Нормируемое сопротивление теплопередаче перекрытия над подвалом

Обновлено: 12.05.2024

Докипедия просит пользователей использовать в своей электронной переписке скопированные части текстов нормативных документов. Автоматически генерируемые обратные ссылки на источник информации, доставят удовольствие вашим адресатам.

3 Показатели геометрические

4 Показатели теплотехнические

5 Показатели вспомогательные

6 Удельные характеристики

7 Коэффициенты

8 Комплексные показатели расхода тепловой энергии

9 Энергетические нагрузки здания

Приложение Е (обязательное) Расчет приведенного сопротивления теплопередаче фрагмента теплозащитной оболочки здания или любой выделенной ограждающей конструкции

Расчет основан на представлении фрагмента теплозащитной оболочки здания в виде набора независимых элементов, каждый из которых влияет на тепловые потери через фрагмент. Удельные потери теплоты, обусловленные каждым элементом, находятся на основе сравнения потока теплоты через узел, содержащий элемент, и через тот же узел, но без исследуемого элемента.

Е.1 Приведенное сопротивление теплопередаче фрагмента теплозащитной оболочки здания , , следует определять по формуле

где - осредненное по площади условное сопротивление теплопередаче фрагмента теплозащитной оболочки здания либо выделенной ограждающей конструкции, ;

- протяженность линейной неоднородности j-го вида, приходящаяся на фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, ;

- количество точечных неоднородностей k-го вида, приходящихся на фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, ;

- площадь плоского элемента конструкции i-го вида, приходящаяся на фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, ;

- коэффициент теплопередачи однородной i-той части фрагмента теплозащитной оболочки здания (удельные потери теплоты через плоский элемент i-го вида), .

Е.2 Коэффициент теплотехнической однородности, r, вспомогательная величина, характеризующая эффективность утепления конструкции, определяется по формуле

Величина определяется осреднением по площади значений условных сопротивлений теплопередаче всех частей фрагмента теплозащитной оболочки здания

где - условное сопротивление теплопередаче однородной части фрагмента теплозащитной оболочки здания i-го вида, , которое определяется либо экспериментально либо расчетом по формуле

где - коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, , принимаемый согласно таблице 4;

- коэффициент теплоотдачи наружной поверхности ограждающей конструкции, , принимаемый согласно таблице 6;

- термическое сопротивление слоя однородной части фрагмента, , определяемое для невентилируемых воздушных прослоек по таблице Е.1, для материальных слоев по формуле

- теплопроводность материала слоя, , принимаемая по результатам испытаний в аккредитованной лаборатории; при отсутствии таких данных оно оценивается по приложению С.

Е.3 Удельные потери теплоты через линейную теплотехническую неоднородность определяются по результатам расчета двухмерного температурного поля узла конструкций при температуре внутреннего воздуха и температуре наружного воздуха .

- дополнительные потери теплоты через линейную теплотехническую неоднородность j-го вида, приходящиеся на 1 п. м , Вт/м, определяемые по формуле

где - потери теплоты через расчетную область с линейной теплотехнической неоднородностью j-го вида, приходящиеся на 1 п. м стыка, являющиеся результатом расчета температурного поля, Вт/м;

, - потери теплоты через участки однородных частей фрагмента, вошедшие в расчетную область при расчете температурного поля области с линейной теплотехнической неоднородностью j-го вида, Вт/м, определяемые по формулам:

где , - площади однородных частей конструкции, вошедшие в расчетную область при расчете температурного поля, .

5.1 Теплозащитная оболочка здания должна отвечать следующим требованиям:

а) приведенное сопротивление теплопередаче отдельных ограждающих конструкций должно быть не меньше нормируемых значений (поэлементные требования);

б) удельная теплозащитная характеристика здания должна быть не больше нормируемого значения (комплексное требование);

в) температура на внутренних поверхностях ограждающих конструкций должна быть не ниже минимально допустимых значений (санитарно-гигиеническое требование).

Требования тепловой защиты здания будут выполнены при одновременном выполнении требований а), б) и в).

Поэлементные требования


5.2 Нормируемое значение приведенного сопротивления теплопередаче ограждающей конструкции, , (м·°С)/Вт, следует определять по формуле


, (5.1)


где - базовое значение требуемого сопротивления теплопередаче ограждающей конструкции, м·°С/Вт, следует принимать в зависимости от градусо-суток отопительного периода, (), °С·сут/год, региона строительства и определять по таблице 3;

- коэффициент, учитывающий особенности региона строительства. В расчете по формуле (5.1) принимается равным 1. Допускается снижение значения коэффициента в случае, если при выполнении расчета удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания по методике приложения Г выполняются требования 10.1 к данной удельной характеристике. Значения коэффициента при этом должны быть не менее: 0,63 - для стен, 0,80 - для остальных ограждающих конструкций (кроме светопрозрачных), 1,00 - для светопрозрачных конструкций.

Градусо-сутки отопительного периода, °С·сут/год, определяют по формуле


, (5.2)

где , - средняя температура наружного воздуха, °С, и продолжительность, сут/год, отопительного периода, принимаемые по СП 131.13330 для жилых и общественных зданий для периода со среднесуточной температурой наружного воздуха не более 8°С, а при проектировании дошкольных образовательных организаций, общеобразовательных организаций, медицинских организаций и домов-интернатов для престарелых не более 10°С;

- расчетная температура внутреннего воздуха здания, °С, принимаемая при расчете ограждающих конструкций групп зданий указанных в таблице 3: по поз.1 - по минимальным значениям оптимальной температуры соответствующих зданий по ГОСТ 30494 (в интервале 20-22 °С); по поз.2 - согласно классификации помещений и минимальных значений оптимальной температуры по ГОСТ 30494 (в интервале 16-21 °С); по поз.3 - по нормам проектирования соответствующих зданий.


Здания и помещения, коэффициенты и

сутки отопи-
тельного периода, °С·сут/год


Базовые значения требуемого сопротивления теплопередаче (м·°С)/Вт, ограждающих конструкций

Стен, включая стены в грунте

Покрытий и перек-

рытий над проездами

Перекрытий чердачных, перекрытий над неотап-
ливаемыми
подпольями и подвалами, полов по грунту

Окна, свето- прозрачные
фасадные конструкции и другие типы свето-
прозрачных
конструкций, за исключением фонарей

Описав 1 методы расчета и принципы нормирования теплотехнических характеристик наружных ограждающих конструкций зданий в европейских странах на примере Финляндии, перейдем к оценке таковых в России. Также покажем различие методов, принятых в Российской Федерации и странах Европейского союза.

Теплотехнические характеристики ограждающих конструкций зданий

Российской Федерации в части нормирования уровня теплоизоляции наружных ограждающих конструкций действует СП 50.13330.2012 «Тепловая защита зданий. Актуализированная редакция СНиП 23-02–2003» (далее – СП 50.13330).

Теплозащитная оболочка здания, согласно требованиям СП 50.13330 (п. 5.1), должна отвечать следующим требованиям:

  • приведенные сопротивления теплопередаче отдельных ограждающих конструкций должны быть не меньше нормируемых значений (поэлементные требования);
  • удельная теплозащитная характеристика здания должна быть не больше нормируемого значения (комплексное требование);
  • температура на внутренних поверхностях ограждающих конструкций должна быть не ниже минимально допустимых значений (санитарно-гигиеническое требование).

Фактором, оказывающим наибольшее влияние на потребление в зданиях тепловой энергии на отопление, является обеспечение поэлементных требований (требований первой группы), которые аналитически можно выразить в виде условия (8) (см. Формулы).

При этом нормируемое значение приведенного сопротивления теплопередаче ограждающей конструкции следует определять по формуле (9), где коэффициент mp, учитывающий особенности региона строительства, принимается равным 1. При этом допускается снижение значения коэффициента mp в случае, если выполняется расчет удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания. Значения коэффициента mp при этом должны быть не менее:

  • 0,63 для стен;
  • 0,95 для светопрозрачных конструкций;
  • 0,80 для остальных ограждающих конструкций.

По сути, с введением коэффициента mp копируется принцип нормирования, заложенный в СНиП 23-02–2003 «Тепловая защита зданий».

Изменение в России требований к уровню тепловой защиты зданий

В табл. 3 СП 50.13330 приводятся базовые значения требуемого сопротивления теплопередаче ограждающих конструкций. Табл. 3 полностью копирует требования, отраженные в табл. 4 СНиП 23-02–2003. Несмотря на практически полную идентичность табл. 4 СНиП 23-02–2003 и табл. 3 СП 50.13330, нормируемые требования к уровню тепловой защиты в СП 50.13330 оказались ниже аналогичных требований СНиП 23-02–2003.

Различие обусловлено тем, что вместе с актуализацией СНиП 23-02–2003 был актуализирован и СНиП 23-01–99* «Строительная климатология». В СНиП 23-02–2003 при определении климатических параметров отопительного периода последние принимаются по СНиП 23-01–99*, в СП 50.13330 – по СП 131.13330.2012 «Строительная климатология. Актуализированная редакция СНиП 23-01–99*» (далее – СП 131.13330).

Согласно СП 131.13330, средняя температура наружного воздуха за отопительный период для жилых зданий повысилась до –2,2 0 С (в СНиП 23-01–99* указано значение -3,1 0 С), а продолжительность отопительного периода сократилась до 205 сут. (в СНиП 23-01–99* она принималась равной 214 сут.). Неизменной в формуле расчета градусо-суток отопительного периода (ГСОП) осталась лишь принимаемая для жилых зданий температура внутреннего воздуха, которая как была 2 , так и осталась равной 20 0 С.

В результате изменений расчетных климатических параметров изменилось расчетное значение ГСОП для жилых зданий, проектируемых в Москве, которое до введения СП 50.13330 принималось равным 4 943 0 С•сут. (СНиП 23-01–99*), а с 1 июня 2015 года согласно СП 131.13330 принимается равным 4 551 0 С•сут.

Ввиду изменения ГСОП изменились и нормативные требования к уровню нормируемого сопротивления теплопередаче (табл. 4). Как следует из табл. 4, современные нормативные требования к уровню тепловой защиты оказались незначительно, но ниже требований 2003 года (т. е. СНиП 23-02–2003) и 1995 года (табл. 1 б СНиП II 3–79* «Строительная теплотехника»).

Нормативные требования к уровню тепловой защиты основных типов ограждающих конструкций, рассчитанные по формуле (9) с учетом понижающего коэффициента mp для климатических условий Москвы, представлены в табл. 5.

Сравнение требований к уровню теплоизоляции в Финляндии и Москве

Безусловно, в связи с тем, что расчетное значение приведенного сопротивления теплопередаче должно быть равно или выше нормируемого значения, небольшое снижение нормируемых показателей не должно оказать существенного влияния на выбор толщины теплоизоляционного слоя в составе наружных ограждающих конструкций. Однако если сравнить тренд изменения нормативных требований к уровню теплоизоляции ограждающих конструкций зданий, принятый в Финляндии 3 и России (на примере Москвы), сравнение оказывается не в пользу последней.

Сравнительный анализ минимально допустимых нормативных требований к уровню теплоизоляции ограждающих конструкций зданий, проектируемых на территории Финляндии и Москвы, представлен в табл. 6, из которой очевидно, что различия в уровне теплоизоляции ограждающих конструкций, принятые в Финляндии и России, существенны.

Трансмиссионные затраты тепловой энергии

В работах [1, 2] выполнено сравнение трансмиссионных затрат тепловой энергии через оболочку жилого многоквартирного здания при нормировании уровня теплоизоляции ограждающих конструкций по стандартам Финляндии и России. Показано, что трансмиссионные потери тепловой энергии в здании, проектируемом по нормам России, окажутся приблизительно в 2 раза выше по сравнению с потерями в том же здании, проектируемом по нормам Финляндии. И это при соблюдении одних и тех же требований к параметрам микроклимата внутреннего воздуха, при одинаковых площадях здания, его форме, ориентации фасадов по сторонам света, расчетном количестве жителей, величине бытовых и солнечных теплопоступлений, составе инженерного оборудования, кратности воздухообмена помещений.

Различия в методических подходах России и Финляндии

Следует, однако, иметь в виду различия в методическом подходе при расчете сопротивления теплопередаче по стандартам Финляндии и России. В России нормируется так называемое приведенное сопротивление теплопередаче, которое рассчитывается по формуле (10). Данная формула учитывает потери не только по глади ограждающей конструкции, но также через линейные и точечные неоднородности, имеющие место в ее составе. С позиции подхода, принятого в СП 50.133330, в Финляндии нормируется условное сопротивление теплопередаче. Поэтому сравнивать две эти величины (условное и приведенное сопротивление теплопередаче) в общем случае некорректно. Приведенное сопротивление теплопередаче зависит не только от толщины слоя теплоизоляции, но и от теплопроводных включений (их состава, свойств, количества, протяженности).

Однако при обязательном учете параметров коррекции при расчете коэффициента теплопередачи по ISO 6946 4 его расчетное значение нельзя в полной мере считать условным. Кроме того, если сравнить формулы (6) 5 и (10), то, по сути, приведенное сопротивление теплопередаче является величиной, обратной трансмиссионному коэффициенту теплопередачи здания Hd, рассчитываемому на основании стандарта ISO 13789 6 .

Главное отличие российского и европейского подходов состоит в том, что по нормам ЕС толщина слоя теплоизоляции подбирается на основании простых аналитических выражений, а трансмиссионные потери рассчитываются с учетом теплопроводных включений, т. е. требуемая толщина слоя теплоизоляции не зависит от состава и свойств теплопроводных включений. В российском подходе нормируется приведенное сопротивление теплопередаче, которое одновременно учитывает и толщину слоя теплоизоляции, и влияние теплопроводных включений.

Минимальная толщина слоя минераловатной теплоизоляции в наружных стенах зданий, проектируемых в Финляндии, составляет 250 мм, а чаще доходит до 350 мм. В Москве толщина слоя теплоизоляции из минеральной ваты 200 мм является максимальной, а чаще всего не превышает 150 мм. Это к вопросу о том, какой подход к нормированию является более корректным с точки зрения минимизации потерь тепловой энергии через ограждающие конструкции. Трансмиссионные потери тепловой энергии через ограждающие конструкции при одном и том же конструктивном решении наружных ограждений, но при большей толщине слоя теплоизоляции окажутся однозначно меньше.

Теплопроводные включения оказывают существенное влияние на потери тепловой энергии через оболочку здания. Их неполный учет может привести к различию расчетных и фактических потерь тепловой энергии через оболочку здания и, как следствие, сказаться на расхождении фактических и расчетных значений удельного энергопотребления введенного в эксплуатацию нового здания.

В работе [3] показано, что расчетный коэффициент теплотехнической однородности r наружной ограждающей конструкции, выполненной кладкой из газобетонных блоков (толщиной 375 мм) с облицовочным каменным слоем из глиняного кирпича (120 мм), составляет 0,61. Соответственно, при условном сопротивлении теплопередаче такой стены 2,99 м 2 • 0 С/Вт, приведенное сопротивление теплопередаче рассматриваемой конструкции наружной стены составит 0,61×2,99=1,81 м 2 • 0 С/Вт. В работе [4] для аналогичного конструктивного решения получено еще более низкое расчетное значение коэффициента теплотехнической однородности r = 0,48. В результате использования при строительстве блоков со сколами и выбоинами и некачественного выполнения строительно-монтажных работ по возведению ограждающих конструкций, коэффициент теплотехнической однородности может оказаться еще ниже расчетного (проектного). В работах 5 показано, что область применения наружных стен, выполненных кладкой из газобетонных блоков без дополнительного утепления теплоизоляционными изделиями, ограничена ГСОП = 4 200 град·сут. При этом такие стены продолжают возводиться не только в Москве и Санкт-Петербурге (с ГСОП около 4 500 °С·сут), но и в более холодных районах Российской Федерации.

Как уже было показано, в СП 50.133330 приведенное сопротивление теплопередаче наружных ограждающих конструкций рассчитывается по формуле (10), которая учитывает не только потери тепловой энергии по глади наружных стен (∑aiUi), но также через линейные (∑1jψj) и точечные (∑nkχk) неоднородности. По сравнению с СНиП 23-02-2003 в СП 50.133330 методика расчета приведенного сопротивления теплопередаче является более качественной, но неполной: отсутствуют требования к выбору расчетных участков (фрагментов) ограждающих конструкций, граничных условий, трактовке результатов расчета, программному обеспечению.

Ввиду этого пример расчета приведенного сопротивления теплопередаче фасада жилого здания, представленный в СП 50.133330 (Приложение Н) не может быть количественно проанализирован. Температурные поля рассматриваемых в СП 50.133330 (Приложение Н) узлов конструкции фасада неоднозначно трактуемы и не показательны. Для несветопрозрачных ограждающих конструкций пример расчета представлен только для фасада и только одного вида (стена с теплоизоляционной фасадной системой с тонким штукатурным слоем).

В дополнение к СП 50.13330 были разработаны для добровольного применения СП 230.1325800.2015 Конструкции ограждающие зданий. Характеристики теплотехнических неоднородностей (далее – СП 230.1325800), которые содержат значительно больше узлов и конструктивных решений. Однако, многие конструктивные решения и узлы в СП 230.1325800 также отсутствуют. Например, в нем нет таблиц расчетных значений удельных потерь теплоты через кронштейны вентилируемых фасадов. При том, что данный тип наружных стен является одним из наиболее распространенных вариантов. Кроме того, в СП 230.1325800 значительное внимание уделено наружным стенам и практически не затрагиваются иные ограждающие конструкции (покрытия, чердачные перекрытия, перекрытия над неотапливаемыми подвалами и техподпольями и т. д.).

В реальной практике проектирования СП 230.1325800 получил даже большее применение, чем СП 50.13330. С одной стороны это свидетельствует о более детальной проработке вопроса по учету теплопроводных включений. С другой стороны, отсутствие в СП 230.1325800 значительного количества узлов с теплопроводными включениями ограничивает область действия и этого стандарта. Кроме того, постоянное совершенствование технических решений и применяемых строительных материалов при отсутствии проработанных в СП 230.1325800 узлов ограничивает их область применения или замедляет их использование в строительстве. По этой причине включение новых технических решений и узлов строительных конструкций делает процесс совершенствования нормативной базы по данному вопросу бесконечным.

Недостаточная проработка технических решений и неполный учет влияния потерь тепла через теплопроводные включения (неоднородности в составе ограждающих конструкций), могут приводить к несоответствию расчетных (проектных) и фактических значений сопротивлений теплопередаче ограждающих конструкций. А следовательно, к расхождению расчетных (проектных) и фактических значений удельного энергопотребления зданий, т.к. в распределении потерь тепловой энергии на отопление трансмиссионные потери тепла через оболочку здания составляют более 50 %.

Анализ сравнения европейского и российского подходов

Методический подход к нормированию и проектированию наружной оболочки зданий, принятый в стандартах стран Европейского союза, представляется более целостным и правильным.

Нормативные требования к уровню теплоизоляции наружных ограждающих конструкций в европейских странах, сопоставимых по климату с Москвой, оказываются существенно выше. Однако сравнивать их напрямую некорректно, поскольку:

  • в странах ЕС нормируется коэффициент теплопередачи, численное значение которого учитывает некоторые параметры коррекции, но рассчитывается в основном без учета их влияния;
  • в России нормируется так называемое приведенное сопротивление теплопередаче, численное значение которого зависит не только от толщины слоя теплоизоляции, но и от состава теплопроводных включений.

По нормам ЕС толщина слоя теплоизоляции подбирается на основании простых аналитических выражений, а трансмиссионные потери рассчитываются с учетом теплопроводных включений, т. е. требуемая толщина слоя теплоизоляции не зависит от состава и свойств теплопроводных включений. В российском подходе нормируется приведенное сопротивление теплопередаче, которое одновременно учитывает и толщину слоя теплоизоляции, и влияние теплопроводных включений.

Различие подходов приводит к тому, что в зданиях, проектируемых в Финляндии, толщина слоя теплоизоляции (например, минераловатной) в составе ограждающих конструкций оказывается примерно в 2 раза больше, чем в России, при сопоставимых климатологических условиях проектирования и эксплуатации зданий. Большое влияние на соответствие зданий требованиям по тепловой защите оказывают теплопроводные включения в составе ограждающих конструкций. Неполный учет теплопроводных включений и потерь тепловой энергии через них может привести к различию расчетных и фактических потерь тепловой энергии через оболочку здания и, как следствие, сказаться на расхождении фактических и расчетных значений удельного энергопотребления введенного в эксплуатацию нового здания.

Методика расчета приведенного сопротивления теплопередаче, изложенная в СП 50.133330, проработана недостаточно корректно и точно.

В своде правил СП 230.1325800 приведены далеко не все конструктивные узлы и варианты теплопроводных включений. В частности, отсутствуют таблицы расчетных значений удельных потерь теплоты через кронштейны вентилируемых фасадов, – одного из наиболее распространенных типов фасадов, проектируемых и применяемых при строительстве зданий на территории Российской Федерации. Совсем не рассмотрены таблицы расчетных значений удельных потерь теплоты через неоднородности в составе кровельных конструкций и чердачных перекрытий. Оболочка зданий не ограничивается наружными стенами. Постоянное совершенствование технических решений и применяемых строительных материалов при отсутствии проработанных в СП 230.1325800 узлов строительных конструкций ограничивает область применения инновационных технических решений и материалов или замедляет их использование в строительстве.

Литература

  1. Горшков А. С., Рымкевич П. П., Немова Д. В. Экономим или нет? Российские энергосберегающие требования // Энергосбережение. 2014. № 2.
  2. Ватин Н. И., Немова Д. В., Рымкевич П. П., Горшков А. С. Влияние уровня тепловой защиты ограждающих конструкций на величину потерь тепловой энергии в здании // Инженерно-строительный журнал. 2012. № 8.

1 См. статью «Теплотехнические характеристики ограждающих конструкций зданий. Ч. 1. Европейский подход и метод расчета» в журнале «Энергосбере-
жение» № 7, 2017.

2 Согласно ГОСТ 30494–2011 «Здания жилые и общественные. Параметры микроклимата в помещениях».

3 Сравните данные табл. 2 в первой части статьи (журнал «Энергосбережение», № 7) и данные табл. 4 и 5 настоящей статьи.

4 ISO 6946 Building components and building elements – Thermal resistance and thermal transmittance – Calculation method.

6 ISO 13789 Thermal performance of buildings – Transmission and ventilationheat transfer coefficients – Calculation method.

6.1 В районах со среднемесячной температурой июля 21°С и выше расчетная амплитуда колебаний температуры внутренней поверхности ограждающих конструкций (наружных стен и перекрытий/покрытий) , °С, зданий жилых, больничных учреждений (больниц, клиник, стационаров и госпиталей), диспансеров, амбулаторно-поликлинических учреждений, родильных домов, домов ребенка, домов-интернатов для престарелых и инвалидов, детских садов, яслей, яслей-садов (комбинатов) и детских домов, а также производственных зданий, в которых необходимо соблюдать оптимальные параметры температуры и относительной влажности воздуха в рабочей зоне в теплый период года или по условиям технологии поддерживать постоянными температуру или температуру и относительную влажность воздуха, не должна быть более нормируемой амплитуды колебаний температуры внутренней поверхности ограждающей конструкции , °С, определяемой по формуле


, (6.1)


где - средняя месячная температура наружного воздуха за июль, °С, принимаемая по СП 131.13330.


6.2 Амплитуду колебаний температуры внутренней поверхности ограждающих конструкций , °С, следует определять по формуле


, (6.2)


где - расчетная амплитуда колебаний температуры наружного воздуха, °С, определяемая согласно 6.3;

- величина затухания расчетной амплитуды колебаний температуры наружного воздуха в ограждающей конструкции, определяемая согласно 6.4.


6.3 Расчетную амплитуду колебаний температуры наружного воздуха , °С, следует определять по формуле


202 × 60 пикс.   Открыть в новом окне
, (6.3)


где - максимальная амплитуда суточных колебаний температуры наружного воздуха в июле, °С, принимаемая согласно СП 131.13330;


- коэффициент поглощения солнечной радиации материалом наружной поверхности ограждающей конструкции, принимаемый по приложению З;

, - соответственно максимальное и среднее значения суммарной солнечной радиации (прямой и рассеянной), , принимаемые согласно СП 131.13330 для наружных стен - как для вертикальных поверхностей западной ориентации и для покрытий - как для горизонтальной поверхности;

5.8 Расчетный температурный перепад , °С, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не должен превышать нормируемых величин ,°С, установленных в таблице 5, и определяется по формуле




, но не более 7


, но не более 6






, (4)


- то же, что и в формуле (2);


- то же, что и в формуле (3).

- приведенное сопротивление теплопередаче ограждающих конструкций, ;

- коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, , принимаемый по таблице 7.

5.9 Температура внутренней поверхности ограждающей конструкции (за исключением вертикальных светопрозрачных конструкций) в зоне теплопроводных включений (диафрагм, сквозных швов из раствора, стыков панелей, ребер, шпонок и гибких связей в многослойных панелях, жестких связей облегченной кладки и др.), в углах и оконных откосах, а также зенитных фонарей должна быть не ниже температуры точки росы внутреннего воздуха при расчетной температуре наружного воздуха в холодный период года.

Примечание - Относительную влажность внутреннего воздуха для определения температуры точки росы в местах теплопроводных включений ограждающих конструкций, в углах и оконных откосах, а также зенитных фонарей следует принимать:

для помещений жилых зданий, больничных учреждений, диспансеров, амбулаторно-поликлинических учреждений, родильных домов, домов-интернатов для престарелых и инвалидов, общеобразовательных детских школ, детских садов, яслей, яслей-садов (комбинатов) и детских домов - 55%, для помещений кухонь - 60%, для ванных комнат - 65%, для теплых подвалов и подполий с коммуникациями - 75%;


. (5)

Коэффициент теплоотдачи ,

5.10 Температура внутренней поверхности конструктивных элементов остекления окон зданий (кроме производственных) должна быть не ниже плюс 3°С, а непрозрачных элементов окон - не ниже температуры точки росы при расчетной температуре наружного воздуха в холодный период года, для производственных зданий - не ниже 0°С.

5.11 В жилых зданиях коэффициент остекленности фасада f должен быть не более 18% (для общественных - не более 25%), если приведенное сопротивление теплопередаче окон (кроме мансардных) меньше: 0,51 при градусо-сутках 3500 и ниже; 0,56 при градусо-сутках выше 3500 до 5200; 0,65 при градусо-сутках выше 5200 до 7000 и 0,81 при градусо-сутках выше 7000. При определении коэффициента остекленности фасада f в суммарную площадь ограждающих конструкций следует включать все продольные и торцевые стены. Площадь светопроемов зенитных фонарей не должна превышать 15% площади пола освещаемых помещений, мансардных окон - 10%.

5.12 Удельный (на 1 отапливаемой площади пола квартир или полезной площади помещений [или на 1 отапливаемого объема]) расход тепловой энергии на отопление здания , или , определяемый по приложению Г, должен быть меньше или равен нормируемому значению , или , и определяется путем выбора теплозащитных свойств ограждающих конструкций здания, объемно-планировочных решений, ориентации здания и типа, эффективности и метода регулирования используемой системы отопления до удовлетворения условия


, (6)

где - нормируемый удельный расход тепловой энергии на отопление здания, или , определяемый для различных типов жилых и общественных зданий:


б) при устройстве в здании поквартирных и автономных (крышных, встроенных или пристроенных котельных) систем теплоснабжения или стационарного электроотопления - величиной, принимаемой по таблице 8 или 9, умноженной на коэффициент , рассчитываемый по формуле


, (7)

где , - расчетные коэффициенты энергетической эффективности поквартирных и автономных систем теплоснабжения или стационарного электроотопления и централизованной системы теплоснабжения соответственно, принимаемые по проектным данным осредненными за отопительный период. Расчет этих коэффициентов приведен в своде правил.

Таблица 8 - Нормируемый удельный расход тепловой энергии на отопление жилых домов одноквартирных отдельно стоящих и блокированных,


Отапливаемая площадь домов,

Читайте также: