Нагрузки на фундамент от двухветвевой колонны

Обновлено: 27.03.2024

1.1. Пособие по проектированию железобетонных ростверков свайных фундаментов под колонны зданий и сооружений составлено к СНиП 2.03.01-84 „Бетонные и железобетонные конструкции” и распространяется на проектирование монолитных ростверков квадратной и прямоугольной формы в плане, с кустами из двух, четырех и более свай, под сборные и монолитные железобетонные колонны и под стальные колонны.

Примечание. Свайные фундаменты с кустами из двух свай рекомендуется применять только в каркасных бескрановых зданиях при условии расположения свай в створе пролета здания и величине эксцентриситета приложения нагрузки в перпендикулярном направлении не превышающей 5 см.

При проектировании ростверков, предназначенных для эксплуатации в сейсмических районах, а также в агрессивных средах должны соблюдаться дополнительные требования, регламентированные соответствующими нормативными документами.

1.2. Ростверк является элементом свайного фундамента, опирающимся на куст свай (черт. 1.). Проектировать куст свай следует в соответствии со СНиП II-17-77 „Свайные фундаменты”.

Сопряжение ростверков со сборными железобетонными колоннами предусматривается стаканным (с подколонником или без него) с монолитными железобетонными колоннами - монолитным, со стальными колоннами - с помощью анкерных болтов.


Черт. 1. Схема образования пирамиды продавливания под сборной железобетонной колонной прямоугольного сечения

1.3. Расчет ростверков производится по предельным состояниям первой группы (по прочности) и по предельным состояниям второй группы (по раскрытию трещин).

Величины нагрузок и воздействий, значения коэффициентов надежности по нагрузке и коэффициентов сочетаний, а также подразделения нагрузок на постоянные и временные - длительные, кратковременные, особые - должны приниматься в соответствии с требованиями СНиП 2.01.07-85 "Нагрузки и воздействия" и СНиП 2.03.01-84 "Бетонные и железобетонные конструкции", а значения коэффициентов надежности по назначению - согласно „Правилам учета степени ответственности зданий и сооружений при проектировании конструкций”.

При определении нагрузок от колонн на ростверки следует учитывать увеличение моментов в месте заделки колонн от действия вертикальных нагрузок при прогибе колонн.

При расчете ростверков расчетные сопротивления бетона следует умножать на коэффициент условий работы бетона g b2, принимаемый равным 1,1 или 0,9 в зависимости от длительности действия нагрузок. Коэффициент условий работы бетона g b2 принимается равным 1.

1.4. Расчет ростверков на сваях сплошного круглого сечения производится так же, как и на сваях квадратного сечения. При этом в расчете ростверка сечения круглых свай условно приводятся к сваям квадратного сечения, эквивалентного круглым сваям по площади, т.е. с размером стороны сечения, равным 0,89 dsv, где dsv - диаметр свай.

А. РАСЧЕТ ПО ПРОЧНОСТИ РОСТВЕРКОВ ПОД СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ

2.1. Расчет по прочности плитной части ростверков под сборные железобетонные колонны производится: на продавливание колонной; продавливание угловой сваей; по прочности наклонных сечений на действие поперечной силы; на изгиб по нормальному и наклонному сечениям; на местное сжатие (смятие) под торцами колонн. Помимо этого проверяется прочность стакана ростверка.

Расчет ростверков на продавливание колонной

2.2. Расчет на продавливание колонной центрально-нагруженных ростверков свайных фундаментов с кустами из четырех и более свай производится по формуле (1) из условия, что продавливание происходит по боковой поверхности пирамиды, высота которой равна расстоянию по вертикали от рабочей арматуры плиты до низа колонны, меньшим основанием служит площадь сечения колонны, а боковые грани, проходящие от наружных граней колонны до внутренних граней свай, наклонены к горизонтали под углом не менее 45° и не более угла, соответствующего пирамиде с c=0,4h0 (см. черт. 1):


где Fper - расчетная продавливающая сила, равная сумме реакций всех свай, расположенных за пределами нижнего основания пирамиды продавливания, определяемая из условия

При этом реакции свай подсчитываются только от продольной силы N, действующей в сечении колонны у верхней горизонтальной грани ростверка;

здесь n - число свай в ростверке;

n1 - число свай, расположенных за пределами нижнего основания пирамиды продавливания;

Rbt - расчетное сопротивление бетона растяжению для железобетонных конструкций с учетом коэффициента условий работы бетона;

h0 - рабочая высота сечения ростверка на проверяемом участке, равная расстоянию от рабочей арматуры плиты до низа колонны, условно расположенного на 5 см выше дна стакана;

иi - полусумма оснований i-й боковой грани фигуры продавливания с числом граней m;

сi - расстояние от грани колонны до боковой грани сваи, расположенной за пределами фигуры продавливания;

a - коэффициент, учитывающий частичную передачу продольной силы на плитную часть через стенки стакана, определяемый по формуле

здесь Af - площадь боковой поверхности колонны, заделанной в стакан фундамента, определяемая по формуле

здесь bcol, hcol - размеры сечения колонны;

hапс - длина заделки колонны в стакан фундамента.

При расчете на продавливание центрально-нагруженных ростверков колонной прямоугольного сечения формула (1) приобретает следующий вид:

c1 - расстояние от грани колонны с размером bcol до параллельной ей плоскости, проходящей по внутренней грани ближайшего ряда свай, расположенных за пределами нижнего основания пирамиды продавливания;

c2 - расстояние от грани колонны с размером hcol до параллельной ей плоскости, проходящей по внутренней грани ближайшего ряда свай, расположенных за пределами нижнего основания пирамиды продавливания.


Отношение принимается не менее 1 и не более 2,5.

При сi>h0 ci принимается равным h0; при сih0 сi принимается равным 0,4h0.

При расчете на продавливание колонной квадратного сечения центрально нагруженных ростверков при c1=с2 формула (4) будет иметь следующий вид:

При установке в пределах пирамиды продавливания поперечной арматуры расчет должен производиться из условия


(6)

но не более 2Fb. Сила Fb принимается равной правой части условия (1).

Сила Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани пирамиды продавливания, по формуле


(7)

где Rsw - расчетное сопротивление поперечной арматуры растяжению при расчете наклонных сечений на действие поперечной силы;

Asw - суммарная площадь сечения поперечной арматуры, пересекающей боковые грани пирамиды продавливания.

2.3. Расчет на продавливание колонной внецентренно нагруженных ростверков производится по тем же формулам, что и на продавливание центрально-нагруженных ростверков, но при этом расчетная величина продавливающей силы принимается равной где - сумма реакций всех свай, расположенных с одной стороны от оси колонны в наиболее нагруженной части ростверка за вычетом реакций свай, расположенных в зоне пирамиды продавливания с этой же стороны от оси колонны.

В этом случае реакции свай подсчитываются от продольной силы и момента, действующих в сечении колонны у верхней горизонтальной грани ростверка.


При моментах, действующих в поперечном и продольном направлениях, величина , определяется в каждом направлении отдельно; в расчет принимается большая из этих величин.

Примечание. При стаканном сопряжении колонны с ростверком и эксцентриситете продольной силы в колонне величину , допускается определять, принимая величину момента, передающегося на ростверк от колонны, равной Если при этом дно стакана располагается выше плитной части ростверка, должна быть дополнительно выполнена проверка ростверка на продавливание при полном моменте и соответствующей ему сумме реакций свай из условия, что меньшим основанием пирамиды продавливания служит площадь подколонника.

2.4. При сборных железобетонных двухветвевых колоннах, имеющих общий стакан, расчет ростверка на продавливание выполняется как при колонне со сплошным прямоугольным сечением, соответствующим внешним габаритам двухветвевой колонны (черт. 2).


Черт. 2. Схема образования пирамиды продавливания под сборной железобетонной двухветвевой колонной

2.5. При многорядном расположении свай (черт. 3) помимо расчета на продавливание колонной по пирамиде продавливания, боковые стороны которой проходят от наружной грани колонны до ближайших граней свай, должна быть проведена проверка на продавливание ростверка колонной в предположении, что продавливание происходит по поверхности пирамиды, две или все четыре боковые стороны которой наклонены под углом 45°; при этом реакции свай, находящихся в пределах площади нижнего основания пирамиды продавливания, не учитываются.


Черт. 3. Схема образования пирамид продавливания под сборной железобетонной колонной при многорядном расположении свай за наружными гранями колонны

2.6. Расчет на продавливание колонной центрально-нагруженных ростверков свайных фундаментов с кустами из двух свай (черт. 4) производится из условия

где Fper - расчетная продавливающая сила, равная сумме реакций обеих свай от продольной силы N, действующей в колонне;

Rbt, h0; c1; bcol, hcol, a - обозначения те же, что в формулах (1) и (3);

с2 - расстояние от плоскости грани колонны с размером hcol до наружной грани штатной части ростверка.


Черт. 4. Схема образования пирамиды продавливания под сборной железобетонной колонной в двухсвайном фундаменте

2.7. Расчет на продавливание колонной внецентренно нагруженных ростверков свайных фундаментов с кустами из двух свай также производится по формуле (8), но при этом расчетная величина продавливающей силы принимается равной Fper=2Fi, где Fi - реакция наиболее нагруженной сваи от продольной силы N и момента М, действующих в колонне.

2.8. При стаканном сопряжении колонны с ростверком, когда стенки стакана подколонника имеют большую толщину (ds>0,75hp), или в штатных ростверках (черт. 5) при заглублении колонны в штатную часть ростверка не менее чем на 1/3 ее высоты, помимо расчета ростверка на продавливание в соответствии с пп. 2.2 - 2.7 следует производить расчет ростверка на раскалывание колонной от силы N по формуле

где N - продольная сила, действующая в сечении колонны у верхней горизонтальной грани ростверка;

m - коэффициент, вычисляемый по формуле

здесь s sid - напряжение бокового обжатия, МПа, определяемое по формуле


(11)

здесь Ab - наименьшая площадь вертикального сечения ростверка по оси колонны за вычетом вертикальной площади сечения стакана и площади трапеции, расположенной под колонной, с наклоненными под углом 45° сторонами (на черт. 5 площадь трапеции показана пунктирными линиями);

Rbt, a - обозначения те же, что в формуле (1);

а - условное обозначение вводимой в расчет стороны сечения колонны (bcol или hcol);

Допускается принимать m =0,75.


Найденная по формуле (9) несущая способность ростверка по раскалыванию сравнивается с его несущей способностью на продавливание () и принимается большая из этих величин.


Черт. 5. Схема свайного фундамента с плитным ростверком

При этом несущая способность ростверка, определенная по формуле (9), должна приниматься не более его несущей способности на продавливание колонной от верха ростверка от продольной силы и момента, действующих в этом сечении. Расчет на продавливание от верха ростверка производится по пп. 2.2 - 2.7 с введением в правую часть формул (1); (4); (5); (8) коэффициента 0,75 и принимая h0 равным расстоянию от рабочей арматуры плиты до верхней горизонтальной грани ростверка.

Расчет ростверков на продавливание угловой сваей

где Fai - расчетная нагрузка на угловую сваю с учетом моментов в двух направлениях, включая влияние местной нагрузки (например, от стенового заполнения);

h01 - рабочая высота сечения на проверяемом участке, равная расстоянию от верха свай до верхней горизонтальной грани плиты ростверка или его нижней ступени.

иi - полусумма оснований i-й боковой грани фигуры продавливания высотой h01, образующейся при продавливании плиты-ростверка угловой сваей;

b i - коэффициент, определяемый по формуле


(13)

здесь k - коэффициент, учитывающий снижение несущей способности плиты ростверка в угловой зоне.

В преобразованном виде формула (12) будет иметь вид

где

b01; b02 - расстояния от внутренних граней угловых свай до наружных граней плиты ростверка (черт. 6);

c01; c02 - расстояния от внутренних граней угловых свай до ближайших граней подколонника ростверка или до ближайших граней ступени при ступенчатом ростверке;

b 1 и b 2 - значения этих коэффициентов принимаются по табл. 1.

Я хочу определить усилия в сваях от нагрузки двухветвевой колонны на ростверк свайного куста. Корректно ли это выполнить таким способом:
1. Создаю пластину по размеру предполагаемого ростверка с соответствующими жесткостными характеристиками.
2. Задаю жесткие связи в точках соединения ветвей колонны с пластиной.
3. Задаю жесткие связи для точек пластины, в местах предполагаемого соединения свай.
4. Беру усилия по реакциям опор

Только если это сваи-стойки. Если висячие сваи, то надо моделировать связи конечной жесткости, если я правильно помню название элемента.

В связях конечной жесткости нужно задать несущую способность сваи как конечную жесткость? Правильно я понимаю? Но ведь сваи стойки, также обладают своей несущей способностью, которая зависит от грунта. Почему тогда для них не требуется задавать связи конечной жесткости? Строго не судите если путаю.

Я бы саму сваю все же задал стерженьком и его снизу защемил, нагрузки брал бы по усилиям в этом стерженьке.

В связях конечной жесткости нужно задать несущую способность сваи как конечную жесткость? Правильно я понимаю? Но ведь сваи стойки, также обладают своей несущей способностью, которая зависит от грунта. Почему тогда для них не требуется задавать связи конечной жесткости? Строго не судите если путаю.

По этой теме на форуме было немало срачей, пришли ли к какому-то единому решению - не знаю. Я лично считаю, что висячие сваи надо моделировать КЭ 51, где в качестве жесткости указывается сила, делённая на перемещение (осадку) сваи. Считаете осадку сваи на основании геологии, получаете, чисто для примера, 20мм на 100 тоннах, значит, жесткость нужно задавать 5000 тн/м.
Тут ещё надо разбираться с боковыми усилиями, сколько свая понесёт вбок. Основная цель этого геморроя - получить реальную картину усилий в колоннах и фундаментах, с учётом перераспределения усилий и перемещений, а не исходить из обычной практики - низ колонн жестко заделывается, а фундаменты обязуются потом жестко работать.

Ну так либо он (она) получит усилия в стойке, исходя из предположения о НЕПОДВИЖНОСТИ фундамента, либо он (она) получит усилия в ветвях с учётом перераспределения усилий в различных сваях куста.

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

h5r32, так не можно, а обязательно. СП 20 ветер.

Чем это небольшое и простое и понятное усложнение схемы вам так насолило ?
Например неразрезные балки резко увеличивают сечение при неравномерных осадках от 30 мм..

Tyhig, Мне - ничем , просто я понял задачу как выдать задание на фундаменты, а не расчеты самих фундаментов.

Автор хочет усилия в сваях же.
Тогда нужно обязательно сваи моделировать. жесткость свай - по результатам расчета осадки одиночной сваи по СП 24, с учетом взаимовлияния свай по нему же.

А без разницы, мы же считаем ее линейно зависимой от нагрузки, а жесткость - штука относительная. Мне проще вычислить несущую способность сваи и от нее считать. Но можно вообще любую брать

Видимо я двусмысленно задал вопрос, попытаюсь объяснить мой порядок действий по расчету куста сваи:
1. Нахожу усилия в оголовках каждой из 4-х свай свайного куста (с помощью определения усилий в заделки)
2. Определяю моменты и продольные усилия
2. Определив продольные усилия, вычисляю осадку куста
3. Задав полученные усилия в ЗАПРОС, нахожу максимальные моменты по высоте сваи и подбираю арматуру.
Я первый раз считаю куст, и возможно я ошибаюсь в своей стратегии)

Видимо я двусмысленно задал вопрос, попытаюсь объяснить мой порядок действий по расчету куста сваи:
1. Нахожу усилия в оголовках каждой из 4-х свай свайного куста (с помощью определения усилий в заделки)
2. Определяю моменты и продольные усилия
2. Определив продольные усилия, вычисляю осадку куста
3. Задав полученные усилия в ЗАПРОС, нахожу максимальные моменты по высоте сваи и подбираю арматуру.
Я первый раз считаю куст, и возможно я ошибаюсь в своей стратегии)

Так можно, но не вполне правильно. Потому что вместо свай у вас - закрепление. А свая податлива, и эта податливость может сильно повлиять на результат.
Лучше так:
1. определить несущую способность сваи
2. определить осадку одиночной сваи под этой нагрузкой и определить жесткость сваи.
3. расставить сваи и уточнить их жесткость с учетом взаимовлияния.
4. посчитать ростверк на упругих опорах с жесткостями из п.4 и получить усилия в сваях.
5. если количество свай в ростверке больше 4 или центр приложения усилия от колонны не равноудален от свай - необходимо учесть неравномерную работу свай в кусте. лучше в этот пункт не заходить

Есть один мутный момент, который меня смущает.
Как учесть в КЭ 51 жесткую заделку оголовка свай в плитном ростверке? Или принять пластический шарнир из-за малых угловых перемещений?

Я скорее за шарнир, поскольку жесткость сваи на изгиб (особенно после появления трещин) несопоставима с жесткостью на изгиб ростверка.
Но если очень нужно - тогда лучше сваю отдельным стержнем моделировать, задавать коэффициенты постели по боковой и т.д. Вручную долго, для автоматизации задача довольно редкая. думаю, это актуально при высоком ростверке с заметными гор.усилиями.

осадку куста с учетом взаимовлияния или жесткость с учетом взаимовлияния? Чот я по 3 пункту запутался.. Поясните пожалуйста!

7.3.9 Размеры сечения колонны в надкрановой части следует назначать с учетом опирания стропильных конструкций непосредственно на торец колонны без устройства специальных консолей.

Высоту сечения hв крайних колонн следует определять по формуле, округляя в меньшую сторону кратно 100 мм, но не менее 380 мм

Высоту сечения hв средних колонн следует определять исходя из условия обеспечения опирания стропильных конструкций.

7.3.10 Размеры сечения колонны в подкрановой части hн следует назначать по несущей способности и условию достаточной жесткости. Допускается считать жесткость достаточной, если высота сечения hн ≈ 1/(10. 14) Hн – при использовании крана грузоподъемностью до 50 т, hнHн / 9 – грузоподъемностью 50 т.

7.3.11 Ширину колонны b следует принимать кратной 100 мм и наибольшей исходя из условий: bHк / 30; bHн / 20; b ≥ 0,5 м – для шага колонн 12 м (b ≥ 0,4 м – для шага колонн 6 м).

7.3.12 Для двухветвевых колонн высоту сечения ветви h следует принимать 250 или 300 мм. Расстояние между осями распорок принимают (8. 12) h. Распорки следует размещать так, чтобы размер от уровня пола до низа первой надземной распорки составлял не менее 1,8 м и между ветвями обеспечивался удобный проход. Нижнюю распорку следует располагать ниже уровня пола. Высоту сечения распорки принимают (1,5. 2) h, а ширину – равной ширине сечения ветви.

7.3.13 Колонны следует проектировать со строповочными отверстиями для подъема и монтажа. Допускается вместо строповочных отверстий предусматривать монтажные петли по 6.2.6 СП 63.13330.2012.

7.3.14 В колоннах прямоугольного сечения подкрановые балки следует устанавливать на подкрановые консоли. Крепления несущих элементов покрытия к колонне в верхнем ее торце следует осуществлять анкерными болтами. В местах крепления к колонне подкрановых балок и стеновых панелей следует располагать необходимые закладные детали.

7.3.15 Колонны с элементами каркаса следует соединять сваркой закладных деталей. В колоннах, расположенных по наружным продольным рядам, закладывают стальные детали для крепления к ним крупноразмерных элементов наружных стен.

Выбор колонн для расчета

7.3.16 Для расчета выбирают колонны, отличающиеся своими геометрическими (длина, размеры сечений и т. п.) или физическими (класс бетона, площадь сечения арматуры) характеристиками. Из колонн одной марки (по несущей способности) рассчитываются наиболее нагруженные.

Так, для регулярных рам при бесконечно жестком диске покрытия (если все колонны крайних и средних рядов одинаковые) обычно рассчитывается вторая от торца или температурного шва колонна по крайнему и среднему ряду, при этом из колонн средних рядов рассчитывается колонна, ближайшая к крайнему ряду. Эти колонны – расчетные, так как в них действуют наибольшие усилия от вынужденных перемещений, в то время как усилия от других нагрузок такие же, как и в остальных колоннах. Сечения колонн крайних поперечных рам не проверяются, если эти колонны такие же, как и соответствующие колонны примыкающей рядовой рамы, и при этом вертикальная нагрузка на них не превышает вертикальной нагрузки на соответствующие колонны рядовой рамы. Колонны крайних поперечных рам следует проверять при действии на них больших местных нагрузок.

7.3.17 Сечения колонн проверяются в месте действия наибольшего момента в пределах каждого участка колонны с постоянным сечением и армированием. Как правило, эти сечения располагаются в месте заделки колонны в фундамент, в месте обрыва арматуры, а для крановой колонны и в месте изменения сечения колонны (выше консоли). При действии нагрузки от мостовых кранов проверяются также сечения, расположенные выше и ниже места приложения вертикальной крановой нагрузки.

7.3.18 Кроме того, проверяются: несущая способность (устойчивость) колонн при центральном сжатии в плоскости наибольшей гибкости с учетом случайного эксцентриситета есл, прочность на местное смятие участков колонн в местах опирания подкрановых балок и конструкций покрытия, прочность консолей для опирания подкрановых балок и конструкций покрытия, надежность заделки колонн в фундаментах.

7.3.19 Колонны сплошного сечения проверяются на внецентренное сжатие. Сечения ветвей двухветвевых колонн рассчитываются на центральное растяжение и внецентренное сжатие, а при проверке трещиностойкости – и на внецентренное растяжение. В случае приложения местных нагрузок непосредственно к растянутой ветви проверяется прочность этой ветви на действие внецентренного растяжения и поперечной силы. Сечения распорок двухветвевых колонн рассчитываются на действие изгибающего момента и поперечной силы.

При действии изгибающих моментов одновременно в плоскости поперечной и продольной рамы расчет как колонн сплошного сечения, так и ветвей двухветвевых колонн производится на совместное действие этих моментов и продольной силы.

Расчетные сочетания усилий в сечениях колонн

7.3.20 Колонны рассчитываются на наиболее неблагоприятные сочетания нагрузок, вызывающие как максимальное сжатие в сечениях колонны (при расчете прочности), так и максимальное растяжение (при расчете прочности и трещиностойкости).

7.3.21 Для сплошных сечений проверяются сочетания нагрузок, при которых в рассматриваемом сечении колонны действуют:

  • минимальная продольная сила Nmin и соответствующий наибольший момент;
  • максимальная продольная сила Nmax и соответствующий наибольший момент;
  • максимальный момент Mmax и соответствующая продольная силы.

При сочетаниях нагрузок, которым соответствует Nmax или Mmax, определяется (при заданном сечении колонны) марка бетона и сечение сжатой арматуры, а при сочетаниях, соответствующих Nmin или Mmax, – сечение растянутой арматуры.

7.3.22 Для двухветвевых сечений проверяются сочетания нагрузок, при которых в рассматриваемом сечении колонны действуют:


Если при Nmax обе ветви сжаты, а при Nmin одна сжата, а другая растянута, что выражается условием , то опасным для более сжатой ветви может оказаться промежуточное граничное состояние, соответствующее отсутствию продольного усилия в одной ветви; при этом вся поперечная сила передается на сжатую ветвь, вследствие чего моменты в ней резко возрастают.


Этому состоянию соответствует продольная сила в сечении колонны продольное усилие в сжатой ветви будет таким же. Здесь момент Мпр принимают соответствующим Nmax, а момент в сжатой ветви определяют, принимая Q также соответствующим Nmax.

7.3.23 При расчете распорок проверяют сочетание нагрузок, вызывающее в сечении колонны максимальную поперечную силу и растяжение (если оно может быть) в одной ветви.

7.3.24 При сочетаниях нагрузок, вызывающих Nmax, Mmax или Qmax, определяются (при заданном сечении двухветвевой колонны) марка бетона и сечение сжатой арматуры, а при сочетаниях, вызывающих Nmin, Mmax или Qmax, – сечение растянутой арматуры.

Особенности расчета двухветвевых колонн

7.3.25 Двухветвевые колонны – это сложные рамные системы. Учитывая свойственные двухветвевым колоннам геометрические параметры и характер основных нагрузок, их следует рассчитывать как рамные стержни с учетом продольных деформаций ветвей, принимая ряд допущений:

а) продольная (вертикальная) сила в двухветвевом сечении колонны распределяется между ветвями по закону рычага;

б) изгибающие моменты в ветвях определяются из условия, что нулевые точки моментов расположены посередине высоты панели. При расчете в упругой стадии нулевая точка располагается не посередине высоты панели. Однако при образовании трещин и неупругих деформациях бетона и арматуры происходит перераспределение усилий с выравниванием моментов по верху и низу панели и с соответствующим перемещением нулевой точки к середине высоты панели;

в) верхняя распорка колонны принимается бесконечно жесткой, так как ее погонная жесткость во много раз превышает жесткость ветвей и рядовых распорок;

г) при наличии растяжения в ветви в пределах какой-либо панели жесткость на изгиб ветви на этом участке при расчете по предельному состоянию первой группы принимается равной нулю. В этом случае моменты в сжатой ветви и в распорке определяются из условия передачи всей поперечной силы в сечении колонны на сжатую ветвь. Растянутая ветвь при усилиях от нормативных значений нагрузок обладает некоторой жесткостью, поэтому при расчете трещиностойкости по предельному состоянию второй группы считается, что в этой ветви действует момент, значение которого определяется из условия передачи на нее 1/6 поперечной силы в сечении колонны. При расчете по деформированной схеме в этом случае жесткость растянутой ветви принимается равной жесткости на изгиб ее арматурного каркаса.

4.9. Стакан под двухветвевые колонны с расстоянием между наружными гранями ветвей не более 2400 мм выполняется общим под обе ветви, с расстоянием более 2400 мм - раздельно под каждую ветвь. Под колонны в температурных швах также рекомендуется выполнять раздельные стаканы.

Размеры стакана для колони следует назначать из условия обеспечения необходимой глубины заделки колонны в фундамент и обеспечения зазоров, равных 75 мм по верху и 50 мм по низу стакана с каждой стороны колонны (см. черт.25).

4.10. Глубина стакана принимается на 50 мм больше глубины заделки колонны , которая назначается из следующих условий:

для индивидуальных прямоугольных колонн - по табл.5, но не менее чем по условиям заделки рабочей арматуры колонн, указанным в табл.6;

Отношение толщины стенки стакана к высоте верхнего уступа фундамента или глубине стакана (см. черт.7)

а) неполного использования расчетного сечения арматуры длину заделки допускается принимать , но не менее чем для стержней в сжатой зоне, где - усилие, которое должно быть воспринято анкеруемыми растянутыми стержнями, а - усилие, которое может быть воспринято;

4.11. Глубину заделки двухветвевых колонн необходимо проверять также по анкеровке растянутой ветви колонны в стакане фундамента.

Глубину заделки растянутой ветви двухветвевой колонны в стакане необходимо проверять по плоскостям контакта бетона замоноличивания:

4.12. Минимальную толщину стенок неармированного стакана поверху следует принимать не менее 0,75 высоты верхней ступени (подколонника) фундамента или 0,75 глубины стакана и не менее 200 мм.

В фундаментах с армированной стаканной частью толщина стенок стакана определяется расчетом по пп.2.34, 2.35 и принимается не менее величин, указанных в табл.8.

4.14. Для опирания фундаментных балок на фундаментах следует предусматривать столбчатые набетонки, которые выполняются на готовом фундаменте. Крепление набетонок к фундаменту рекомендуется осуществлять за счет сцепления бетона с предварительно подготовленной поверхностью бетона фундамента (насечки) или приваркой анкеров к закладным изделиям, или с помощью выпусков арматуры, предусмотренных в теле фундамента (при отношении высоты набетонки к ее меньшему размеру в плане 15).

4.11. Глубину заделки двухветвевых колонн необходимо проверять также по анкеровке растянутой ветви колонны в стакане фундамента.

Глубину заделки растянутой ветви двухветвевой колонны в стакане необходимо проверять по плоскостям контакта бетона замоноличивания:

с бетонной поверхностью стакана — по формуле

с бетонной поверхностью ветви колонны — по формуле

d c ³ N p / 2 (b c ¢ + h c ¢ ) R an ¢¢ . (113)

В формулах (112), (113):

d c - глубина заделки двухветвевой колонны, м;

N p - усилие растяжения в ветви колонны, тс;

h c ¢ , b c ¢ - размеры сечения растянутой ветви, м;

R an ¢ , R an ¢¢ - величина сцепления бетона, принимаемая по табл. 7, тс/м 2 .

Величина сцепления по плоскостям контакта бетона замоноличивания с бетоном

стенок стакана R an ¢

ветви колонны R an ¢¢

П р и м е ч а н и е. Величина R bt относится к бетону замоноличивания.

4.12. Минимальную толщину стенок неармированного стакана поверху следует принимать не менее 0,75 высоты верхней ступени (подколонника) фундамента или 0,75 глубины стакана d p и не менее 200 мм.

В фундаментах с армированной стаканной частью толщина стенок стакана определяется расчетом по пп. 2.34, 2.35 и принимается не менее величин, указанных в табл. 8.

Толщина стенок стакана t, мм

колонны прямоугольного сечения с эксцентриситетом продольной силы

В плоскости изгибающего момента

0,2 l c , но не менее 150

0,3 l c , но не менее 150

0,2 l d , но не менее 150

Из плоскости изгибающего момента

4.13. Толщину дна стакана фундаментов следует принимать не менее 200 мм.

4.14. Для опирания фундаментных балок на фундаментах следует предусматривать столбчатые набетонки, которые выполняются на готовом фундаменте. Крепление набетонок к фундаменту рекомендуется осуществлять за счет сцепления бетона с предварительно подготовленной поверхностью бетона фундамента (насечки) или приваркой анкеров к закладным изделиям, или с помощью выпусков арматуры, предусмотренных в теле фундамента (при отношении высоты набетонки к ее меньшему размеру в плане ³ 15).

АРМИРОВАНИЕ ФУНДАМЕНТОВ

4.15. Армирование подошвы фундаментов следует производить сварными сетками но серии 1.410-3 и ГОСТ 23279-84.

4.16. В случае, когда меньшая из сторон подошвы в фундаменте имеет размер b £ 3 м, следует применять сетки с рабочей арматурой в двух направлениях (черт. 27, а).

При b > 3 м применяются отдельные сетки с рабочей арматурой в одном направлении, укладываемые в двух плоскостях. При этом рабочая арматура, параллельная б ó льшей стороне подошвы l, укладывается снизу. Сетки в каждой из плоскостей укладываются без нахлестки с расстоянием между крайними стержнями не более 200 мм (черт. 27, б).

Черт. 27. Армирование подошвы фундамента

а - при b £ 3 м; б - при b > 3 м; 1- нижние сетки; 2 - верхние сетки

Минимальный диаметр рабочей арматуры сеток подошв принимается равным 10 мм вдоль стороны l £ 3 м и 12 мм при l > 3 м.

4.17. При выполнении условия

анкеровка продольной рабочей арматуры сеток подошв считается обеспеченной, l b - длина участка нижней ступени, на котором прочность наклонных сечений обеспечивается бетоном, определяемая по формуле

l b = 0,75 h 1 , (115)

где h 1 - высота нижней ступени фундамента;

р max - максимальное краевое давление на грунт, вычисляемое по формулам (5), (6);

l an - длина анкеровки арматуры, определяемая по формуле

l an = (0,5 R s A st / R b A sf + 8) d , (116)

где A st , A sf - обозначения те же, что в п. 2.59;

d - диаметр продольной арматуры.

При невыполнении условия (114) в сетках необходимо предусмотреть приварку поперечных анкерующих стержней на расстоянии не более 0,8 l b от края продольного стержня. Диаметр анкерующего стержня рекомендуется принимать не менее 0,5d продольной арматуры.

Анкеровка рабочей арматуры в подошве фундамента считается обеспеченной, если хотя бы один из поперечных стержней сетки, приваренный к рабочей продольной арматуре, располагается в пределах участка l b .

4.18. Подколонники рекомендуется армировать, если это необходимо по расчету, вертикальными сварными плоскими сетками по ГОСТ 23279-85.

4.19. Минимальный процент содержания арматуры s и s' во внецентренно сжатом железобетонном подколоннике должен составлять не менее 0,04 % площади его поперечного сечения.

В подколонниках с продольной арматурой, расположенной равномерно по периметру сечения, минимальная площадь сечения всей продольной арматуры должна приниматься не менее 0,08 %.

4.20. Железобетонные подколонники рекомендуется армировать вертикальными сварными плоскими сетками, объединяемыми в пространственный каркас. Сетки рекомендуется устанавливать по четырем сторонам сечения подколонника (черт. 28).

Черт. 28. Армирование железобетонного подколонника пространственными каркасами, собираемыми из плоских сеток

1 - сетка

4.21. В железобетонных подколонниках, где по расчету сжатая арматура не требуется, а количество растянутой арматуры не превышает 0,3 %, допускается не ставить продольную и поперечную арматуру по граням, параллельным плоскости изгиба. В этих случаях допускается:

установка сеток только по двум противоположным сторонам сечения подколонника, как правило, в плоскостях, перпендикулярных плоскости действия б ó льшсго из двух воздействующих на фундамент изгибающих моментов;

соединение плоских сеток в пространственный каркас без соединения продольных стержней хомутами и шпильками. Толщина защитного слоя бетона (см. п. 5.19 СНиП 2.03.01-84) в этом случае должна быть не менее 50 мм и не менее двух диаметров продольной арматуры (черт. 29);

сетки устанавливаются на всю высоту подколонника.

Черт. 29. Армирование железобетонного подколонника двумя сетками

1 — арматурная сетка

4.22. В случаях, когда по расчету принято бетонное сечение подколонника, пространственный каркас устанавливается только в пределах стаканной части с заглублением ниже дна стакана на величину не менее 35 диаметров продольной арматуры (черт. 30).

Черт. 30. Армирование бетонного подколонника, имеющего стакан
под сборную колонку

1 - сетка

4.23. Если в сечении бетонного подколонника возникают растягивающие или сжимающие напряжения менее 10 кгс/см 2 , то при максимальных сжимающих напряжениях более 0,8R b (напряжения определяются как для упругого тела) необходимо выполнять конструктивное армирование на всю высоту подколонника. При этом площадь сечения арматуры с каждой стороны подколонника должна быть не менее 0,02% площади его поперечного сечения, а в случае расположения арматуры по периметру сечения — не менее 0,04 %.

4.24. При расчетном или конструктивном армировании подколонника диаметр продольных стержней вертикальной арматуры принимается не менее 12 мм. В бетонном подколоннике минимальный диаметр продольной арматуры принимается равным 10 мм.

4.25. Горизонтальное армирование стаканной части подколонника осуществляется сварными плоскими сетками с расположением стержней у наружных и внутренних поверхностей стенок стакана. Продольная вертикальная арматура должна размещаться внутри горизонтальных сеток. Диаметр стержней сеток принимается не менее 8 мм и не менее четверти диаметра продольной арматуры вертикального армирования подколонника.

4.26. Расположение горизонтальных сеток следует принимать по черт. 31.

Черт. 31. Схема расположения горизонтальных сеток армирования
подколонника:

а - при e 0 > l c /2; б - при l c /6 < e 0 £ l c /2

4.27. Толщина защитного слоя бетона для рабочей арматуры подколонника должна быть не менее 30 мм, а для подошвы фундамента при условии устройства под ним бетонной подготовки принимается равной 35 мм.

4.28. При необходимости косвенного армирования дна стакана устанавливают сварные сетки (от двух до четырех).

5. IIPOЕКТИРОВАНИЕ ФУНДАМЕНТОВ С ПОМОЩЬЮ ЭВМ

5.1. Для подбора типовых (например, из номенклатуры серии 1.412) или проектирования нетиповых фундаментов имеется ряд программ, в которых реализованы алгоритмы расчета оснований под фундаменты и расчета прочности конструктивных элементов фундаментов.

5.2. Алгоритмы расчета грунтового основания по различным программам включают следующие нормируемые проверки, в результате удовлетворения которых определяют размеры подошвы:

по величинам средних, краевых и угловых давлений под подошвой;

по форме эпюры давлений и величине отрыва;

по величине давления на кровлю слабого слоя;

по величинам осадки и крена;

по несущей способности:

по прочности скального основания;

по прочности и устойчивости нескального основания;

на сдвиг по подошве;

на сдвиг по слабому слою.

5.3. Алгоритмы расчета прочности конструктивных элементов фундамента включают следующие нормируемые проверки, в результате удовлетворения которых определяют размеры ступеней и армирование:

по продавливанию и раскалыванию;

по поперечной силе;

по обратному моменту;

на косое внецентренное сжатие сплошного бетонного и железобетонного сечения;

на изгиб стаканной части;

на смятие под торцом колонны.

5.4. В табл. 9 приведены общие данные о специализированных программах, рекомендуемых при проектировании фундаментов на естественном основании под колонны зданий и сооружений.

Типовые по серии 1.412

Нескальные, непросадочные, сухие и водонасыщенные

Типовые по серии 1.412 и нетиповые, в том числе глубокого заложения

Скальные и нескальные, включая просадочные и водонасыщенные

Нетиповые, в том числе глубокого заложения

Нескальные, непросадочные, сухие

Нескальные, включая просадочные и водонасыщенные

Окончание табл. 9

П р и м е ч а н и е. Все материалы по программам для расчета фундаментов публикуются в информационных выпусках фонда алгоритмов и программ отрасли «Строительство» Госстроя СССР.

Пример 1. Расчет внецентренно нагруженного фундамента под сборную колонну

Дано: фундамент со ступенчатой плитной частью и стаканным сопряжением с колонной серии 1.423-3 сечением l c х b c = 400x400 мм (черт. 32); глубина заделки колонны d c = 750 мм; отметка обреза фундамента - 0,15 м; глубина заложения - 2,55 м; размер подошвы, определенный из расчета основания по деформациям в соответствии с указаниями СНиП 2.02.01-84, l x b = 3,3х2,7 м. Расчетные нагрузки на уровне обреза фундамента приведены в табл. 10.

М х , МН × м (тс × м)

Окончание табл. 10

М х , МН × м (тс × м)

Обозначения, принятые в таблице:

g f - коэффициент надежности по нагрузке;

х - направление вдоль б ó льшего размера подошвы фундамента.

П р и м е ч а н и е. Материал - сталь класса А-III.

Черт 32. Внецентренно нагруженный фундамент под сборную колонну

R s = R sc = 355 МПа ( Æ 6-8 мм) (3600 кгс/см 2 );

R s = R sc = 365 МПа ( Æ 10-40 мм) (3750 кгс/см 2 );

E s = 2 × 10 5 МПа (2 × 10 6 кгс/см 2 ).

Бетон тяжелый класса В 12,5 по прочности на сжатие:

R b = 7,5 МПа (76,5 кгс/см 2 ); R bt = 0,66 МПа (6,75 кгс/см 2 );

R bt.ser = 1,0 МПа (10,2 кгс/см 2 ); E b = 21 × 10 3 МПа (214 × 10 3 кгс/см 2 ).

Коэффициенты условий работы бетона: g b2 = 0,9; g b9 = 0,9 (для бетонных сечений).

НАЗНАЧЕНИЕ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ
ФУНДАМЕНТА

ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ПОДКОЛОННИКА В ПЛАНЕ

Необходимая толщина стенок армированного стакана определяется с помощью табл. 10 для комбинации № 3 расчетных сочетаний нагрузок:

e 0 = M/N = 0,336/2,1 = 0,16 м, т.e. e 0 < 2l с = 2 × 0,4 = 0,8 м.

С учетом рекомендуемых модульных размеров подколонников, приведенных в табл. 4, принимаем l cf х b cf = 0,9 х 0,9 м; глубину стакана под колонну d p = d c + 0,05 = 0,75 + 0,05 = 0,8 м; площадь подошвы фундамента А = l х b = 3,3 х 2,7 = 8,91 м 2 ; момент сопротивления подошвы фундамента в направлении б ó льшсго размера W = 4,9 м 3 .

РАСЧЕТ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА
НА ПРОДАВЛИВАНИЕ

ОПРЕДЕЛЕНИЕ ВЫСОТЫ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА h pl

Высота фундамента h = 2,55 — 0,15 = 2,4 м.

Ориентировочная минимальная высота подколонника при трехступенчатом фундаменте h cf = 2,4 - 0,3 × 3 = 1,5 м.

В соответствии с указаниями п. 2.6 при h cf - d p = 1,5 - 0,8 = 0,7 м > 0,5 (l cf — l c ) = 0,5 (0,9 — 0,4) = 0,25 м. Высота плитной части определяется проверкой на продавливание по схеме 1 от низа подколонника.

Определяем необходимую рабочую высоту плитной части по черт. 11.

Найдем максимальное краевое давление на основание при:

сочетании 1 : р = 2,4/8,91 + (0,096 + 0,036 • 2,4)/4,9 = 0,268 + 0,038 = 0,306 МПа;

сочетании 3 : р = 2,1/8,91 + (0,336 + 0,072 • 2,4)/4,9 = 0,235 +0,104 = 0,339 МПа.

Принимаем максимальное значение p max = 0,339 МПа.

По найденным значениям A 3 = b(l — 0,5b + b cf — l cf ) = 2,7(3,3 — 0,5 x 2,7 + 0,9 - 0,9) = 5,26 м 2 и r = g b2 R bt / p max = 0,9 × 0,66 / 0,339 = 1,75 необходимая рабочая высота плитной части фундамента h 0, pl = 62 см. Следовательно, h pl = 62 + 5 = 67 см.

В соответствии с указаниями п. 4.4 и табл. 4 высоту плитной части принимаем равной 0,9 м. Для случая индивидуального фундамента допускается принимать высоту 0,7 м (кратной 100 мм) с высотой нижней ступени 0,3 м и верхней 0,4 м.

Укажем, что с учетом принятых в дальнейшем размеров ступеней (см. черт. 32) объем бетона плитной части в обоих случаях будет практически одинаков: 4,4 м 3 при высоте плитной части 0,7 м и 4,38 м 3 — при высоте плитной части 0,9 м. Вместе с тем б ó льшая высота плитной части позволяет снизить сечение рабочей арматуры подошвы фундамента, что отражается и на общей его стоимости (см. табл. 3 прил. 7).

При 0,5 (b - b cf ) = 0,5(2,7 - 0,9) = 0,9 м > h 0,pl = 0,9 - 0,05 = 0,85 м рабочую высоту h 0,pl можно определить также по формуле (9) с заменой b c на b cf , l c на l cf .

Вычислим значения с l и с b :

с l = 0,5 (l - l cf ) = 0,5(3,3 - 0,9) = 1,2 м; с b = 0,5 (b - b cf ) = 0,5(2,7 - 0,9) = 0,9 м; r = 1,75 (см. выше);

h 0,pl = - 0,5b cf + = - 0,5 × 0,9 +

Высота ступеней назначается по табл. 4 в зависимости от полной высоты плитной части фундамента: при h pl = 0,9 h 1 = h 2 = h 3 = 0,3 м.

ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ВТОРОЙ СТУПЕНИ
ФУНДАМЕНТА

Первоначально определяем предельный вылет нижней ступени по формуле (16), приняв его одинаковым в двух направлениях (по х и по у):

с 1 = с 2 = 0,5b + (l + r)h 01 - = 0,5 × 2,7 + (1 + 1,75)(0,3 - 0,05) - = 1,35 + 0,69 - = 2,04 - 1,46 = 0,58 м.

l 1 = l - 2c 1 = 3,3 - 2 × 0,45 = 2,4 м; b 1 = b - 2c 2 = 2,7 - 2 × 0,45 = 1,8 м.

ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ТРЕТЬЕЙ СТУПЕНИ
ФУНДАМЕНТА

Размеры третьей ступени определяем по формулам (17) и (18) с заменой l c на l cf .

l 2 = (l - 2c 1 - l cf )h 3 /(h 2 + h 3 ) + l cf = (3,3 - 2 × 0,45 - 0,9)0,3/ (0,3 +0,3) + 0,9 = 1,65 м;

b 2 = (b - 2c 2 - b cf )h 3 /(h 2 + h 3 ) + b cf = (2,7 - 2 • 0,45 - 0,9) 0,3/(0,3 + 0,3) + 0,9 = 1,35 м.

Назначаем размеры третьей (верхней) ступени l 2 x b 2 = 1,5 х 0,9 м.

Выполним проверку на продавливание двух нижних ступеней от третьей ступени, так как назначенные размеры l 2 , b 2 меньше значений, полученных по формулам (17) и (18).

Проверку производим по указаниям п. 2.9 с заменой b c и l c на b 2 и l 2 и u m на b m , принимая рабочую высоту сечения

h 0,pl = h 01 + h 2 = 0,25 + 0,3 = 0,55 м;

так как b - b 2 = 2,7 - 0,9 = 1,8 м > 2h 0,pl = 2 • 0,55 = 1,1 м, то по формуле (7) b m = b 2 + h 0,pl = 0,9 + 0,55 = 1,45 м; по формуле (4) A 0 = 0,5b(l - l 2 - 2h 0,pl ) - 0,25 (b - b 2 - 2h 0,pl ) 2 = 0,5 • 2,7(3,3 - 1,5 - 2 × 0,55) - 0,25 (2,7 - 0,9 - 2 × 0,55) 2 = 0,82 м 2 ;

F = A 0 p max = 0,82 × 0,339 = 0,274 МН.

Проверяем условие прочности по продавливанию g b2 R bt b m h 0,pl = 0,9 • 0,66 • 1,45 • 0,55 = 0,474 MH > 0,274 МН, то есть условие прочности по продавливанию выполнено. Размеры фундаментов показаны на черт. 32.

ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ АРМАТУРЫ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА

Определяем изгибающие моменты и площадь рабочей арматуры подошвы фундамента А sl по формулам (46)-(57) в сечениях по граням ступеней 1-1, 2-2 и по грани подколонника 3-3, 4-4.

Расчетные усилия на уровне подошвы принимаем без учета веса фундамента по 3-му сочетанию нагрузок, определяющему p max ,

N = 2,1 МН; М = 0,336 + 0,072 • 2,4 = 0,509 МН • м; e 0 = 0,509/2,1 = 0,242 м.

Читайте также: