Начальный модуль упругости бетона определяется при напряжениях равных от предела прочности

Обновлено: 07.05.2024

Заинтересовал следующий момент - в СП 63.13330.2018, в пункте 6.1.15 говорится что модуль упругости бетона, для продолжительных нагрузок, следует принимать с учетом коэф. ползучести по таблице 6.12 с учетом класса бетона и влажности окружающей среды. Т.к. в большинстве случаев основная часть приходится на нагрузки продолжительного действия(собст. вес, ограждающие конструкции) следует ли понимать что в большинстве случаев следует принимать пониженное значение модуля упругости. Вопрос заинтересовал по причине того, что в большинстве примеров, пособий и рекомендаций используются начальные модули упругости бетона, без всяких понижений.

И еще, лично зудящий у меня вопрос - почему во всех таблицах с начальным модулем упругости бетона стоит единица измерения МПа*10-3 - для В30 например д.б. 0,325 МПа, а считается от единицы измерения МПа*103 - для В30 принимается 32500 МПа(степень вроде всегда число положительное)

Чтобы в каждой ячейке не писать 32500, значения уменьшили в 1000 раз, поэтому в шапке написано МПа*10-3.

__________________
"Сделай первый шаг - и ты поймёшь, что не всё так страшно." (Сенека, древнеримский философ).

Когда считаете прогибы и перемещения, используйте пониженные значения или нелинейный расчет.
Когда считаете армирование колонн, для колонн и стен лучше принять начальное значение E. Когда считаете армирование плит и балок для колонн и стен лучше принять пониженное значение Е.
При пониженном значении Е для плит и балок верхнее армирование будет ниже, чем при начальном Е.

Нужно брать модуль упругости как написано в СП - пониженный за редким исключением. У нас здания эксплуатируются длительно - длительный и берите.

А вообще как можно реализовать это требование для конструкций сложнее однопролетной балки? В реальной жизни, практически любая конструкция испытывает как продолжительные, так и непродолжительные воздействия, и для статически неопределимых конструкций какой тогда модуль упругости использовать если для каждого типа нагружения ставить свой соответствующий модуль упругости, то, по известным мне знаниям - распределение усилий зависит от жесткостей, будут получены неправильные значения (хоть и с достаточной инженерной точностью )? И как это можно реализовать в расчетных программах - Лира, ING+; там же модуль упругости задается один раз на весь расчет.
И нелинейный расчет, в этом пункте 6.1.15, также никоим образом не выделяется, и следовательно для него также следует понижать Е?
Ответ на вопрос, в основном интересует с той стороны - как ответить какому-нибудь эффективному эксперту, если он вдруг решит требовать соблюдение этого пункта

Чтобы в каждой ячейке не писать 32500, значения уменьшили в 1000 раз, поэтому в шапке написано МПа*10-3.

- какие-то странные правила, в школах обычно наоборот учат - 1000 это 10 в "+" 3 степени, только плюс не пишется

Когда считаете армирование колонн, для колонн и стен лучше принять начальное значение E. Когда считаете армирование плит и балок для колонн и стен лучше принять пониженное значение Е.
При пониженном значении Е для плит и балок верхнее армирование будет ниже, чем при начальном Е.

- на шаманство какое-то похоже, не поиск истины(требуемого армирования), а попытки получить удобные значения. Я предполагал, что понижение Е(как эмпирический метод учесть образование трещин) нужно для более точного определения прогибов перекрытий

причем здесь шаманство? это способ учесть неблагоприятное распределение жесткости. В лире сапр реализована так называемая "инженерная нелинейность" Для вычисления прогибов ее лучше не использовать, а вот для армирования вполне себе очень даже.

Ну вообще то почти азбучные назначения жесткостей: для плит 0.3Е0 (для оценки прогибов еще меньше, обычно 0.2Е0), для колонн 0.6Е0.

для каждого типа нагружения ставить свой соответствующий модуль упругости, то, по известным мне знаниям - распределение усилий зависит от жесткостей

Не для каждого типа загружения, но для каждого конечного элемента в условиях определенного рсу- это и есть физическая нелинейность.

как ответить какому-нибудь эффективному эксперту, если он вдруг решит требовать соблюдение этого пункта

Ответить что все учтено.
Я не сравнивал сам расчетные и фактические прогибы, посмотрите на форуме и блогах, вроде (пишу по памяти) фактические прогибы находились в пределах значений 0.2. 0.3Е0, и даже ближе к 0.3.
Ну уж если есть какой подозрительный участок, пересчитайте на физнелин, в той же лире или вручную. Серия итераций с изменением жесткостей групп кэ в зависимости от напряжений в них.

Простая тестовая задача - прогиб балки. B25, A400. Прогиб посчитан в Арбате и переведен в коэффициент понижения жесткости (во вложении - конкретные цифры).

Коэффициент пляшет в диапазоне 0.09. 0.38. У балок (μ = 1-2%) жесткость выше, чем у плит (μ = 0.2-0.5%). Сечение и материалы - первые попавшиеся. При других сечениях и бетонах с арматурой разброс, видимо, увеличится.

Вывод: если нужно считать прогибы, никаких 0.2 или 0.3 - легко махнуть ошибку в 2-3 раза.

Так и в Нормах написано: "в первом приближении допускается. ". А далее с учётом реального армирования и наличия трещин "перепроверяется" (почти никто так не делает ).
Только это актуально для конструкций: а) с большими пролётами, б) с маленькими сечениями, в) с большими нагрузками, г) и проверки конструкций при изменении параметров эксплуатации (усиление, изменения расчётной схемы и т.д.).
А для вашей балки(плиты) с пролётом L=6м и при стандартных нагрузках все примут сечение по справочникам (L/30/35/45).

Заинтересовал следующий момент - в СП 63.13330.2018, в пункте 6.1.15 говорится что модуль упругости бетона, для продолжительных нагрузок, следует принимать с учетом коэф. ползучести по таблице 6.12 с учетом класса бетона и влажности окружающей среды. Т.к. в большинстве случаев основная часть приходится на нагрузки продолжительного действия(собст. вес, ограждающие конструкции) следует ли понимать что в большинстве случаев следует принимать пониженное значение модуля упругости. Вопрос заинтересовал по причине того, что в большинстве примеров, пособий и рекомендаций используются начальные модули упругости бетона, без всяких понижений.

И еще, лично зудящий у меня вопрос - почему во всех таблицах с начальным модулем упругости бетона стоит единица измерения МПа*10-3 - для В30 например д.б. 0,325 МПа, а считается от единицы измерения МПа*103 - для В30 принимается 32500 МПа(степень вроде всегда число положительное)

В МКЭ программах усилия в элементах определяются исходя из соотношения жесткостей а не их абсолютных значений. Если вы пропорционально уменьшите все жесткости при простом упругом расчете - ничего не поменяется.

При расчете строительных конструкций нужно знать расчетное сопротивление и модуль упругости для того или иного материала. Здесь представлены данные по основным строительным материалам.

Cодержание:

Таблица 1. Модули упругости для основных строительных материалов.

Материал Модуль упругости Е, МПа
Чугун белый, серый (1,15. 1,60) • 10 5
» ковкий 1,55 • 10 5
Сталь углеродистая (2,0. 2,1) • 10 5
» легированная (2,1. 2,2) • 10 5
Медь прокатная 1,1 • 10 5
» холоднотянутая 1,3 • 10 3
» литая 0,84 • 10 5
Бронза фосфористая катанная 1,15 • 10 5
Бронза марганцевая катанная 1,1 • 10 5
Бронза алюминиевая литая 1,05 • 10 5
Латунь холоднотянутая (0,91. 0,99) • 10 5
Латунь корабельная катанная 1,0 • 10 5
Алюминий катанный 0,69 • 10 5
Проволока алюминиевая тянутая 0,7 • 10 5
Дюралюминий катанный 0,71 • 10 5
Цинк катанный 0,84 • 10 5
Свинец 0,17 • 10 5
Лед 0,1 • 10 5
Стекло 0,56 • 10 5
Гранит 0,49 • 10 5
Известь 0,42 • 10 5
Мрамор 0,56 • 10 5
Песчаник 0,18 • 10 5
Каменная кладка из гранита (0,09. 0,1) • 10 5
» из кирпича (0,027. 0,030) • 10 5
Бетон (см. таблицу 2)
Древесина вдоль волокон (0,1. 0,12) • 10 5
» поперек волокон (0,005. 0,01) • 10 5
Каучук 0,00008 • 10 5
Текстолит (0,06. 0,1) • 10 5
Гетинакс (0,1. 0,17) • 10 5
Бакелит (2. 3) • 10 3
Целлулоид (14,3. 27,5) • 10 2

Примечание: 1. Для определения модуля упругости в кгс/см 2 табличное значение умножается на 10 (более точно на 10.1937)

2. Значения модулей упругости Е для металлов, древесины, каменной кладки следует уточнять по соответствующим СНиПам.

Нормативные данные для расчетов железобетонных конструкций:

Таблица 2. Начальные модули упругости бетона (согласно СП 52-101-2003)

модули упругости бетона по новым нормам

Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)

модули упругости бетона по старому СНиПу

Примечания: 1. Над чертой указаны значения в МПа, под чертой - в кгс/см 2 .

2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.

5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)

нормативные сопротивления бетона по новым нормам

Таблица 4. Расчетные значения сопротивления бетона (согласно СП 52-101-2003)

расчетные значения сопротивления бетона сжатию

Таблица 4.1. Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)

расчетные сопротивления бетона по старым нормам

Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)

расчетное сопротивление бетона растяжению

Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)

нормативные сопротивления арматуры

Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

расчетные сопротивления арматуры класса А

Таблица 6.2. Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

нормативные сопротивления арматуры по старым нормам

Таблица 7. Расчетные сопротивления для арматуры(согласно СП 52-101-2003)

расчетные сопротивления для арматуры

Таблица 7.1. Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

расчетные сопротивления арматуры класса А

Таблица 7.2. Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

расчетные сопротивления арматуры класса В

Нормативные данные для расчетов металлических конструкций:

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))

листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений

таблица расчетных значений сопротивления стали

Примечания:

1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).

2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.

3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см 2 ).

Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))

марки стали

Примечания: 1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Расчетные сопротивления для стали, используемой для производства профилированных листов, приводятся отдельно.

1. СНиП 2.03.01-84 "Бетонные и железобетонные конструкции"

3. СНиП II-23-81 (1990) "Стальные конструкции"

4. Александров А.В. Сопротивление материалов. Москва: Высшая школа. - 2003.

5. Фесик С.П. Справочник по сопротивлению материалов. Киев: Будiвельник. - 1982.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье "Записаться на прием к доктору"

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины - номер гривневой карты (Приватбанк) 5168 7422 4128 9630

спасибо вам всеесть то что надо

Почему значения начального модуля упругости бетона при сжатии и растяжении умножаются на 10^-3? Должна ведь быть положительная степень. Выходит, что модуль упругости для бетона В25 составляет 30 кПа, но он равен 30 ГПа!

Потому, что при составлении разного рода таблиц нет необходимости писать в каждой ячейке по 3 дополнительных нуля, достаточно просто указать, что табличные значения занижены в 1000 раз. Соответственно, чтобы определить расчетное значение, нужно табличное значение не разделить, а умножить на 1000. Такая практика используется при составлении многих нормативных документов (именно в таком виде там даются таблицы) и я не вижу смысла от нее отказываться.

Тогда получается, что модуль упругости арматуры необходимо разделить на 10 в пятой степени. Или я что-то не понимаю? В рекомендациях по расчету и конструированию сплошных плит перекрытий крупнопанельных зданий 1989г. и модуль бетона и модуль арматуры умножают на 10 в третьей и на 10 в пятой степени соответственно

Попробую объяснить еще раз. Посмотрите внимательно на таблицу 1. Если бы в заглавной строке вместо "Модуль упругости Е, МПа" я бы прописал "Модуль упругости Е, МПа•10^-5", то это избавило бы меня от необходимости в каждой строке к значению модуля упругости добавлять "•10^5". Вот только значения модулей упругости для различных материалов различаются в сотни и даже тысячи раз, потому такая форма записи для таблицы 1 не совсем удобна. В таблицах 2 и 2.1 значения начальных модулей упругости различаются незначительно и потому использовалась такая форма записи. Более того, если вы откроете указанные нормативные документы, то лично в этом убедитесь. Традиция эта сформировалась в ту далекую пору, когда ПК и в помине не было и наборщик вручную набирал литеры в пресс для книгопечатания, так что в данном случае все вопросы не ко мне, а к Гутенбергу и его последователям.

Возможно, модуль упругости легче бы запоминался и воспринимался в ГПа, ведь тогда у стали примерно 200 единиц, а у древесины 10. 12.

Вполне возможно, вот только и ГигаПаскали - не самая наглядная и простая для восприятия размерность.

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).

При расчетах бетонных и железобетонных конструкций по второй группе предельных состояний, в частности при определении прогибов, необходимо знать модуль упругости E (модуль Юнга) бетона при сжатии. При этом следует различать начальный Eb и приведенный Eb1 модули упругости.

Факторы, влияющие на значение расчетного модуля упругости

Более подробно сущность модуля упругости, предела пропорциональности, предела прочности, нормальных напряжений, деформаций и других понятий рассматривается отдельно. Здесь лишь отметим, что для материалов, у которых предел пропорциональности незначительно меньше предела текучести, можно использовать линейную деформационную модель. Т.е. предполагать деформации прямо пропорциональными нормальным напряжениям.

Примером таких материалов являются стали различных марок. А вот бетон к таким материалам не относится. Более того, у бетона нет ярко выраженного предела пропорциональности и предела текучести. Диаграмма напряжений бетона при постепенном загружении выглядит приблизительно так:

диаграмма напряжений бетона

Рисунок 324.1

Однако это далеко не единственная из возможных диаграмм напряжений бетона, так как на значение деформаций ε будут влиять не только нормальные напряжения σ, возникающие в поперечных сечениях, но и множество других факторов:

1. Класс бетона

Начальный модуль упругости бетона зависит от класса бетона. Значение начального модуля упругости можно определить по следующей таблице:

Таблица 1. Начальные модули упругости бетона (согласно СП 52-101-2003)

модули упругости бетона по новым нормам

2. Время приложения нагрузки

При кратковременном действии нагрузки деформации бетона почти прямо пропорциональны напряжениям, кроме того такие деформации остаются упругими. При расчетах на кратковременное действие нагрузки (до 1-2 часов) значение приведенного модуля упругости на участках без трещин определяется по формуле:

где φb1 = 0.85 - для тяжелых, мелкозернистых и легких бетонов на плотном мелком заполнителе; = 0.7 - для поризованных и легких бетонов на пористом мелком заполнителе.

При длительном действии нагрузки того же значения, деформации начинают увеличиваться до некоторого предела, например при σ = Rb - до точки 1 на диаграмме напряжений. После снятия нагрузки пластические деформации εпл останутся (потому они пластическими и называются), а при повторном загружении до указанного предела деформации будут прямо пропорциональны напряжениям. Процесс нарастания пластических деформаций с течением времени при постоянных нормальных напряжениях называется ползучестью бетона.

Так как при длительном действии нагрузки диаграмма напряжений стремится к показанной на рисунке 324.1, то при расчетах необходимо учитывать нелинейность изменения деформаций при линейно изменяющихся напряжениях. К тому же в изгибаемых элементах нелинейному изменению деформаций препятствует сам материал. Напомню, нормальные напряжения в поперечных сечениях изгибаемых элементов прямо пропорциональны расстоянию от центра тяжести сечения, через который проходит нейтральная линия, до рассматриваемой точки. Таким образом различные слои бетона, работающие совместно, приводят к частичному перераспределению деформаций по высоте элемента, при этом перераспределенную эпюру деформаций можно условно рассматривать как линейную:

изменение деформаций по высоте сечения

Рисунок 324.2

На рисунке 324.2 показана некоторая высота сжатой зоны сечения у, при которой нормальные напряжения σ будут прямо пропорциональны расстоянию от центра тяжести до рассматриваемой точки, это соответствует работе бетона в области условно упругих деформаций. При этом изменение деформаций можно рассматривать по зависимости, показанной на рисунке 324.2.а) или 324.2.б). Часто расчетами на прочность допускается наличие в сжатой области пластического шарнира, при котором изменяется эпюра напряжений и соответственно увеличивается значение деформаций:

изменение деформаций при пластическом шарнире

Рисунок 324.3

На основании этого для упрощения расчетов обычно принимается двухлинейная (рис. 324.3. а) или трехлинейная (рис. 324.3.б) диаграмма состояния сжатого бетона. Согласно СП 52.101.2003 трехлинейная диаграмма выглядит так:

трехлинейная диаграмма состояния сжатого бетона

Рисунок 324.4

Еb1 - при кратковременном действии нагрузки принимается равным Eb, а при длительном действии нагрузки определяется по следующей формуле:

где φb,cr - коэффициент ползучести бетона, определяемый в зависимости от класса бетона и влажности окружающей среды. Таким образом учитывается третий фактор, влияющий на модуль упругости бетона:

3. Влажность воздуха

Значение коэффициента ползучести определяется по следующей таблице:

Таблица 2. Коэффициенты ползучести бетона

коэффициент ползучести бетона

а значения деформаций εbo и εb2 при необходимости (если нормальные напряжения больше 0.6Rb,n) определяются по таблице 3:

Таблица 3. Относительные деформации бетона (согласно СП 52-101.2003)

относительные деформации бетона при длительной нагрузке

4. На значение модуля упругости бетона также влияют температура окружающей среды и интенсивность радиоактивного излучения.

Значение начальных модулей упругости, приведенных в таблице 1, соответствует температуре окружающей среды +20±5 о С и нормальному радиационному фону. При изменении температуры в пределах ±20 от указанного значения влияние температуры на модуль упругости можно не учитывать. А при больших изменениях температуры следует учитывать еще и температурные деформации бетона. В целом уменьшение температуры приводит к увеличению модуля упругости, но и к повышению хрупкости материала, а увеличение температуры - к уменьшению модуля упругости и к увеличению пластичности материала.

А теперь попробуем выяснить, как все эти теоретические цифры можно применить на практике.

Определение значения модуля упругости

Имеется железобетонная прямоугольная плита перекрытия - шарнирно опертая бесконсольная балка размерами h = 20 см, b = 100 см; ho = 17.3 см; пролетом l = 5,6 м; бетон класса В15 (начальный модуль упругости Еb = 245000 кгс/см 2 ; Rb,ser (Rb,n) = 112 кгс/см 2 , Rb = 85 кгс/см 2 ); растянутая арматура класса А400 (Es= 2·10 6 кгс/см 2 ) с площадью поперечного сечения As = 7.69 cм 2 (5 Ø14); полная равномерно распределенная нагрузка q = 7,0 кг/см, сумма постоянных и длительных нагрузок ql = 6.5 кгс/см

1. Сначала выясним, какими будут параметры сечения при расчетном модуле упругости Еb1. Согласно формулы (324.3) и таблицы 2, при классе бетона В15 и при влажности 40-75%:

Eb1 = 245000/(1 + 3.4) = 55681 кгс/см 2

2. Тогда высоту сжатой части приведенного сечения посредине балки можно найти, решив следующее уравнение:

у 3 = 3As(ho - y) 2 Es/bEb1 (321.2.4)

Решение этого уравнения для рассматриваемой плиты даст уl/2 = 8.61 см.

Тогда приведенный момент сопротивления при такой высоте сжатой зоны сечения составит:

W = 2by 2 /3 = 2·100·8.61 2 /3 = 4942.14 см 3

3. Определим значение максимальных нормальных напряжений. Так как увеличение деформаций следует учитывать только при действии постоянных и длительных нагрузок, то значение момента от таких нагрузок составит:

σ = M/W = qll 2 /8W = 6.5·560 2 /(8·4942.14) = 51.56 кгс/см 2 < 0.6Rb,n = 0.6·112 = 67.2 кгс/см 2 (321.3.1)

Это означает, что для дальнейших расчетов плиты на действие длительных нагрузок можно использовать полученное значение модуля упругости бетона без каких-либо дополнительных поправок.

4. Расчетный момент инерции составит

Ip = W·y = 4942.14·8.61 = 42551.8 см 4 (321.5)

5. Значение прогиба при действии постоянных и длительных нагрузок составит

f = k5ql 4 /384Eb1Ip = 0.93·5·6.5·560 4 /(384·55681·42551.8) = 3.27 см (321.6)

где k = 0.93 - коэффициент, учитывающий изменение высоты сжатой зоны поперечного сечения по длине балки. На первый взгляд это кажется странным, ведь когда мы определяли прогиб по начальному модулю упругости бетона и использовали коэффициент k = 0.86, то пригиб составлял 3.065 см, т.е. при использовании коэффициента k = 0.93 прогиб был бы даже больше и составлял 3.31 см. Однако ничего странного в этом нет. Объясню, почему.

При определении прогиба по начальному модулю упругости мы искусственно занизили значение высоты сжатой зоны из-за нарастания пластических деформаций в результате превышения расчетного сопротивления. В данном же случае уменьшение модуля упругости бетона означает увеличение высоты сжатой зоны, а кроме того, значение нормальных напряжений, как показал расчет, не превышает 0.6Rb,n.

В связи с этим разницу при определении приблизительного прогиба по начальному и расчетному модулям упругости бетона можно считать не существенной. Т.е. при определении приблизительного значения прогиба расчет можно выполнять как по начальному значению модуля упругости бетона, так и с учетом его изменения в результате действия длительной нагрузки. Вот в в принципе и все.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье "Записаться на прием к доктору"

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины - номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).

Модуль упругости бетона — это коэффициент пропорциональности между нормальным напряжением и соответствующей ему относительной продольной упругомгновенной деформацией при σ1=0,3Rпр при осевом сжатии образцов. (ГОСТ 24452-80 Бетоны, Rпр — призменная прочность бетона)

Значение начального модуля упругости тяжелого бетона при сжатии и растяжении приведено в СП 63.13330.2018 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. Данный СП действующий и обязательных к применению (см. пост.985)

Согласно таблицы 6.11 п.6.1.15 СП 63.13330.2018 для тяжелого бетона:

Бетон Значение модуля упругости бетона при сжатии, Eb, МПа
B10 19000 МПа
В12,5 21500 МПа
В15 24000 МПа
В20 27500 МПа
В25 30000 МПа
В30 32500 МПа
В35 34500 МПа

При продолжительном действии нагрузки модуль упругости бетона определяется по формуле:


-коэффициент ползучести бетона, принимаемый по таблице 6.12 п.6.1.16

Согласно таблицы 6.12 п.6.1.16 СП 63.13330.2018 для тяжелого бетона B10-B35:

Относительная влажность воздуха окружающей среды, % В10 В15 В20 В25 В30 В35
Выше 75 2,8 2,4 2,0 1,8 1,6 1,5
40-75 3,9 3,4 2,8 2,5 2,3 2,1
Ниже 40 5,6 4,8 4,0 3,6 3,2 3,0

Примечание: Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

Согласно п.6.1.17 СП 63.13330.2018 коэффициент поперечной деформации бетона (коэффициент Пуассона) допускается принимать 0,2.

При проектировании строительной конструкции стоит задача спрогнозировать ее поведение при заданных нагрузках и внешних условиях. Бетон воспринимает значительные усилия, поэтому важный этап расчета — определение деформаций и прогибов при статическом нагружении.

В расчете железобетонных конструкций по второй группе предельных состояний применяют физическую величину, называемую модулем упругости бетона, или модулем Юнга. Он характеризует свойства твердого вещества в зоне упругих деформаций.

Понятие модуля упругости

Все твердые тела при возрастании нагрузки подвержены деформациям. Причем сначала изменения носят обратимый характер, а их зависимость от приложенных усилий — линейная.

Тело восстанавливает размеры и форму после прекращения внешнего воздействия. Здесь применяется закон Гука, где абсолютное сжатие или удлинение прямо пропорционально приложенной силе с коэффициентом пропорциональности, равным модулю упругости.

С ростом нагрузки тело вступает в фазу необратимых изменений, где деформации носят неупругий пластичный характер. В этой зоне удлинение или сжатие образцов при испытаниях происходят без значительного увеличения внешней силы.

В дальнейшем бетонный образец реагирует на усилия нелинейно — деформации растут без увеличения нагрузки. Это — зона ползучести. Связи внутри материала разрушаются, конструкция теряет прочность.

В рыхлых непрочных смесях присутствует стадия псевдопластических деформаций, когда с уменьшением нагрузки изменения размеров нарастают. Появляются отслоения, трещины и другие деструкции тела бетона.

Последующее увеличение усилий растяжения или сжатия приводят к полному разрушению образца.

Линейная зависимость между напряжением и деформациями в фазе упругости выражается формулой:

где E — модуль упругости (Па);

εпред — относительная деформация, т.е. отношение абсолютного удлинения к начальному размеру (∆l/l0).

Модуль упругости определяют опытным путем. При испытаниях строят диаграмму зависимости деформаций от усилий, прикладываемых к образцу. Тангенс угла кривизны на участке упругих изменений размеров и есть искомая величина. Значения для разных классов и марок бетона занесены в таблицы.

Зависимость деформаций от напряжений

Зная E и действующие усилия, рассчитывают упругие абсолютные деформации бетона в конструкции по формуле:

где σ — напряжение, равное отношению внешней силы к площади сжатой или растянутой зоны сечения (P/F).

Чем больше модуль упругости, тем меньшие деформации при нагрузках испытывает материал. Значения E варьируются от 19 до 40 МПа*10 -3 .

От чего зависит модуль упругости бетона?

Упругие свойства бетона зависят от факторов:

  • качества и объемного содержания заполнителей;
  • класса материала;
  • температуры воздуха и интенсивности радиоактивного излучения;
  • влажности среды;
  • времени воздействия нагрузки;
  • условий твердения смеси;
  • возраста бетона;
  • армирования.

Заполнители

Бетон представляет собой конгломерат из двух составляющих — цементного камня и заполнителей. В неоднородной структуре возникает сложное напряженное состояние. Более жесткие частицы воспринимают основную часть нагрузки, а вокруг пор и пустот образуются участки с поперечными растягивающими усилиями.

Крупный заполнитель, обладая высоким модулем Юнга, увеличивает упругие свойства бетона. Мелкие пылеватые частицы, поры и пустоты снижают их.

Класс бетона

Чем выше класс материала, т.е. больше его прочность на сжатие и плотность, тем лучше он сопротивляется деформирующим нагрузкам. Наиболее высоким модулем упругости обладает бетон В60 — 39,5 МПа*10 -3 , минимальный показатель у композита класса В10- 19 МПа*10 -3 .

Таблица зависимости значения модуля упругости от класса

Температура и радиация

Повышение температуры окружающей среды, интенсивности солнечной радиации приводят к уменьшению упругих свойств и росту деформаций. Связано это с увеличением внутренней энергии бетона, изменению траекторий движения молекул в твердом теле, линейному расширению материала, и, как следствию, усилению пластичности.

Разницу не учитывают при колебаниях в пределах 20°С. Большие температурные изменения существенно влияют на деформацию бетонных конструкций. В таблице СП 63.13330.2012 указаны величины модулей упругости в зависимости от температуры.

Влажность

Колебания влажности воздуха приводят к изменению упругих свойств материала. В расчетах применяют коэффициент ползучести φ. Чем больше содержание водяных паров в окружающей среде, тем ниже показатель и соответственно меньше пластические деформации конструкции.

Коэффициент ползучести

Примечание: Относительную влажность воздуха принимают по СП 131.13330.2012 как среднемесячную влажность самого теплого месяца года в регионе строительства.

Время приложения нагрузки

Модуль упругости зависит от времени действия нагрузки. При мгновенном нагружении конструкции деформации пропорциональны величине внешних сил. При длительных напряжениях величина E уменьшается, изменения развиваются по нелинейной зависимости и суммируются из упругих и пластичных деформаций.

Условия набора прочности

При проведении испытаний замечено, что у бетона естественного твердения модуль упругости выше, чем при обработке материала пропариванием при атмосферном давлении или в автоклавных установках.

Это объясняется тем, что изменение условий набора прочности приводит к образованию большего количества пор и пустот из-за неравномерного температурного расширения объема, ухудшения качества гидратации цементных зерен. Такой бетон обладает более низкими упругими свойствами по сравнению с затвердевшим в нормальных условиях.

Возраст бетона

Свежеуложенный бетон набирает прочность в течение 28 суток. Но даже по истечении этого времени материал при нагрузке обладает одновременно упругими и пластическими свойствами. Наибольшей твердости он достигает примерно через 200-250 суток. Показатель E в этом возрасте максимальный, соответствующий марочной прочности.

Армирование конструкций

Для восприятия растягивающих и сжимающих усилий в железобетон помещают каркасы или сетки из арматуры классов АI, AIII, А500С, Ат800, а также из композитов или древесины.

Применение армирования увеличивает упругость, прочность конструкции на сжатие и на растяжение при изгибе, препятствует образованию усадочных и деформационных трещин.

Способы определения

Модуль упругости бетона определяют:

  • механическим испытанием образцов;
  • неразрушающим ультразвуковым методом, основанным на сравнении скорости распространения волн в существующей конструкции и испытанном образце с заданными характеристиками.

Механический способ

Исследование первым методом проводят согласно ГОСТ 24452-80. Изготавливают образцы с сечением в виде квадрата или круга с соотношением высоты к диаметру (ширине), равным 4.

Образцы сериями по три штуки выбуривают, высверливают или выпиливают из готовых изделий, либо набивают формы согласно ГОСТ 10180-78. До начала испытаний призмы или цилиндры выдерживают под влажной тканью.

Для определения модуля упругости бетона используют прессы со специальными базами для измерения деформаций. Они состоят из приборов, расположенных под разными углами к граням образца. Индикаторы крепят к стальным рамкам или приклеенным опорным вставкам.

Испытание образцов

Если испытания проводят для конструкций, работающих при повышенной влажности или высокой температуре, выполняют специальную подготовку по ГОСТ 24452-80.

Испытания проводят по схеме:

  1. Образцы с индикаторами помещают под пресс, совмещая ось заготовки с центром плиты оборудования. Величину разрушающей нагрузки назначают, исходя из марочной прочности бетона.
  2. Нагрузку увеличивают постепенно, ступенями по 10% от разрушающей. Выдерживают интервалы 4-5 минут.
  3. Доводят усилие до 40-45% от максимального. Если программа не предусматривает другие требования, приборы снимают. Дальнейшее нагружение проводят с постоянной скоростью.
  4. Производят обработку результатов для каждого образца при нагрузке, равной 30% от разрушающей. Все данные заносят в журнал испытаний.

На основе исследований можно судить о начальном модуле упругости бетона. Эта величина характеризует свойства материала при нагрузке, в пределах которой в образцах возникают обратимые изменения. Показатель обозначается как Eb, его значение для каждого класса бетона внесено в таблицы строительных норм и маркировку изделий.

Так, модуль упругости бетона В15 естественного твердения составляет 23, а подвергнутого тепловой обработке 25 МПа*10 -3 .

Величина модуля упругости бетона для классов В20, В25, В30, В35 и В40 равна 27, 30, 32,5, 34,5 и 36 МПа*10 -3 . В пропаренных конструкциях она соответствует 24,5, 27, 29, 31 и 32,5 МПа*10 -3 .

Ультразвуковой способ

Применяется для исследования конструкций без их локального разрушения. При повышенной влажности такой метод определяет модуль упругости с погрешностью 15-75%, так как скорость распространения ультразвуковых колебаний в водной среде возрастает.

Ультразвуковой метод

Чтобы избежать ошибок при измерениях, разработан метод определения модуля Юнга с учетом влажности бетона. Он основан на опытных испытаниях серий образцов с различной водонасыщенностью.

Нормативные и расчетные значения сопротивления бетона получают, используя корректирующие коэффициенты с учетом условий работы конструкции. Методика расчета описана в СП 63.13330.2012.

Читайте также: