Несущая способность стены в грунте

Обновлено: 27.04.2024


Приведены общие сведения о конструкции «стена в грунте». Рассматривается моделирование «стены в грунте» в ПК ЛИРА-САПР в качестве ограждающей и несущей конструкции. Проведен сравнительный анализ результатов обоих расчетных случаев.

Ключевые слова: стена в грунте, ограждающая конструкция, несущая конструкция, моделирование.

Активно развивающееся новое строительство в плотной городской застройке подразумевает под собой освоение подземного пространства и устройство открытых котлованов. Наличие в Санкт-Петербурге специфических геологических и гидрологических условий сильно осложняют данный процесс.

Такие методы ограждения котлована, как металлический шпунт различных профилей, стена из буросекущихся или бурокасательных свай, траншейная стена в грунте, успешно применяются в мировой практике строительства. Каждая из этих технологий имеет свои преимущества и недостатки, а также особые условия применения.

Общие сведения оконструкции «стены вгрунте»

«Стена в грунте» представляет собой конструкцию ограждений стенок котлована, состоящую из железобетонных панелей толщиной 400, 600, 800, 1200 мм. Панели армируются отдельными каркасами и отделяются друг от друга специальными ограничителями. Производство работ ведется захватками в узких и глубоких траншеях. Бетонирование осуществляется методом вертикально перемещаемой трубы (ВПТ) с одновременной откачкой вытесняемого бентонитового раствора, под защитой которого ведется устройство траншеи [1].

Основные преимущества конструкции:

  1. Высокая жесткость и несущая способность;
  2. Способность воспринимать высокие нагрузки, в том числе от наземных конструкций, когда «стена в грунте» является несущей;
  3. Щадящая технология устройства «стены в грунте», которая позволяет выполнять работы в непосредственной близости к существующей застройке;
  4. Возможность проводить в работы в зонах наличия элементов старых фундаментов, валунов, искусственных препятствий и труднопроходимых грунтах.

Исходные данные для сравнительного анализа

Согласно заданию требуется рассмотреть два проектных решения «стены в грунте» в качестве ограждающей и несущей конструкции.

Проектируемое здание имеет семь надземных и два подземных этажа. Габариты «стены в грунте» в плане представлены на рис. 1. Монолитные панели, из которых состоит «стена в грунте», выполнены из бетона класса В30, W8, F150 по ГОСТ 26633–2012. Толщина ограждающей конструкции — составляет 600 мм, толщина несущей конструкции — 800 мм. В котловане предусмотрена двухуровневая распорная система из металлических труб 1020х10 мм.


Рис. 1. «Стена в грунте» в плане

Согласно выполненным инженерно-геологическим изысканиям на данном участке строительства по глубине конструкции представлены разные инженерно-геологические элементы, отраженные на разрезе на рис. 2. Физико-механические свойства грунтов, которые были учтены при расчете давления на «стену в грунте» указаны в таблице 1.


Рис. 2. «Стена в грунте» с привязкой к инженерно-геологическому разрезу

№ИГЭ

Тип грунта


, кН/м3


, град


, кПа



, м

Насыпные грунты: супеси, пески со строительным мусором

Суглинки тяжелые пылеватые тугопластичные (по св. тугопластичные) коричневато-серые ленточные, выветрелые, ожелезненные)

Суглинки легкие пылеватые мягкопластичные (по св. мягкопластичные) серые слоистые

Суглинки легкие пылеватые мягкопластичные (по св. мягкопластичные) серые слоистые

Пески пылеватые плотные серые насыщенные водой с прослоями супеси, разнозернистого песка

Супеси пылеватые твердые серые с гравием, галькой, валунами

Учет работы грунта при расчете

Применяется классическая теория Кулона с упрощением, основным моментом которой является рассмотрение несвязного грунта, поэтому давление грунта на боковую поверхность конструкции принято согласно послойному методу расчёта.


Внешней нагрузкой на ограждающую котлован конструкцию «стена в грунте» является распорное (активное) давление грунта, которое включает в себя нагрузку от грунта за ограждающей стенкой котлована и полезную нагрузку по бровке котлована. Отпорное (пассивное давление) возникает ниже уровня откопки котлована и препятствует смещению заглубленной части ограждения, обеспечивая устойчивость против выпора грунта [2, с. 54].

Активное (пассивное) давление на конструкцию «стены в грунте» в соответствии с СП 22.13330.2016 определяется по формуле:



где — равномерно распределенная нагрузка на поверхности засыпки;


— объемный вес грунта, кН/м 3 ;


— глубина, м;

— коэффициент активного (пассивного) давления, величина которого при горизонтальной поверхности засыпки, вертикальной стенке и угле трения грунта о стенку определяется по формуле



где — угол внутреннего трения грунта.


Рис. 3. Схема приложения активного и пассивного давления на конструкцию «стена в грунте»

Моделирование ирасчет железобетонной конструкции «стена вгрунте»

При моделировании «стены в грунте» в ПК ЛИРА-САПР использовались 3-х и 4-х узловые плоские конечные элементы, а именно КЭ-42 и КЭ-44 соответственно. Расчет производился в линейной постановке задачи для наиболее критического этапа работ, когда произведена откопка от уровня дна котлована и установлены оба уровня распорной системы.

Согласно указаниям СП 63.13330.2016 и СП 52–103–2007 расчет железобетонных конструкций проводится по прочности, трещиностойкости, а также определяются максимальные перемещения «стены в грунте».

Ограждающая конструкция, схема которой приведена на рис. 4, работает на изгиб, поэтому основной нагрузкой, оказывающей на нее влияние, будут изгибающие моменты. В случае, когда «стена в грунте» выступает не только как ограждение котлована, но и как несущая конструкция подземных этажей здания, она рассчитывается как изгибаемый внецентренно-сжатый элемент, так как воспринимает значительные продольные усилия. Данная схема представлена на рис. 5.


Рис. 4. Расчетная модель ограждающей конструкции в ПК ЛИРА-САПР


Рис. 5. Расчетная модель несущей конструкции в ПК ЛИРА-САПР

Сравнение результатов расчета ипринятого армирования конструкции


По результатам расчета «стены в грунте» получены значения усилий , а также значений перемещений конструкции, которые показаны в таблице 2.

Параметр результата расчета

Значения параметров при следующих вариантах проектирования конструкции:

«стена вгрунте» вкачестве ограждающей конструкции

«стена вгрунте» вкачестве несущей конструкции


Изгибающий момент , т*м


Изгибающий момент , т*м

Перемещения вдоль оси X, мм

Перемещения вдоль оси Y, мм

Также для каждого варианта конструирования «стены в грунте» было подобрано армирование, результаты которого сведены в таблицу 3.

Значения параметров при следующих вариантах проектирования конструкции:

«стена в грунте» в качестве ограждающей конструкции

«стена в грунте» в качестве несущей конструкции

Выводы:

  1. Выбор между «стеной в грунте» в качестве несущей или ограждающей зависит, в основном, от их требуемого функционального назначения в будущем.
  2. Использование «стены в грунте» в качестве несущей конструкции позволяет сократить материалоемкость проекта.
  3. Применение «стены в грунте» в качестве несущей конструкции позволяет сократить объем выполняемых строительно-монтажных работ.
  1. Зубков Б. М., Перлей Е. М., Раюк В. Ф. и др. Подземные сооружения, возводимые способом «стена в грунте». — Л.: Стройиздат, 1977. — 200 с.
  2. Мангушев Р. А., Никифорова Н. С., Конюшков В. В., Осокин А. И., Сапин Д. А. Проектирование и устройство подземных сооружений в открытых котлованах. М.: АСВ, 2013. — 256 с.

Основные термины (генерируются автоматически): грунт, несущая конструкция, ограждающая конструкция, стен, вариант проектирования конструкции, давление грунта, значение параметров, изгибающий момент, пассивное давление, расчетная модель.

Ключевые слова

Похожие статьи

Особенности формирования подземного пространства.

В данной статье рассматривается актуальность высотного строительства, факторы, определяющие возможность масштабного освоения подземного пространства. Приводится анализ инженерно-геологических условий площадки, вариантное проектирование в качестве.

Обоснование конструктивного решения сохранения несущей.

Ключевые слова: допускаемое избыточное давление, предохранительные конструкции

Основным назначением предохранительных конструкций является снижение нагрузок

В первом варианте принимаем, что наружное ограждения здания сплошное и выполнено из.

Oценкa влияния грунтoцементных кoнструкций нa oснoве.

Прaвилa oбследoвaния несущих стрoительных кoнструкций здaний и сooружений: СП

Значению будет соответствовать свое предельное значение несущей способности грунта.

6. На начальном линейном участке при возрастании бокового давления в три раза, модуль.

Инновационный способ энергоэффективного кольцевого.

 — активное горизонтальное давление армирующей системы (рис. 2). Рис. 2. Расчетная схема кольцевого армирования грунта с

В первом варианте кольцевое преднапряжение грунта осуществлялось с некоторым наперед заданным опозданием по отношению к траектории.

Нагрузки от подвижного состава, действующие на подпорную стену

стены (пассивное давление) σп; вес грунта на малой консоли подпорной стены Р1; вес грунта по призме обрушения со стороны удерживаемого грунта

При расположении подпорной стены вдоль движения автотранспорта давление от колес приводится к эквивалентной нагрузке.

Опыт модификации конструкции антенного сооружения

Нагрузка задавалась в виде давлений. Поскольку давление пропорционально квадрату

Поскольку при расчете статической прочности конструкции выявлен достаточно большой уровень

Предельное значение повреждения может лежать в довольно широких приеделах в.

Повышение тепловой защиты здания при использовании.

Рассмотрим вариант применения трехслойных ограждающих конструкций в реконструкции ограждающих конструкций детского сада в поселке Боровский Тюменской области (Рисунок 2). Рис. 2. План первого этажа здания детского сада. В качестве наружного стенового ограждения.

Деформации зданий и сооружений и порядок их выявления

5) Перекос конструкции (только для относительно жестких зданий и сооружений)

Возводимые высотные здания и сооружения различаются по значению и конструкции.

Экспериментальное исследование несущей способности и деформации основания одиночной.

Зависимость несущей способности свайных фундаментов от.

Пористость грунта уменьшается, а находящаяся в порах вода испытывает повышенное поровое давление, уменьшая силы трения грунта, взвешивающе

Значению будет соответствовать свое предельное значение несущей способности грунта для данного периода времени в виде.

Foto1

Строительство — это сложный процесс, требующий большой точности при расчетах несущей способности конструкции.

Масса крыши передает нагрузку на стены, потом на фундамент и в конечном итоге масса всего строения воздействует на основание — толщу породы, на которую опирается фундамент.

Перед началом строительства необходимо проверить надежность грунтов.

Несущая способность грунта — это нагрузка, действующая на единицу его объема и не приводящая к деформации основания.

От чего зависит несущая способность?

Для определения несущей способности грунта специалисты проводят геологические изыскания. На территории строительной площадки бурят несколько скважин, берут из них пробу через равные расстояния, проводят лабораторные исследования и оформляют отчет.

На несущую способность влияет несколько факторов:

  • Вид грунта;
  • Толщина слоя;
  • Глубина залегания;
  • Характеристики предыдущего слоя;
  • Уровень грунтовых вод (УГВ);
  • Глубина промерзания почвы;
  • Плотность.

При строительстве самый важный показатель — УГВ, от него зависит влажность грунтов.

В сухом и насыщенном влагой состоянии одни и те же породы имеют разные характеристики, отличающиеся в несколько раз.

Foto2

Любые грунты, соприкасающиеся с водой, считаются насыщенными влагой.

Это увеличивает их текучесть и снижает несущую способность.

Исключением являются средние и крупные пески. Их свойства не изменяются из-за насыщения водой.

Плотность — это показатель пористости.

Грунт состоит из твердых частиц, между которыми находятся полые пространства, заполненные воздухом или водой. При превышении максимальной возможной нагрузки происходит деформация (усадка), способная полностью разрушить здание.

Плотные породы с минимальным количеством пустот считаются наиболее прочными. Усадка таких грунтов минимальна.

Залегание

При проектировании здания очень важно исследовать толщу грунтов ниже предполагаемой подошвы фундамента. Близко к поверхности залегают непрочные породы, способные воспринимать нагрузку лишь от небольшого здания. Чем глубже залегает порода, тем она старше, плотнее, толще и надежнее.

В зависимости от залегания и типа грунтов будет разрабатываться план установки фундамента в соответствии с правилами:

  • Не допускается укладка фундамента вблизи границы разных пород;
  • Желательно установить фундамент выше УГВ, если это невозможно — принимаются меры по гидроизоляции конструкций;
  • Идеален для установки фундамента горизонтальный слой.

Несущая способность основания будет снижена в местах смены пород, вблизи УГВ, на склонах.

Foto3

Рис. 1 Пример инженерно-геологического разреза

На чертеже разной штриховкой обозначены породы, указаны высоты устий скважин, начерчена линия УГВ.

Типы грунтов

Существует несколько типов пород, обладающих особыми характеристиками:

  • Скальные, обладающие большой плотностью и несущей способностью;
  • Крупнообломочные. Состоят из отдельных крупных частиц;
  • Песчаные. Непластичные грунты, способные выдерживать большую нагрузку;
  • Глинистые. Связные грунты, легко впитывают влагу, при промерзании пучинятся.

Скальные

Foto4

Скальные породы образуются в результате извержения вулканов и последующего застывания магмы в толще земли.

Благодаря этому формируется порода с малой пористостью и жесткими связями между частицами.

Характеризуется большой прочностью, устойчивостью к отрицательным температурам, не впитывает воду, не пучинятся.

При отсутствии трещин в породе не вымывается и очень медленно разрушается с течением времени.

Скальные породы идеальны в качестве основания для любого объекта. Но они очень редко применяются для строительства, ведь встречаются преимущественно на большой глубине или в труднодоступных участках.

Крупнообломочные

Крупнообломочные грунты — это несвязанные породы, представляющие собой толщу камней (обломков скальных пород), большинство из которых крупнее 2 мм. Слежавшиеся валуны и обломки, не подверженные вымыванию — это хорошее основание.

Различают несколько видов крупнообломочных пород:

  • Гравий. Большая часть обломков имеет размер 2–40 мм. Различают гравий (обломки округлой формы) и дресву (обломки угловатой формы);
  • Галька (округлые части) и щебень (угловатые части). Не менее 50% массы грунта представлено обломками от 40 до 100 мм;
  • Валуны. Размер каждого обломка превышает 100 мм.

Песчаные

В ненасыщенном водой состоянии песок сыпучий, но слежавшийся песчаник — это надежное основание, не изменяющее своих свойств при насыщении влагой. Песчаные породы не пучинятся, хорошо пропускают воду, не задерживая ее вблизи конструкций.

Существует несколько видов песчаников:

  • Пылеватый. Размер фракций 0,005–0,050 мм;
  • Мелкий. Размер песчинок варьируется от 0,050 до 1,0 мм;
  • Крупный. Зерна размером до 2 мм.

Самые надежные основания — это слежавшиеся крупнообломочные породы и крупный песок.

Глинистые

Порода, состоящая из очень маленьких связанных частиц размером до 0,005 мм, называется глинистой. Выветренные мельчайшие частички пород чешуйчатой формы образуют массу грунта, способную быстро впитывать воду. В результате этого порода становится пластичной.

Глина с трудом теряет влагу, при наступлении холодов вода внутри нее замерзает, увеличивается в объеме и глина выпучивается. Этот процесс способен всего за одну зиму разрушать фундамент.

Другие

Foto5

Существует несколько видов грунтов, практически непригодных для строительства:

  • Плывуны. Мелкие частицы песка с примесью глины, очень подвижны, имеют малую несущую способность;
  • Суглинки. В составе присутствует 10–30% глинистых частиц;
  • Супеси. Глина составляет 3–10% от общей массы.

При необходимости обустройства фундамента на вышеперечисленных грунтах необходимо учесть глубину промерзания почвы и УГВ в холодный период. Если уровень воды устанавливается ниже 2 м от глубины промерзания, то установить фундамент допускается близко к поверхности (минимум 0,5м).

Повышение несущей способности

На площадках с недостаточной несущей прочностью основания необходимо провести работы по повышению несущей способности грунта.

Есть два основных метода:

В первом случае для достижения большей плотности в грунт вбивают сваи небольшого размера, сокращая количество пустот в породе.

Во втором случае в толщу земли вводят различные химические добавки, сцепляющие между собой отдельные части грунтов.

Еще один способ улучшить характеристики основания — это устройство песчаной подушки под фундамент. После уплотнения она сможет воспринимать и равномерно передавать нагрузку от здания на залегающие ниже породы. Песок не задерживает влагу, не пучинится и является хорошим основанием для строительства дома.

Еще один способ улучшить характеристики основания — это понижение УГВ.

Таблица средних значений

Средняя несущая способность грунтов — это основной показатель расчетов. После выемки образцов породы из скважин проводится определение их вида для дальнейшей работы.

Классификация грунтов приведена в таблицах СНИП 1–3 ГОСТ 25100.2011. После определения типа грунта в каждом из залегающих слоев необходимо определить предельное сопротивление грунта сжатию.

Подробная информация содержится в ГОСТ 25100.2011 «Грунты. Классификация», таблица Б.1.

Foto6

Рис. 2 Сопротивление сжатию

Основа расчета — расчетное сопротивление осевому сжатию. С подробным методом расчета с учетом всех нюансов можно ознакомиться в СП 22.13330.2016 «Основания зданий и сооружений». Здесь же можно найти значение всех коэффициентов, необходимых для максимально точного расчета.

Определение типа грунтов

Для выполнения расчетов и построения геологического разреза необходимо определить типы грунтов. Сначала проводятся полевые геологические работы, в ходе которых на участке бурят несколько скважин.

В процессе бурения через равнее промежутки геологи изымают из толщи земли образцы породы, укладывают их в специальные контейнеры и подписывают. Весь изъятый материал ведут в лабораторию для дальнейшего исследования.

Определить состав пород и их характеристики самостоятельно невозможно. Для этого потребуется специальное оборудование и знания. Без помощи профессионалов можно только примерно определить тип породы с помощью простого метода. Из насыщенного водой грунта пробуют скатать «колбаску».

От полученного результата зависит пластичность:

  • Длинный (до полуметра) жгут — высокая пластичность, грунт связный, частиц не видно. Это характерно для глинистых пород;
  • Жгут получается коротким, образуются трещины, он рвется — пластичность средняя, грунт связный, в составе в основном присутствуют глинистые частицы, содержание песка от 10 до 30%. Это характерно для суглинков.
  • В насыщенном водой состоянии жгут скатать невозможно — грунт несвязанный, состоят из заметных глазу частиц. Характерно для песка.

Foto8

Рис. 3 Схема состава различных пород

Точно определить тип породы и его характеристики возможно только в лабораторных условиях.

Расчет

Расчет несущей способности — это основная цель геологических изысканий. Выполнять его можно только после определения типа пород внутри скважин и получения чертежей геологических разрезов на территории строительной площадки.

Чертеж поможет определить положение слоев пород в толще земли и даст представление о возможности строительства на площадке.

Несущая способность (R) определяется по формуле согласно алгоритму:

  1. Значение R0 (сопротивление осевому сжатию) определяется с помощью таблицы и напрямую зависит от типа грунта;
  2. Рассчитывается глубина промерзания. Это значение индивидуально для каждого региона. Будет зависеть от типа пород в верхних слоях;
  3. Выбирается оптимальная глубина заложения в толще одного из прочных слоев непучинистого грунта, ниже глубины промерзания;
  4. Выполняется расчет по формулам: R=R0*[1+k1*(b-100)/100]*(d+200)/2*200 — при принятой глубине заложения до 2 м и R=R0*[1+k1*(b-100)/100]+k2*g*(d-200) — когда глубина заложения превышает 2 м.

Данные для расчета:

  • k1 — коэффициент берется из таблицы в зависимости от вида породы. 0,125 для устойчивых крупнообломочных или песчаных и 0,5 для глин, супеси и суглинков;
  • k2 — применяется для расчетов несущей способности устойчивых пород (слежавшиеся крупнообломочные или песчаные породы);
  • g — необходим для нахождения удельного веса грунта от подошвы слоя и до нижней части фундамента или следующего слоя;
  • b — ширина, опирающейся на основание части фундамента;
  • d — глубина заложения.

После нахождения фактической несущей способности ее сравнивают с требуемой. Если вторая будет больше первой, то придется менять конструкцию будущего дома (увеличивать площадь опирания фундамента на основание или глубину заложения, менять вид фундамента, выбирать в качестве основания другой, более прочный слой).

Калькулятор для расчета фундаментов

Процесс расчета несущей способности основания — это кропотливый процесс, требующий обширных знаний в области строительства и геологии. На помощь инженерам приходит специальные калькуляторы.

При использовании калькулятора необходимо самостоятельно выбирать тип фундамента, вид почвы и глубину промерзания.

Для правильного определения всех параметров необходимы знания геологии. Доверять анализ основания необходимо специалистам, ведь в строительстве есть множество нюансов, которые не может учесть компьютерная программа.

Для самостоятельного использования отлично подойдут программы для расчета объема ленточного фундамента. Они не учитывают вид почвы и ее несущую способность. Для расчета необходимо ввести все параметры фундамента, и она посчитает объем бетона.

Действующие проектировщики создали простую программу, рассчитывающую базы колонн в зависимости от типа пород основания и веса здания. Она очень специфична и подойдет далеко не каждому, но профессионалам может помочь в расчетах.

Формула Терцаги

Формула Терцаги описывает закономерность уплотнения грунтов и их компрессионное сжатие. Для исследования грунтов редко выбирают метод трехосного сжатия ввиду его сложности, метод одноосного сжатия можно применять лишь к узкому кругу грунтов. Именно поэтому Терцаги рассматривает одноосное сжатие в жесткой таре, где стенки не дают образцу деформироваться.

По мере уплотнения, то есть сокращения объема полостей, давление возрастает. В результате становится понятно, то сумма деформаций образца составляется из пластической и остаточной деформации. (ξ1= ξp+ ξв)

Foto9

Рис. 4 График нагружения грунта

При выполнении повторного нагружения основанию передаются только упругие деформации.

Расчет полов

Пол на лагах устанавливается в большинстве домов, но при неправильном конструировании подвального помещения (отсутствие продухов, их малый или большой размер) в нем начинает конденсироваться влага.

Вода деформирует или полностью разрушает деревянные лаги и конструкцию пола, способствует разрушению бетона.

Самый простой способ бороться с влагой в подвале — отказаться от цокольного помещения. Пол по грунту обеспечит долговечность конструкции и не даст лишней влаге проникнуть в дом.

Где можно класть пол на грунт

Класть пол допускается не на каждый грунт:

  • Основание должно быть хорошо уплотнено и выровнено. В противном случае со временем грунт осядет, стяжка пола повиснет в воздухе и со временем начнет разрушаться;
  • Основанием служат грунты, не подверженные пучению;
  • Не стоит укладывать пол на подвижные грунты.

Существует 2 вида пола по грунту:

  • Связанная плита стяжки. Жестко крепится к ленточному фундаменту, опирается на него. Пол не даст усадки, отделка не пострадает при незначительных изменениях грунтов;
  • Несвязанная. Стяжка не будет покрываться трещинами во время усадки, но при последующей эксплуатации отделка может повредиться из-за взаимного движения стен и пола.

При расчете учитывается временное и постоянное давление на всю поверхность пола. В первом случае нагрузка составит 150 кг/м2 (вес людей и мебели), во втором нагрузка зависит от используемых материалов.

Полезное видео

Смотрите интересный видеоматериал, в котором рассказано о трех категориях грунтов и различиях между ними.

Заключение

Расчет несущей способности грунта — это длительный процесс, включающий в себя множество этапов. Для выполнения работ необходимо специальное оборудование, позволяющее правильно выполнить изъятие образцов из скважин и провести их исследование в лаборатории.

При выборе основания следует учесть множество факторов: типы грунтов, толщина их слоев, УГВ, схема залегания, глубина промерзания. Правильно выполнить анализ основания под фундамент могут только профессиональные геологи.

Стена в грунте

Это метод применяемый при строительстве различных подземных сооружений рядом с эксплуатируемыми жилыми и нежилыми объектами, Иногда это не просто оптимальный, а единственно возможный метод строительства.

Стена в грунте: что это такое?

Сущность метода заключается в рытье траншей, в которых потом устанавливаются железобетонные конструкции. Назначение конструкций – ограждать территорию внутри контура траншеи, на которой производится строительство.

«Стена» может располагаться по центру различных городских коммуникаций – в процессе строительства никакого влияние на коммуникации не будет оказано, они могут функционировать в обычном режиме.

Стена в грунте

Преимущества

  • Возможность расположения котлованов рядом со зданиями и сооружениями (отсутствие динамических колебаний, которые могут повредить строениям).
  • Нет необходимости в организации водоотлива, водопонижения, замораживания, цементирования грунта.
  • Объем земляных работ существенно меньше.
  • Сокращение сроков строительства.
  • Экономия от 25 до 65 процентов сметной стоимости.
  • Не нужно перекрывать движение транспорта.
  • Малый уровень шума.

Где применяется

  • При строительстве различных сооружений крупных размеров, на большой глубине, со сложной конфигурацией.
  • При строительстве в стесненных условиях поблизости от городской застройки.
  • В случаях разной глубины заложения стен.
  • При закладке линейно-протяженных сооружений (пример – противофильтрационная завеса).
  • Для быстрой постройки на водонасыщенном грунте (например, сооружение канализационного коллектора).
  • Для заложения фундаментов зданий.
  • Для строительства линий метро.
  • Для сооружения подземных гаражей и переходов.

Стена в грунте: что это такое

Технология (метод «стена в грунте»)

Различают два способа ведения работ.

    Сухой способ (на устойчивых грунтах с низкой влажностью). Стена возводится с использованием буросекущих свай. Скважины бурятся и бетонируются через одну, потом та же работа производится в промежутках между ними, причем вторая очередь свай частично врезается в первую. Во второй очереди скважин перед бетонированием размещается арматура.

Сухой способ стена в грунте

Расчет стены в грунте

  • Расчет несущей способности железобетонных конструкций стены в грунте производится исходя из воздействия расчетных нагрузок при учете существующих коэффициентов перегрузки.
  • Расчет по деформациям производится исходя из нормативных нагрузок. Нормативные значения нагрузок определяются на основании среднестатистических значений, полученных опытным путем.

Сооружения рассчитываются по самым неблагоприятным сочетаниям нагрузок. Из всех полученных расчетных значений нагрузки принимается наибольшее.

Пример расчета бокового давления грунта, которое возникает в траншее при бетонировании:

P = Hд * (Yн – Yн/y) + Yн/y * (Z – Hy) – Yн/w * (Z – Hg),

Hд – высота уровня бетона;

Yн/y – объемный вес тиксотропного глинистого раствора;

Z – расстояние от поверхности разрабатываемого грунта до глубины определения P;

Hy – разность уровней поверхности грунта и раствора;

Hg – разность отметок поверхности грунтовых вод и грунта;

Yн/w – объемный вес воды, нормативное значение.

Стоимость работ

Цена возведения стены в грунте определяется объемом работ, их сложностью, методом (свайный, монолитный, сухой, мокрый). Порядок цен на закладку стены – около 22 тысяч рублей за кубометр конструкции.

Составление сметы непосредственно фирмой исполнителем заказа определяется как определенный процент от общей стоимости работ, величину процента определяет фирма (от 1 %).

Технологическая карта

Составляется перед началом сооружения стены и содержит всю техническую информацию о предстоящих работах:

Общие сведения: характеристика грунта, ширина и глубина заложения траншеи, порядок работ, применение техники.

Подробно организационная и технологическая часть: поэтапное расписание работ, их последовательность, технические рекомендации.

Контроль и приемка: технические требования к материалам, перечень подконтрольных операций.

Пожарные и экологические требования, нормативы охраны труда.

Расчет необходимого количества материалов, машин и оборудования.

Технико-экономическая организация: календарный график, затраты машинного времени и труда рабочих.

Перечень нормативных актов.

Наши услуги

Наша компания занимается забивкой свай и погружением шпунта. Шпунт может быть использован как стена в грунте но с определенными ограничениями:

Несущая способность грунтов, что это, как её определить, таблица несущей способности. Как избежать ошибок при вычислении несущей способности грунта в Москве. Всё это и многое другое на странице.

Ответ на этот вопрос будет интересен широкому кругу читателей, и имеет смысл подготовить детальную информацию, объясняющую все нюансы определения несущей способности грунта.

Из данной статьи вы узнаете, какие факторы влияют на несущие характеристики почвы, как определить тип грунта и рассчитать свойственную ему несущую способность согласно требованиям действующих строительных норм и правил.

Что влияет на несущую способность грунта

Несущие свойства грунта - это один из главных исходных параметров, который необходимо знать при проектировании фундаментов любого типа. Именно от них зависит, сможет ли конкретный участок почвы выдерживать передаваемую на него фундаментом нагрузку, исходящую от массы здания.

Схема работы сваи в плотном слое почвы


Рис. 1.1: Схема работы сваи в плотном слое почвы

Исходя из несущей способности определяется требуемая площадь опирания железобетонной сваи на грунт - чем ниже данная характеристика, тем большего сечения нужно использовать ЖБ сваи.

На величину несущей способности почвы оказывают влияние три основных фактора:

  • Тип почвы;
  • Плотность грунта;
  • Уровень залегания грунтовых вод.

На практике наибольшая взаимосвязь наблюдается между несущими характеристиками и влажностью грунта, которая непосредственно связана с уровнем грунтовых вод. Конкретный грунт, в сухом состоянии и при пропитке влагой, может изменять свои несущие свойства в двукратных пределах.

Совет эксперта! Данная взаимосвязь не свойственна песчаным грунтам крупных и средних фракций, на них увлажнение не оказывает никакого влияния.

Любой грунт, кроме скальных пород, по своей структуре напоминает губку - он состоит из отдельных частиц и пор между ними, пространство которых заполнено влагой либо воздухом. При сильных внешних нагрузках происходит уменьшение объема грунта из-за его механического уплотнения, что приводит к усадкам почвы и, как следствие, деформации стоящих на ней фундаментов.

Внешний вид разных видов грунта


Рис. 1.2: Внешний вид разных видов грунта

Чем больше изначальная плотность почвы, тем лучшими несущими характеристиками она обладает. Плотные грунты не подвергаются усадкам, при правильном проектировании фундамента они способны выдерживать даже тяжелые многоэтажные здания.

Совет эксперта! Плотность любого грунта растет по мере увеличения глубины его залегания (из-за давления вышерасположенных слоев почвы), строить свайные фундаменты можно даже на территориях с проблемным грунтом с низкими несущими характеристиками, при условии, что подошва сваи будет опираться на глубинный слой почвы, обладающий достаточной плотностью.

Важно! Любые работы с фундаментом должны начинаться с испытания грунтов, подробнее: Испытания грунтов

Как определить тип грунта

Все грунты делятся на две основные группы:

  • Скальная почва - грунты, обладающие жесткой структурой, они слабо подвержены размытию грунтовыми водами, не промерзают и не склонны к пучениям. Несущие характеристики таких грунтов максимальны, но в Московской области они практически не встречаются;
  • Нескальная почва - грунты без жестких структурных связей, сюда относится большая часть знакомых всем осадочных пород - глинистый, песчаный, суглинистый грунт, супесь.

Пробные заборы грунта из разных шурфов (пробных скважин)


Рис. 1.3: Пробные заборы грунта из разных шурфов (пробных скважин)

В свою очередь нескальная почва делится на следующие типы грунтов:

  • Крупнообломочный грунт - в такой почве содержится большое количество крупных вкраплений горных пород - щебня, гравия либо гальки. Это один из лучших вариантов для строительства фундаментов, однако погружения свай в такие грунты сопровождается дополнительными сложностями;
  • Песчаники - содержат фракции песка размером от 0.1 до 2 миллиметров, пластичность практически отсутствует. Несущая способность песчаных грунтов непосредственно зависит от размера песчинок, чем они больше, тем лучше почва подходит для строительства фундаментов;
  • Глинистые - основной вид связного грунта. Главный недостаток глинистой почвы - склонность к впитыванию влаги: при высоком уровне грунтовых вод поры между частицами глины наполняются влагой, грунт при замерзании изменяется в объеме и оказывает на фундамент сильные выталкивающие воздействия;
  • Плывуны - вязкая почва, состоящая из мелких частиц песка и глины. Данный грунт не используется в качестве основания под фундаменты, поскольку ему свойственны сильные горизонтальные сдвиги и отсутствие постоянной структуры;
  • Пылевато-глинистые - почва, на которой достаточной несущей способностью обладают только свайные фундаменты глубокого заложения, опирающиеся на нижерасположенные пласты почвы, поскольку верхние слои грунта дают сильную усадку.

Совет эксперта! Определение типа грунта на строительном участке должно выполняться в результате геодезических исследований, в процессе которых берется забор проб почвы, характеристики которой анализируются в строительной лаборатории с помощью специального оборудования.

Схема распространения разных видов грунтов на территории России


Рис. 1.4: Схема распространения разных видов грунтов на территории России

При отсутствии возможности провести геодезию грунтов можно попытаться сделать это самостоятельно, однако за расчеты фундамента на основе данных о грунте, полученных кустарным способом, не возьмется ни одна серьезная проектировочная организация.

Для этого вам потребуется на строительном участке с помощью обычного садового бура сделать скважину глубиной в два метра. По внешнему виду породы, извлекаемой на поверхность в процессе бурения, определите тип грунта:

  • Глинистый - влажная глина пластична, из нее можно слепить шарик, который при сжатии формирует комок не покрывающийся трещинами; сухая глина твердая, ее куски достаточно сложно разбить даже лопатой. Цвет - от желтоватого до коричневого;
  • Суглинистая почва - низкопластичный грунт даже в влажном состоянии, при сдавливании из шарика получается лепешка с трещинами по краям. В составе содержит до 30% глины;
  • Супеси - непластичный грунт, в сухом состоянии крошится и рассыпается, включает до 10% глины;
  • Песчаная почва: пылеватая - визуально схожа с мукой либо пылью; мелкий песок - отдельные песчинки практически не различаются визуально; средний песок - размер фракций аналогичен зернам проса (до 2.5 мм); крупный - размер песчинок аналогичен размерам гречневой крупы (до 5 мм);
  • Гравелистый грунт - содержит каменные вкрапления размером с небольшой грецкий орех;
  • Щебенистая почва - свыше 50% массы такой почвы представлено щебенкой размером аналогичной большому ореху.

Важно! Информация о глубине промерзании почвы в Вашем регионе и о том, как её определить: Глубина промерзания почвы

Определяем плотность почвы и уровень грунтовых вод

Чтобы определить уровень грунтовых вод в центре и по углам строительного участка необходимо проделать скважины глубиной в 2.5 метра. Спустя несколько часов после бурения на дне скважин появится вода - опустите в скважину деревянную рейку соответствующего размера и определите, какое расстояние от поверхности земли до начала воды в скважине.

Скопление грунтовых вод в пробной скважине


Рис. 1.5: Скопление грунтовых вод в пробной скважине

Учитывайте, что уровень грунтовых вод на разных сторонах выделенного под строительство участка может сильно отличатся - все расчеты необходимо осуществлять на основании самого высокого показателя УГВ.

Совет эксперта! Если грунтовые воды на площадке залегают на глубине большей, чем глубина промерзания почвы, что свидетельствует о отсутствии склонности грунта к морозному пучению, на участке можно возводить практически любой тип фундамента, однако если соотношение противоположное, остается лишь два варианта - ленточный фундамент глубокого заложения (возведение которого на большую глубину может быть финансово неоправданным) либо фундамент на железобетонных сваях (оптимальный в большинстве случаев вариант).

В отличие от УГВ, точную плотность почвы самостоятельно определить невозможно. Делается это в лаборатории на основе данных полевых исследований с использованием специальной техники. Существует два основных метода определения плотности почвы - метод режущего кольца (для несвязных грунтов) и метод парафинирования (для связной почвы).

Метод режущего кольца заключается в заборе образца почвы с помощью кольца-пробоотборника, который в дальнейшем подлежит опрессовке, взвешиванию и расчету по нормативным формулам.

Реализация метода парафинирования почвы


Рис. 1.6: Реализация метода парафинирования почвы

При парафинировании из грунта вырезается образец объемом 0,5 м3, который покрывается слоем парафина. Масса образца определяется с помощью опускания его в резервуар с водой и определения объема вытесненной жидкости. Дальнейшие расчеты проводятся по типичным формулам.

Несущая способность грунта таблица

Предлагаем вашему вниманию таблицу, в которой приведены несущие характеристики основных видов грунтов:

Несущая способность грунта в Кгс/см2


Рис. 1.7: Несущая способность грунта в Кгс/см2

Несущая способность грунта в Н/см2

Рис. 1.8: Несущая способность грунта в Н/см2

Риски ошибок в исследования несущей способности грунта

Совет эксперта! Правильно рассчитать и спроектировать свайный фундамент можно только с учетом несущих характеристик почвы, определить которые самостоятельно, пренебрегая геодезическими исследованиями, невозможно.

Проектирование свайного фундамента на основе несоответствующих реальности показателей несущей способности почвы чревато следующими последствиями:

  • Неправильный подбор сечения свай, которые после установки будут просто оседать в грунт;
  • Погружение опор в неплотный слой почвы, что приведет к усадкам фундамента и основания в целом;
  • Недостаточное заглубление свай и, как следствие, чрезмерная подверженность фундамента выталкивающим силам пучения, приводящим к деформации и растрескиванию стен здания.

Возможный результат неправильно определения несущей способности грунта

Рис. 1.9: Возможный результат неправильно определения несущей способности грунта

Наши услуги

Компания "Богатырь" обладает опытным персоналом и современным исследовательским и строительным оборудованием. Мы гарантируем качественное выполнение всего спектра свайных работ - от геодезического исследования строительного участка до поставки и забивки свай.

Основные акценты в деятельности компании "Богатырь" стоят на качестве, оперативности и приемлемой ценовой политике. Мы никогда не затягиваем реализацию проекта и сдаем все работы точно в срок. При этом мы предлагаем своим клиентам цены на услуги, с которыми не способна конкурировать ни одна московская строительная компания. Для заказа забивки свай, лидерного бурения или погружения шпунтов, оставьте заявочку.

Что такое несущая способность грунта

Подготовка к строительству

Несущая способность – это одна из ключевых характеристик почвы, которую стоит выяснить прежде чем приступать к строительству. Она определяет ту массу, которую способна вынести почва в расчете определенной массы на площадь. Вес, который может выдержать грунт на см2 без изменений свойств почвы – это и есть несущая способность.

Вне зависимости от того, строите ли вы самостоятельно, или прибегаете к услугам строительной компании, вам обязательно пригодится знание, как определить несущую способность грунта. Расчет несущей способности грунта обязательно необходим для определения:

  • Типа и площади фундамента. Это дает представление о том, какой ширины будут ленты в ленточном основании, какое количество свай потребуется в свайно-ростверковом, или остановить свой выбор на монолитной железобетонной плите.
  • Материалов, из которых будет строиться дом.
  • Количества этажей вашего дома.
  • Возможности обустроить цокольный этаж или подвал.

Как самостоятельно определить несущую способность грунта

Несущая способность почвы очень сильно разнится. Она зависит от трех основных показателей:

  • Плотность. Первый самостоятельный тест почвы, который можно провести без какого-либо специального оборудования, можно провести следующим образом. Просто пройдитесь по нему: если плотность достаточно высокая, на земле останутся слабо заметные следы. В грунте средней плотности останутся следы около 5-и миллиметров глубиной. Если глубина следа больше – такой грунт можно считать рыхлым.
  • Влажность. Этот показатель определяется насыщенностью почвы водой. Проверить его можно следующим образом: выкопайте яму, или пробурите скважину буровой установкой. Если образовавшаяся полость не насыщается влагой – значит, грунт сухой или маловлажный. Если же через некоторое время вода скапливается – значит, его влагонасыщенность достаточно высока, а грунтовые воды залегают высоко.

Важнейших показатель, который стоит учитывать при планировании типа фундамента – это тип грунта. Их расчетное сопротивление в выражении кг/см2 можно отобразить следующим образом:

  • Гравелистые и крупные пески. Вне зависимости от влажности сопротивление плотных песков равняется 4,5 кг/см2, средней плотности – 3,5
  • Пески средней крупности. Влажность не имеет значения. Плотные – 3,5 кг/см2, средней плотности – 2,5.
  • Мелкие пески. Плотные маловлажные – 3,0 кг/см2, средней плотности – 2,0. Плотные с высокой влажностью, а также насыщенные водой – 2,0 кг/см2, средней плотности – 2,5.
  • Влажные пески. Плотные с низкой влажностью – 2,5 кг/см2, средней плотности – 2,0. Плотные с сильной влажность. – 2,0. Средней плотности – 1,5 кг/см2. Сильно насыщенные водой, плотные – 1,5 кг/см2, средней плотности – 1.
  • Твердые глины. Плотные – 6,0 кг/см2, средней плотности – 3,0.
  • Твердые пластичные глины. Плотные – 3,0 кг/см2, средней плотности – 1,0.
  • Крупнообломочные грунты. К ним относятся галечные, щебенистые, гравий и т.д. У плотных сопротивление составляет 6,0 кг/см2, средней плотности – 5,0.

Выравнивание

Как же выяснить, какой тип грунта находится именно у вас на участке? Очень крупный песок определить достаточно просто. Зерна песка – до 2 мм, со вкраплениями мелких камушков и минералов. Крупнозернистый песок – до 1,5 мм. Песок средней крупности – хорошо различимые невооруженным глазом песчинки от 0,25 до 0,5 мм. Мелкий песок больше всего напоминает содержимое детской песочницы.

Если вы не можете невооруженным глазом различить отдельные песчинки, а сама масса легко рассыпается у вас в руках – значит, вы имеете дело с мелким песком. Размер песчинок – от 0,1 до 0,25 мм. Пылевидный песок по консистенции больше всего напоминает муку. Его также называют плывуном. Особенность плывуна состоит в том, что он очень легко рассыпается, а его массы легко заполняют собой пустое пространство при смещении.

Если спросить, какой грунт обладает наименьшей несущей способностью и меньше других пригоден для возведения основания дома – можно с уверенностью ответить, что это именно плывун. Какой именно вид фундамента подойдет для строительства на плывуне – расскажем далее.

Следующий вид – это супесь. Она представляет собой смесь песка и глины (не более 10%). Если в смоченном состоянии почву удается скатать в шар – значит, это, скорее всего, супесь. Если же почву скатать в шар и раздавить, получив лепешку с ровными краями – значит, это глина. Еще одна ее особенность – при попытке скатать ее в жгут она сохраняет целостность. Лёсс, также – лессовидные грунты, имеют светло-желтый цвет, содержат в составе большую долю пылевидных частиц.

Пористость такой почвы составляет до 50%, у нее очень высокие показатели просадочности, а также размывания водой. Для строительства на таком грунте обязательно потребуется уплотнение почвы методом трамбовки.

Еще один фактор, связанный с грунтом, который обязательно нужно учитывать – это морозное пучение. Так называют реакцию, которая происходит с водой, содержащейся в почве, в зимний период. Под воздействием низких температур она замерзает, начиная распирать грунт, который, в свою очередь, передает дополнительное давление на фундамент. Это связано с тем, что жидкость в состоянии льда занимает гораздо большую часть, чем в жидком.

Если пренебречь этим показателем, последствия могут быть крайне плачевными. Это растрескивание самого фундамента, а также несущих стен дома, как результат – его возможное обрушение. Прежде чем составлять планировку, нужно подробно выяснить степень пучинистости вашего грунта. Все данные об этом можно получить из геологических изысканий и сопоставлений их результатов с такими документами как ГОСТ 25100-2011, 25100-95, СП 22. 13330.2016.

К наименее пучинистым относятся глинистая почва, пески, крупнообломочные, хрящеватые грунты, к сильнопучинистым – мелкие пылеватые пески и другие.

Один из методов борьбы с этим явлением – это закладка фундамента ниже глубины промерзания грунтовых вод. Ее обязательно нужно установить во время геологических изысканий. Второй вариант – предотвратить промерзания грунтовых вод под фундаментом посредством утепления последнего. Третий, наиболее затратный, но также и очень эффективный – это закладывание так называемого плавающего фундамента.

Чтобы выбрать адекватного подрядчика для строительства фундамента, воспользуйтесь удобным поиском по строителям на сайте Building Companion. Вы найдете примеры реализованных проектов и отзывы клиентов по каждому подрядчику и сможете запросить оценку стоимости работ.

Как узнать, достаточна ли площадь вашего фундамента

Укладка коммуникаций

Если вы узнали тип почвы на вашем участке, а также рассчитали его несущую способность – это первый шаг. Второй – это определить, выдержит ла почва вес конкретно вашего дома. Для этого нужно узнать массу вашего будущего дома согласно проекту. Имеет значение именно сборный вес дома – то есть совокупность масс фундамента, стен, кровли, перегородок и всех несущих конструкций, а также предполагаемой внутренней обстановки дома.

Получившуюся массу нужно разделить на сопротивляемость грунта на м2/см2. Если несущей способности недостаточно, можно пойти на некоторые ухищрения: увеличить площадь ленточного фундамента, или поставить под ленточный фундамент монолитную плиту.

Для выбора подходящего строителя дома по желаемой технологии малоэтажного домостроения воспользуйтесь поиском в каталоге Building Companion. В профиле подрядчиков видны примеры работ и отзывы, можно запросить оценку стоимости их работ.

Какие типы фундамента подходят для различных типов почвы

Основное решение, которое нужно будет принять исходя из типа грунта перед началом строительства – это тип фундамента, который будет использоваться. Здесь не существует универсальных решений: каждый тип основания подходит для определенного типа почвы. Вот базовые рекомендации:

  • Столбчатые фундаменты (свайные винтовые, бурозабивные, свайно-ростверковые и другие). Если тип грунта на участке – суглинок или глина, ленточное основание лучше разместить на сваях. Суглинки и глина – высокопучинистые типы почвы, поэтому закладывать фундамент нужно ниже глубины промерзания. В этом смысле сваи позволяют достичь необходимой глубины, а несущая способность сваи по грунту будет достаточной, если дом не относится к наиболее тяжелым (бетон, кирпич).
  • Ленточный фундамент. Если почва не заболочена, грунтовые воды залегают не очень глубоко, а дом планируется строить из легкого материала, то мелкозаглубленный ленточный фундамент прекрасно подойдет. По сравнению с плитным он достаточно недорогой, а при условии подходящей почвы он также довольно надежен.
  • Монолитная плита (ЖБ или УШП). Это наиболее универсальный тип фундамента. Он подходит как для самых тяжелых строений, так и для практически любых типов грунта, в том числе глинистого. Низкая несущая способность наблюдается у таких типов почвы как торфяные, насыпные грунты, а также неравномерные (к примеру, когда на месте будущей застройки ранее была свалка, и теперь в ней множество мелких частей металла, пластика и других веществ).

Один из главных советов, которые можно дать по поводу выбора подходящего фундамента – обратите внимание на соседские застройки. Поговорить с владельцами домов, выясните, какое основание для своего дома выбрали они, какова масса здания, из чего оно построено, нет ли на стенах трещин, и, конечно же – как давно стоит дом.

Если вы не имеете значительного опыта в вопросах строительства – настоятельно рекомендуем вам не определять тип основания самостоятельно. В идеале это должен делать даже не строитель, а проектировщик, на основании геологических изысканий и точных расчетов. Еще один небольшой «лайфхак» - по возможности всегда заказывайте у одной компании весь комплекс услуг: проектирование, возведение фундамента, «коробки» дома, а в идеале – еще и геологические изыскания.

В противном случае при любом сомнительном результате строители будут перекладывать вину на компанию, закладывавшую фундамент, она – на проектировщика, а тот, в свою очередь, на компанию, проводившую геологические изыскания.

Читайте также: