения фактической прочности и однородности бетона по прочности (текущего коэффициента вариации) рассчитывают по результатам проводимого контроля.

3.1.23 текущий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона в контролируемой партии бетонных смесей, изделий, зоне конструкции, отдельной конструкции или группе конструкций.

3.1.24 требуемая прочность бетона: Минимально допустимое среднее значение прочности бетона в контролируемых партиях бетонной смеси или изделий, соответствующее нормируемой прочности бетона при ее фактической однородности.

3.1.25 фактическая прочность бетона: Среднее значение прочности бетона, рассчитанное по результатам ее определения в партиях бетонной смеси, изделий или монолитных конструкциях.

3.1.26 фактический класс бетона по прочности: Оценочное значение класса бетона по прочности, рассчитанное по результатам определения фактической прочности бетона и ее однородности.

Качество бетона нельзя оценить только средней его прочностью. На практике всегда наблюдаются отклонения от этой величины. Колебания активности цемента, его нормальной густоты, минералогического состава, свойств заполнителей, дозировки материалов, режимов перемешивания и твердения — все это приводит к неоднородности структуры бетона Вследствие этого отдельные объемы бетона могут отличаться друг от друга в большей или меньшей степени, что зависит от свойств используемых материалов и отлаженное технологического процесса Соответственно будут колебаться и показатели свойств бетона - прочность, плотность, проницаемость, морозостойкость и др. Для оценки однородности бетона используют статистические методы. Качество бетона определяете главным образом его средней прочностью (или соответствующим комплексом показателей) и однородностью, которая оценивается по коэффициенту вариации прочности (или других показателей).

При изменении коэффициента вариации определенному классу по прочности будет соответствовать различная средняя прочность. С уменьшением и будет уменьшаться и величина средней прочности

Например, для обеспечения класса В10 при и= 13,5% требуется средняя прочность 12,85 МПа, а при v — 7 средняя прочность 11,3 МПа.

При контроле качества бетона по прочности с учетом его однородности проводят статистическую обработку результатов испытаний бетона за определенный период и определяют характеристики его прочности и однородности. В проектах указываются значения нормируемой прочности бетона (в проектном и промежуточном возрасте, отпускные и передаточные). Требуемая прочность представляет собой минимально допустимое значение фактической прочности бетона в партии, при котором будет обеспечена нормируемая прочность с заданной степенью гарантии. Она устанавливается лабораториями заводов и строек в соответствии с достигнутой однородностью бетона в партии.

Фактическая прочность бетона в партии определяется как среднее значение прочности, определенное по результатам испытаний контрольных образцов или неразрушающими методами непосредственно в конструкции.

Одновременно с требуемой прочностью определяют средний уровень прочности Ry (заданную прочность), представляющий собой среднее значение прочности бетона, устанавливаемое лабораториями заводов и строек на определенный контролируемый период в соответствии с достигнутой однородностью бетона по прочности, по которому подбирается состав бетона и которое поддерживается в производстве.

В качестве характеристики однородности бетона используют средний коэффициент вариации прочности vn по всем партиям за анализируемый период.

Продолжительность анализируемого периода для определения характеристик однородности устанавливают от одной недели до двух месяцев Число единичных значений прочности бетона за этот период должно быть более 30. По результатам испытания вычисляют среднеквадратическое отклонение sm и коэффициент Vm прочности для всех видов нормируемой прочности бетона. Для сборных конструкций допускается коэффициент vm для прочности бетона в проектном возрасте не вычислять, а принимать меньше на 15% по сравнению с vm отпускной прочности

Министерство регионального развития и строительства

5 В настоящем стандарте учтены основные нормативные положения европейского стандарта ЕН 206-1:2000* "Бетон - Часть 1. Общие технические требования, эксплуатационные характеристики, производство и критерии соответствия" (EN 206-1:2000 "Concrete - Part 1: Specification, performance, production and conformity", NEQ) в части контроля и оценки прочности бетона

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

7 ПЕРЕИЗДАНИЕ. Август 2018 г.

1 Область применения

Настоящий стандарт распространяется на все виды бетонов, для которых нормируется прочность, и устанавливает правила контроля и оценки прочности бетонной смеси, готовой к применению (далее - БСГ), бетона монолитных, сборно-монолитных и сборных бетонных и железобетонных конструкций при проведении производственного контроля прочности бетона.

Правила настоящего стандарта могут быть использованы при проведении обследований бетонных и железобетонных конструкций, а также при экспертной оценке качества бетонных и железобетонных конструкций.

Выполнение требований настоящего стандарта гарантирует обеспечение принятых при проектировании расчетных и нормативных сопротивлений бетона конструкций.

2 Нормативные ссылки

В настоящем стандарте приведены ссылки на следующие стандарты:

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 13015-2003 Изделия железобетонные и бетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 17624-87 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 27006-86 Бетоны. Правила подбора состава

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

3.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1.1 нормируемая прочность бетона: Прочность бетона в проектном возрасте или ее доля в промежуточном возрасте, установленная в нормативном или техническом документе, по которому изготавливают БСГ или конструкцию.

Примечание - В зависимости от вида прочности в проектном возрасте устанавливают следующие классы бетона по прочности:

- класс бетона по прочности на сжатие;

- класс бетона по прочности на осевое растяжение;

- класс бетона по прочности на растяжение при изгибе.

3.1.2 требуемая прочность бетона: Минимально допустимое среднее значение прочности бетона в контролируемых партиях БСГ или конструкций, соответствующее нормируемой прочности бетона при ее фактической однородности.

3.1.3 фактический класс бетона по прочности: Значение класса бетона по прочности монолитных конструкций, рассчитанное по результатам определения фактической прочности бетона и ее однородности в контролируемой партии.

3.1.4 фактическая прочность бетона: Среднее значение прочности бетона в партиях БСГ или конструкций, рассчитанное по результатам ее определения в контролируемой партии.

3.1.5 проба бетонной смеси: Объем БСГ одного номинального состава, из которого одновременно изготавливают одну или несколько серий контрольных образцов.

3.1.6 серия контрольных образцов: Несколько образцов, изготовленных из одной пробы БСГ или отобранных из одной конструкции, твердеющих в одинаковых условиях и испытанных в одном возрасте для определения фактической прочности одного вида.

3.1.7 партия бетонной смеси: Объем БСГ одного номинального состава, изготовленный или уложенный за определенное время.

3.1.8 партия монолитных конструкций: Часть монолитной конструкции, одна или несколько монолитных конструкций, изготовленных за определенное время.

3.1.9 партия сборных конструкций: Конструкции одного типа, последовательно изготовленные по одной технологии в течение не более одних суток из материалов одного вида.

3.1.10 контролируемый участок конструкции: Часть конструкции, на которой проводят определение единичного значения прочности бетона неразрушающими методами.

3.1.11 зона конструкции: Часть контролируемой конструкции, прочность бетона которой отличается от средней прочности этой конструкции более чем на 15%.

3.1.12 анализируемый период: Период времени, за который вычисляют среднее значение коэффициента вариации прочности бетона для партий БСГ или конструкций, изготовленных за этот период.

3.1.13 текущий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона в контролируемой партии БСГ или конструкций.

3.1.14 средний коэффициент вариации прочности бетона: Среднее значение коэффициента вариации прочности бетона за анализируемый период при контроле по схемам А и В.

3.1.15 скользящий коэффициент вариации прочности бетона: Коэффициент вариации прочности бетона, рассчитываемый как средний для текущей партии и предыдущих проконтролированных партий БСГ или конструкций при контроле по схеме Б.

3.1.16 контролируемый период: Период времени, в течение которого требуемая прочность бетона принимается постоянной в соответствии с коэффициентом вариации за предыдущий анализируемый период.

3.1.17 текущий контроль: Контроль прочности бетона партии БСГ или конструкций, при котором значения фактической прочности и однородности бетона по прочности (текущего коэффициента вариации) рассчитывают по результатам контроля этой партии.

3.1.18 разрушающие методы определения прочности бетона: Определение прочности бетона по контрольным образцам, изготовленным из бетонной смеси по ГОСТ 10180 или отобранным из конструкций по ГОСТ 28570.

3.1.19 прямые неразрушающие методы определения прочности бетона: Определение прочности бетона по "отрыву со скалыванием" и "скалыванию ребра" по ГОСТ 22690.

3.1.20 косвенные неразрушающие методы определения прочности бетона: Определение прочности бетона по предварительно установленным градуировочным зависимостям между прочностью бетона, определенной одним из разрушающих или прямых неразрушающих методов, и косвенными характеристиками прочности, определяемыми по ГОСТ 22690 и ГОСТ 17624.

3.1.21 захватка: Объем бетона монолитной конструкции или ее части, уложенный при непрерывном бетонировании одной или нескольких партий БСГ за определенное время.

3.1.22 единичное значение прочности: Значение фактической прочности бетона нормируемого вида, учитываемое при расчете характеристик однородности бетона:

- для БСГ - среднее значение прочности бетона пробы бетонной смеси;

- для сборных конструкций - среднее значение прочности бетона пробы бетонной смеси или среднее значение прочности бетона участка конструкции, или среднее значение прочности бетона одной конструкции;

- для монолитных конструкций - среднее значение прочности бетона участка конструкции или бетона одной конструкции.

3.2 Обозначения


- проектный класс прочности бетона, МПа;

- фактический класс прочности бетона, МПа;

, , - единичное, минимальное и максимальное значения прочности бетона в партии, МПа;

Читайте также: