Наблюдение за раскрытием трещин в стенах сооружений

Обновлено: 24.04.2024

При обследовании строительных конструкций ответственным этапом является изучение трещин, выявление причин их возникновения и динамики развития.
По степени опасности для несущих и ограждающих конструкций трещины делят на три группы:

  • трещины неопасные, ухудшающие только качество лицевой поверхности;
  • опасные трещины, вызывающие значительное ослабление сечений, развитие которых продолжается с неослабевающей интенсивностью;
  • трещины промежуточной группы, которые ухудшают эксплуатационные свойства, снижают надежность и долговечность конструкций, но не способствуют полному их разрушению.

При наличии трещин на несущих конструкциях зданий и сооружений необходимо организовать систематическое наблюдение за их состоянием и возможным развитием с тем, чтобы выяснить характер деформаций в конструкции и степень их опасности для дальнейшей эксплуатации.

Трещины выявляют путем осмотра поверхностей, а также выборочного снятия с конструкций защитных или отделочных покрытий. Следует определить положение, форму, направление, распространение по длине, ширину раскрытия, глубину, а также установить, продолжается или прекратилось их развитие.

На трещине устанавливают маяк, который при развитии трещины разрывается. Маяк устанавливают в месте наибольшего развития трещины. При наблюдении за развитием трещины по длине концы трещины во время каждого осмотра фиксируют поперечными штрихами. Рядом с каждым штрихом проставляют дату осмотра. Расположение трещин схематично наносят на чертеж развертки стен здания или конструкции, отмечая номера и дату установки маяков. На каждую трещину составляют график ее развития и раскрытия.

По результатам систематических осмотров составляют акт, в котором указывают дату осмотра, чертеж с расположением трещин и маяков, сведения об отсутствии или появлении новых трещин.
Маяк представляет собой пластину длиной 200-250 мм, шириной 40-50 мм, высотой 6-10 мм, наложенную поперек трещины. Изготавливают маяк из гипса или цементно-песчаного раствора. В качестве маяка используют также две стеклянные или металлические пластинки, закрепленные одним концом каждая с разных сторон трещины, или рычажную систему. Разрыв маяка или смещение пластинок по отношению друг к другу свидетельствует о развитии деформаций.
Маяк устанавливают на основной материал стены, удалив предварительно с ее поверхности штукатурку. Рекомендуется размещать маяки также в предварительно вырубленных штрабах. В этом случае штрабы заполняют гипсом или цементно-песчаным раствором.
Осмотр маяков производят через неделю после их установки, затем не реже одного раза в месяц. При интенсивном трещинообразовании обязателен ежедневный контроль.

Ширина раскрытия трещин в процессе наблюдений измеряется при помощи щелемеров или трещиномеров. В журнале наблюдений фиксируют номер и дату установки маяка, место и схему расположения, первоначальную ширину трещины, изменение со временем длины и глубины трещины. В случае деформации маяка рядом с ним устанавливают новый, которому присваивают тот же номер, но с индексом. Маяки, на которых появились трещины, не удаляют до конца наблюдений.
Если в течение 30 суток изменение размеров трещин не будет зафиксировано, их развитие можно считать законченным, маяки можно снять и трещины заделать.

На первом этапе проводят предварительное обследование. Его целью является общая оценка состояния конструкций по внешним признакам и установление необходимости проведения детальных обследований. Решаются следующие задачи:

Деформации грунтовых оснований, дефекты и повреждения фундаментов сказываются на техническом состоянии всех строительных конструкций. Учитывая, что основания и фундаменты скрыты грунтом, основными косвенными признаками их неблагополучного технического состояния и одновременно поводом для проведения обследования здания являются

В процессе эксплуатации зданий и сооружении кровельные покрытия и крыши подвергаются физическому износу и другим внешним воздействиям, в них появляются различные неисправности и дефекты. Дефекты ухудшают эксплуатационные качества не только кровельных покрытий и крыши, но и здания в целом, существенно сокращая их нормативные сроки службы.

Состояние закладных деталей и связей определяют, как правило, выборочным вскрытием конструктивных узлов, находящихся под нагрузкой и в наиболее неблагоприятных условиях эксплуатации. Как правило, выборочное обследование жилых зданий предусматривают через 10—12 лет после сдачи их в эксплуатацию. Это относится в первую очередь к жилым домам

Инструменты для наблюдения (мониторинга) за трещинами / швами / стыками в строительных конструкциях — маяки и щелемеры

Сначала приведем цитаты из нормативных документов, где даются определения маяков и щелемеров. Первый документ — это обновленный ГОСТ, требования которого распространяются на наблюдение за деформациями оснований зданий и сооружений.

ГОСТ 24846-2012 Грунты. Методы измерения деформаций оснований зданий и сооружений:

3 Термины и определения

3.34 маяк, щелемер: Приспособление для наблюдения за развитием трещин: гипсовая или алебастровая плитка, прикрепляемая к обоим краям трещины на стене; две стеклянные или плексигласовые пластинки, имеющие риски для измерения величины раскрытия трещины и др.

10 Наблюдение за трещинами

10.1 Систематическое наблюдение за развитием трещин следует проводить при появлении их в несущих конструкциях зданий и сооружений с тем, чтобы выяснить характер деформаций и степень опасности их для дальнейшей эксплуатации объекта.

10.2 При наблюдениях за развитием трещины по длине ее концы следует периодически фиксировать поперечными штрихами, нанесенными краской, рядом с которыми проставляют дату осмотра.

10.3 При наблюдениях за раскрытием трещин по ширине следует использовать измерительные или фиксирующие устройства, прикрепляемые к обеим сторонам трещины: маяки, щелемеры, рядом с которыми проставляют их номера и дату установки.

10.4 При ширине трещины более 1 мм необходимо измерять ее глубину.

Приложение А

(обязательное)

А.1 В программе мониторинга деформации оснований фундаментов зданий и сооружений должны быть освещены:

— для эксплуатируемых зданий (сооружений) — период эксплуатации, результаты осмотра объекта, наличие трещин и места закладки маяков (щелемеров);

Второй документ — это новый СТО, используемый на объектах Росатома.

СТО СРО-С 60542960 00043-2015 «Геодезический мониторинг зданий и сооружений в период строительства и эксплуатации»

3 Термины и определения


3.21 маяк: Сигнальное устройство, устанавливаемое на трещине/шве/стыке для того, чтобы изменение параметров трещины (раскрытие, закрытие, сдвиг, удлинение и т.п.) можно было определить визуально — без применения дополнительных инструментов и приспособлений.
3.22 маяк-щелемер: Устройство для наблюдений (мониторинга) за трещинами/швами/стыками, совмещающее в себе сигнальную функцию для визуального выявления факта изменения параметров трещин/швов/стыков с функцией измерения величины этих изменений.

3.50 щелемер: Устройство применяемое для выполнения, при мониторинге состояния конструкций, измерений величин изменения параметров трещин/швов/стыков.

Маяк ЗИ-2.2 по классификации СТО СРО-С 60542960 00043-2015 является маяком-щелемером

Маяк для наблюдений или щелемер — это специальные приспособления или приборы, предназначенные для наблюдения за изменениями состояния дефектов и повреждений в строительных конструкциях зданий и сооружений. При наблюдениях за трещинами, используются либо для выявления факта изменения ширины раскрытия трещины, либо для определения величины и направления (открытие/закрытие трещины) изменения ширины раскрытия трещины. Также в некоторых моделях маяков может быть предусмотрена возможность наблюдение за сдвигом вдоль трещины или из плоскости наблюдаемых строительных конструкций.

Маяк для измерений по двум осям

Для наблюдения за трещинами маяки устанавливаются непосредственно в месте прохождения трещины на срок, необходимый для проведения наблюдений. Для контроля за деформациями конструкций показания установленных маяков должны периодически сниматься и фиксироваться в журнале наблюдений. Процесс постоянных наблюдений за конструкциями называется мониторинг. Конкретные сроки мониторинга устанавливаются в зависимости от конструктивных особенностей здания, целей наблюдения, места расположения и других параметров трещины. В подавляющем большинстве случаев маяк на трещине должен находится вплоть до полного устранения причин возникновения трещины и завершения ремонтных работ по восстановлению/усилению поврежденных трещиной конструкций. Иногда, маяки могут оставаться на конструкциях и после завершения работы, для контроля эффективности проведенных ремонтных работ. Также при помощи маяков могут наблюдаться изменения положения строительных конструкций зданий и сооружений в течение всего срока их эксплуатации с целью контроля технического состояния.

Виды и конструкции маяков

Гипсовый маяк

Самые простые маяки представляют собой полоску из гипса, нанесенного на конструкцию в месте прохождения трещины. Такой маяк служит для выявления факта изменения ширины раскрытия трещины и не может помочь в определении количественных величин этих изменений. Гипсовые и цементные маяки имеют ряд требований и ограничений по использованию. о чем необходимо знать при их установке. Маяки из стекла могут быть выполнены аналогично гипсовым — полоска стекла поперек трещины, либо предусматривать возможность выполнения измерений, в случае, когда устанавливается две пластинки стекла по обеим сторонам трещины. Такие маяки наиболее распространены из-за своей низкой цены и простоты установки. Однако, использование их малоэффективно из-за низкой точности и других проблем, связанных с конструкцией этих маяков. Дополнительную информацию о стеклянных и других видах маяков можно посмотреть в статье, описывающей методы наблюдения за деформациями строительных конструкциях. Следует отметить, что бумага и другие подобные материалы не могут использоваться для наблюдения за трещинами по целому ряду объективных причин, о которых можно прочитать в соответствующей статье «Миф о существовании «бумажных маяков«.

Механический маяк Электронное устройство для мониторинга

Также существуют так называемые «механические» маяки. Это приспособления различных конструкций, задачей которых является измерение величины изменения раскрытия трещин. Конструкций маяков этого типа очень много. В основном это какие-либо элементы, установленные по двум сторонам от трещины, со шкалой и указателем, позволяющими видеть изменение величины раскрытия трещины без дополнительных приспособлений. Наиболее точным из механических устройств является маяк, сделанный на основе индикатора часового типа. Расширение функциональности и точности маяков «механического» типа возможно при использовании для измерений современных высокоточных измерительных инструментов, таких как электронные штангенциркули. В конструкции профессиональных маяков для наблюдений всегда предусматриваются специальные реперные точки, по которым ведутся высокоточные измерения.

Электронная система мониторинга

Система мониторинга

Самые современные маяки выполняются на основе электронных компонентов, например тензодатчиков или с использованием оптических технологий. Они так же имеют различную конструкцию и возможности. Кроме непосредственного измерения величины раскрытия трещины, они могут собирать информацию о температурно-влажностных условиях и других параметрах. Возможна комплектация их модулями удаленной передачи информации для мониторинга состояния конструкций в реальном времени. Проблемы их использования в основном связаны с высокой ценой и трудностями предотвращения несанкционированного доступа к ним со стороны посторонних лиц. Некоторые способы защиты маяков от вандалов предложены в статье на нашем сайте.

Главным, но не единственным свидетельством контроля деформаций здания являются маяки, установленные на трещины. В этой части статьи мы рассмотрим разные способы мониторинга конструкций. Если на серьезной трещине отсутствует маяк или другие свидетельства наблюдений за трещинами, то это может говорить об отсутствии контроля за развитием деформаций. Используемые специалистами инструменты наблюдений позволяют следить за:

  • изменением ширины раскрытия трещин
  • увеличением протяженности трещин
  • появлением новых повреждений
  • креном, прогибами и отклонением от проектного положения конструкций
  • величиной осадки различных частей конструкций
  • и т.п.

Все это делается как для обеспечения безопасности, так и для принятия правильных решений относительно ремонта и восстановления. Важно получить точные и достоверные сведения максимально быстро и в достаточном объеме. Поэтому преимущественно следует использовать точные наблюдения, а контролю подлежит каждая трещина в деформирующемся здании. Тип установленного на трещину маяка и свидетельства использования других способов контроля за деформациями здания могут многое сказать о том, насколько серьезно специалисты подошли к мониторингу конструкций. Об особенностях и правильном использовании разных способов наблюдения за деформациями мы и расскажем в этой части статьи.

Гипсовые маяки

Гипсовый маяк на трещине в стене исторического здания

Гипсовые маяки не могут обеспечить достаточную точность. В основном их применение оправдано для небольших трещин с целью контроля самого факта увеличения ширины раскрытия и не предполагает проведение измерений. Для фасадов зданий применение гипсовых маяков нецелесообразно, особенно, если трещины имеют значительную протяженность. Конструкции ограждающих стен здания нагреваются и охлаждаются под действием суточных и сезонных колебаний температуры наружного воздуха. Температурные расширения протяженных конструкций (таких как стены) могут достигать значительных значений.

Такую гипсовую кляксу нельзя считать маяком, но судя по надписям «наблюдение» ведется

Концентрация напряжений от таких расширений должна компенсироваться температурными деформационными швами. Протяженные трещины на фасадах зданий работают как температурные швы, изменяя ширину своего раскрытия в зависимости от температуры наружного воздуха. Гипсовый маяк, установленный на такой трещине, в любом случае «сработает» и покажет развитие деформаций, хотя эти деформации могут быть связаны только с колебанием температуры. Дополнительной сложностью при использовании гипсовых маяков является то, что они должны отвечать определенным требованиям по толщине и размерам. Если маяк очень тонкий, то он трескается даже от легких колебаний конструкций. Далеко не каждая нашлепка или клякса из гипса может считаться полноценным маяком, позволяющим вести наблюдение за конструкциями.

Маяк из цементно-песчаного раствора на трещине мостового сооружения (1930 год)

Еще одним недостатком гипсовых маяков является слабая стойкость гипса к воздействию влаги. В местах, где такое воздействие может быть существенным, для изготовления маяков лучше использовать цементно-песчаный раствор. Долговечность маяков, выполненных таким образом и с соблюдением требований по подготовке поверхности, может составлять десятилетия. На иллюстрации представлена фотография сохранившихся до настоящего времени в Калининградской области растворных маяков на мостовом сооружении.

Зная все эти особенности применения гипсовых маяков вполне можно оценить знания и опыт специалиста его установившего.

Бумажные «маяки»

Бумажная полоска на трещине не может считаться полноценным маяком

В специализированной профессиональной литературе нет упоминаний о возможности использования бумаги для устройства маяков. Тем не менее, наклеенные поперек трещины бумажные полоски явление распространенное. Мы ранее уже писали по каким объективным причинам нельзя использовать бумажные «маяки» для наблюдения за трещинами. Наличие такого «маяка» на трещине — свидетельство верха непрофессиональности специалистов, обслуживающих здание. Но хуже бывает другое — иногда такие «маяки» ставятся умышленно. Бумажный «маяк» меньше, чем какой-либо другой, реагирует на увеличение ширины раскрытия трещины. И этот факт может быть использован недобросовестными лицами для сокрытия происходящих в здании деформаций.

Наблюдение по закрепленным точкам

Наблюдение за трещиной по закрепленным точкам

Ранее мы уже описывали порядок организации наблюдений за трещиной по закрепленным точкам. Такие точечные маяки трудно заметить и непросто повредить, что может являться хорошей защитой от вандалов. Обычно это 2, 3 или 4 дюбеля, закрепленные по обеим сторонам от трещины. Также, в качестве закрепленных точек, могут использоваться любые другие приспособления малых размеров, например металлические арматурные стержни и т. п. Если возле трещины закреплено только две точки для наблюдений, то специалист измеряет с помощью измерительных инструментов расстояние между ними и, сравнивая с предыдущими показаниями, получает величину изменения ширины раскрытия трещины.

Для вычислений достаточно 3 точки. Четвертая используется как резервная и для проверки правильности сделанных измерений

Если же закреплено 3 или 4 точки, то после проведения замеров расстояния между ними, проводятся дополнительные вычисления, которые позволяют получить данные по перемещениям как в горизонтальном, так и в вертикальном направлении в плоскости стены. Для проведения вычислений достаточно три точки, четвертая обычно используется как резервная — на случай утраты одной из закрепленных и для проверки правильности сделанных расчетов. Не рекомендуется использовать для закрепления точек наблюдения протяженные предметы — металлические уголки, пластины и т.п. Это связано с тем, что замеры необходимо производить в одном и том же месте, а устройства имеющие большие размеры позволяют производить замеры в разных местах. Даже отступ от предыдущего места измерений в 1 см может привести к искажению данных о происходящих изменениях, если наблюдения ведутся с высокой точностью. Данный способ достаточно распространен и позволяет, несмотря на некоторые недостатки, качественно выполнять наблюдения.

Стеклянные маяки

В стеклянном маяке очень сложно различать трещины от удара и трещины от деформаций здания. Надежно закрепить его на конструкции также непросто

Стеклянные маяки могут быть двух типов. Если это две полоски стекла, закрепленные по обеим сторонам от трещины (назовем его тип 2), то можно считать это точечным маяком, который мы описывали выше. Он не очень удобен и может снижать качество показаний. Другой тип (назовем его тип 1) — это одна полоска стекла, приклеенная поперек трещины. Такой стеклянный маяк именно приклеивается, а не устанавливается на цементный или гипсовый раствор. Стекло имеет гладкую поверхность, и сила ее сцепления с используемым для установки раствором будет крайне мала. Кроме того, далеко не каждый клей сможет сохранить целостность контакта в условиях уличной установки при воздействии зимой низких температур. Все это следует учитывать при выборе материала для крепления стеклянного маяка. Если же стеклянная пластинка закреплена надежно, то при раскрытии трещины должна сломаться она, а место крепления останется целым. Но результат будет далек от того, что многие себе представляют при установке подобных маяков — обычно в стекле появляются многочисленные трещины.

Правильно сделанный стеклянный маяк. Англия 1976 год.
Иллюстрация из публикации BRE Digest, April 1989
«Simple measuring and monitoring of movement in low-rise buildings»
Construction Research Communications Ltd, PO Box 202, Watford, Herts, WD2 7QG

Нет никакой возможности судить о величине раскрытия трещины по куску раскрошившегося стекла на стене. Причем и сам факт движения трещины нельзя зафиксировать со стопроцентной уверенностью, так как если просто ударить по стеклянному маяку металлическим предметом картина трещин будет аналогичной. Тем не менее, такие маяки используются в профессиональной среде. На примере иллюстрации из дайджеста института BRE (Англия) можно видеть как правильно должен такой маяк устанавливаться на стене. Стеклянные маяки — это один из трех способов наблюдений, которые рекомендует к использованию американское правительственное агентство GSA. В выпущенной этим учреждением инструкции указывается, что стеклянные маяки предназначены для установления факта изменения ширины раскрытия трещины, без возможности количественного определения величины этих изменений. Соответственно, правильно установленный стеклянный маяк может использоваться для определения движения в конструкциях. Но как и гипсовый маяк, он может реагировать на температурные деформации конструкций, если установлен с уличной стороны. Кроме того, тип 1 не позволяет проводить измерения, а тип 2 подходит для измерений хуже, чем обычные точечные и другие специализированные маяки для точных наблюдений. Представляется, что стеклянные маяки — это некоторый анахронизм, который может использоваться при отсутствии альтернатив. Они малоэффективны и их применение может быть оправдано например, какими-либо дизайнерскими замыслами.

Пластинчатые маяки (самодельные)

Самодельный пластинчатый маяк из двух пластин кровельного железа

Пластинчатые маяки наиболее удобны для визуальных наблюдений и при желании могут быть изготовлены из подручных средств. Примером может быть наиболее распространенная конструкция из двух пластинок оцинкованного кровельного железа. Пластинки устанавливаются друг над другом по обе стороны от трещины. Штрихом отмечается положение пластин по отношению друг к другу в момент установки. Расстояние от штриха до нового положения пластины и будет величиной изменения ширины раскрытия трещины. Однако, при всей простоте использования такой маяк не лишен недостатков. Пожалуй, главными являются отсутствие возможности точных наблюдений и трудоемкость изготовления. Распространенность в России таких маяков обусловлена имеющимися преимуществами в визуальном контроле и отсутствием (до недавнего времени) более качественных и удобных альтернатив.

Пластинчатые маяки (профессиональные)

Маяк ЗИ-3д предназначен для наблюдений (точных измерений) за перемещением конструкций по трем осям

Пластинчатые профессиональные маяки выпускаемые промышленно могут отличать как по качеству, так и по имеющимся возможностям. Выбор зарубежных образцов таких маяков достаточно велик, в России же пока выпускаются только маяки серии ЗИ. Главные преимущества профессиональных пластинчатых маяков заключаются в:

  • удобстве и наглядности визуальных наблюдений
  • возможности ведения визуальных наблюдений за перемещением конструкций по двум осям (а не только за шириной раскрытия трещины)
  • возможности выполнения инструментальных точных измерений (не все модели маяков)
  • возможности простой установки на конструкции с использованием различных способов крепления (включая позволяющие повторное использование маяка)
  • наличии дополнительных функций и возможностей, предусмотренных производителем
  • наличии методической базы, инструкций, описаний, поддержки производителя

Производители таких маяков постоянно разрабатывают новые модели и совершенствуют существующие, делая их более удобными, точными и удобными в применении. Разработаны модели маяков для разных задач и условий применения. Например, модель маяка ЗИ-3д в отличии от прочих профессиональных пластинчатых маяков (включая и зарубежные образцы) имеет возможность точных наблюдений по трем осям. А модель Avongard Corner Tell-Tale для углов зданий может легко устанавливаться в любом месте, независимо от величины угла. При таком разнообразии, единственной проблемой профессиональных маяков становится проблема выбора наиболее подходящей модели маяка для конкретных условий.

Электронные средства наблюдений

Электронный маяк в виде автономного регистратора для наблюдения за трещинами и температурными параметрами

Датчики для наблюдений за трещинами могут объединяться в систему, а могут использоваться локально. Наиболее удобным средством наблюдения за единичными трещинами является автономный датчик перемещения (тензодатчик), объединенный с датчиками температуры и влажности, имеющий возможность дистанционной отправки данных в режиме реального времени. Электронные средства для наблюдения за трещинами пока не получили широкого распространения в практике эксплуатации зданий и вряд ли их удастся встретить в доступных местах на фасадах зданий. Но в перспективе они займут значительное место в процессах наблюдения за деформациями зданий, особенно там, где требуется постоянный оперативный контроль, с высокими требованиями к точности получаемых данных. Например, контроль предаварийных ситуаций и постоянный мониторинг за технически сложными сооружениями.

Графические способы наблюдений

Вдоль всех трещин маркером проводятся линии

Графические способы наблюдения могут хорошо дополнять наблюдения при помощи маяков, а могут использоваться независимо. Приведем четыре наиболее полезных способа:

  1. В отечественной технической литературе рекомендуется отмечать место окончания трещины штрихом на стене и подписывать дату нанесения отметки. Эта достаточно полезная мера, которая позволяет следить за распространением трещины. При небольшой протяженности трещины и малой ширине раскрытия, либо при ее поверхностном развитии, этой отметки может быть достаточно для ведения наблюдений и установка маяка не потребуется. Наблюдение за трещиной комбинированным способом — три точки и линии
  2. Иногда место замеров ширины раскрытия трещины просто отмечают штрихом и ставят номер точки наблюдений. При ровных краях трещины, позволяющих производить замеры, такой способ может быть допустим. В других случаях он не рекомендуется. При таком способе всегда остается вероятность повреждения края трещины в месте выполнения измерений, что при последующих замерах трудно выявить.
  3. Есть более продвинутый вариант нанесения штрихов на места замеров. Для выполнения наблюдений проводят две взаимно перпендикулярные линии (при помощи угольника), пересекающие трещину. Дальнейшие замеры смещения линий позволяют отследить изменения как по вертикали, так и по горизонтали. Также можно располагать линии горизонтально, либо под углом 45 к горизонтали
    Иллюстрация из публикации BRE Digest, April 1989
    «Simple measuring and monitoring of movement in low-rise buildings»
    Construction Research Communications Ltd, PO Box 202, Watford, Herts, WD2 7QG

Кроме того, все маяки и другие приспособления для наблюдения деформаций должны нумероваться для их легкой идентификации при описании в технической документации. Проставляется дата установки маяка и наносится дополнительная информация об организации, которая ведет наблюдение, например, контактные телефоны для оперативной связи. Полезно размещать таблички и другие информационные материалы, которые предупреждают о необходимости сохранения маяков и информируют о факте ведения наблюдений за зданием.

Другие методы контроля деформаций

При контроле деформаций, связанных с грунтами основания, наиболее эффективными являются методы геодезических наблюдений. Требования к таким наблюдениям описаны в ГОСТ 24846-81 Грунты. Методы измерения деформаций оснований зданий и сооружений.

Осадочная марка 1932 год

Наличие на здании установленных геодезических марок может свидетельствовать о том, что наблюдения велись. Правда, по наличию марок на здании нельзя определить ведется ли наблюдение в настоящее время и возможно ли использование имеющихся марок для оценки происходящих изменений. Данные по выполняемым при помощи осадочных марок измерениям фиксируются в соответствующей документации. В случае утраты этой документации, сравнить текущее высотное положение зафиксированных на здании отметок с их предыдущим значением не представляется возможным.

Осадочная марка 2012 год (упрощенная конструкция)

Существуют методы наблюдений при помощи фотограмметрии, которые позволяют следить за происходящими изменениями положения конструкций здания при помощи фотосъемки. Обычное фотографирование трещин в некоторых случаях также может помочь в оценке происходящих изменений. Но для получения количественных значений требуются специальные инструменты и методики.

Осадочная марка 2012 год (стандартная конструкция)

Мы описали основные способы ведения наблюдений за деформациями зданий, а также ключевые моменты их использования, позволяющие оценить качество работы специалистов по эксплуатации. В заключении хотелось бы отметить, что выбор способа наблюдений в каждом конкретном случае всегда остается на усмотрении специалистов, выполняющих мониторинг. И зависит от целей, особенностей объекта, имеющихся ресурсов, условий выполнения работ и других факторов. Главное — получить необходимый результат в виде качественно выполненного ремонта и в конечном итоге безопасной эксплуатации здания.

Проф. ЗИ

Трещины в стене — это дефекты строительной конструкции, проявляющиеся в виде расколов или разрывов стройматериала под воздействием весовой нагрузки. В результате не только портится внешний вид постройки, но также может значительно снизиться несущая способность конструкции. В результате возникает риск частичного или даже полного разрушения постройки, что сделает невозможным её эксплуатацию.

наблюдение за трещинами

Чтобы предотвратить подобные последствия, в ходе обследования зданий и сооружений применяются методы изучения трещин. Фиксируется их наличие, измеряется скорость расширения, ширина, глубина, прогнозируется динамика развития, а также выявляется причина появления. Делается всё это при помощи специальных инструментов и приспособлений. Основная цель наблюдения — сбор оперативной информации о действительном состоянии и изменении несущих и ответственных конструкций, и принятие необходимых мер по устранению дефектов.

Причины появления трещин

Среди многочисленных причин, из-за которых образуются трещины в стенах, основными и наиболее часто встречающимися являются следующие факторы:

  • отсутствие геодезических изысканий перед строительством;
  • грубые нарушения технологии в процессе строительства;
  • слабый фундамент;
  • неправильная эксплуатация;
  • просчёты в проектной документации;
  • неравномерное распределение нагрузок;
  • механические повреждения;
  • несанкционированная реконструкция;
  • несвоевременный ремонт;
  • пренебрежение рекомендациями, которые даются по результатам обследования зданий;
  • стихийные бедствия.

Также трещины могут появляться по причине естественного износа или исчерпания заложенного в постройку ресурса.

Группы трещин

Все трещины условно делятся по степени опасности для конструкций, в которых они возникли, на три группы:

  1. Неопасные — к таковым относятся дефекты, которые отрицательно влияют только на внешний вид постройки, однако, на её прочности и ресурсе никак не сказываются.
  2. Опасные — к этой группе относятся интенсивно развивающиеся трещины, из-за которых значительно ослабляется несущая способность конструкции, появляется риск частичного или полного разрушения постройки.
  3. Промежуточные — группа трещин, из-за которых портится внешний вид постройки, а также частично снижается расчётная несущая способность ответственных конструкций, однако, не грозящие последствиями в виде частичного или полного разрушения.

Степень опасности определяется в ходе обследования зданий на этапе наблюдения за трещинами. В зависимости от характера наблюдение может продолжаться в течение нескольких дней или недель, что даёт возможность установить динамику и спрогнозировать возможные последствия.

Нормативная документация

Информационной и регламентной базой для специалистов при наблюдениях за трещинами в кирпичных стенах и бетоне служит следующая нормативная документация:

  • СП 13-102-2003 «Правила обследования несущих строительных конструкций зданий и сооружений».
  • ГОСТ 24846-2012. Грунты. Методы измерения деформаций оснований зданий и сооружений.
  • ГОСТ 26433.2-94 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений параметров зданий и сооружений.

В качестве источников дополнительной справочной информации также может использоваться «Пособие по оценке физического износа жилых и общественных зданий» и последняя редакция внутреннего стандарта СТО СРО-С 60542960 00043-2015 «Геодезический мониторинг зданий и сооружений в период строительства и эксплуатации» (в котором более точно и детально проработаны нюансы наблюдений, а также поправлены недостатки официальных государственных стандартов и правил).

Методы и средства наблюдения

Первоначально трещины выявляются методом визуального осмотра конструкции. Если это необходимо для получения более точных данных, в местах образования дефектов частично удаляется декоративная отделка. Далее, как правило, осуществляется наблюдение с помощью маяков.

Цели наблюдения — установить:

  • положение трещины;
  • направленность;
  • длину;
  • ширину;
  • глубину;
  • динамику развития;
  • причину образования.

Для фиксации полученные данные фиксируются в журнал наблюдения за трещинами в стенах.

Для измерения физических параметров трещин используются:

  • Щелемеры — приспособления, позволяющие измерить текущее состояние и динамику развития трещины.
  • Маяки — сигнальные или измерительные — наиболее распространённый тип инструмента для наблюдения за трещинами, о которых детальнее рассказано дальше.
  • Микроскопы — применяются для точного измерения раскрытия трещины.
  • Линейки, рулетки, штангенциркули — для линейных измерений текущих размеров трещины.
  • Иглы — для определения глубины трещины.
  • Проволочные щупы — для определения глубины.
  • Ультразвуковое оборудование — применяется для бесконтактного определения параметров трещин (глубины).

Выбор методики обследования трещин и инструментальной базы осуществляется в зависимости от конкретных условий, в которых будут проводиться измерения, а также с учётом запрашиваемой точности, материала и характера повреждений. Экономическая целесообразность использования той или иной методики или инструментальной базы и возможности заказчика также учитывается перед началом наблюдений.

Виды маяков

Наиболее распространёнными приспособлениями для рассматриваемого вида наблюдений являются маяки. Маяк — это устройство или приспособление, которое позволяет установить факт расширения трещины, а также измерить динамику (если позволяет тип маяка). Некоторые типы маяков позволяют пронаблюдать за изменением дефекта вдоль его длины или относительно основной плоскости.

Виды маяков для наблюдения за трещинами:

  1. Для однократного применения — цементные или гипсовые.
  2. Для систематического наблюдения — пластинчатые, точечные, со стрелочными указателями, электронные.

Маяки первого типа позволяют лишь установить факт расширения трещины, либо то, что повреждение стабильное и не развивается. Второй вид инструментов даёт возможность точно измерять динамику развития дефекта, и даже спрогнозировать процесс на будущее. Точность зависит от конкретной разновидности маяка, а также от соблюдения правил использования инструмента.

Основные разновидности маяков:

  • Гипсовые — самые простые и дешёвые в использовании, однако, позволяют выявить лишь факт расширения трещины, тогда как точно проследить за динамикой с их помощью нельзя.
  • Пластинчатые — отличаются простотой установки и лишены многих недостатков, которыми обладают гипсовые и цементные маяки. Имеют измерительную шкалу для фиксации изменения ширины. В зависимости от модели позволяют измерять в одной или нескольких направлениях одновременно.
  • Точечные — позволяют зафиксировать на поверхности базовые точки, измеряя расстояние между которыми, можно определять динамику развития трещин. Не требуют подготовки поверхности, не зависят от влажности и перепадов температуры, малозаметные и недорогие.
  • Механические — зачастую имеют шкалу часового типа со стрелкой, что позволяет вести наблюдения без применения вспомогательных инструментов. Считаются наиболее наглядными инструментами в этой области, однако часто страдают от хулиганов и вандалов при установке на малой высоте.

маяки для наблюдения за трещинами

маяк для наблюдения за трещинами

маяки для наблюдения за трещинами

Рис. 1. Конструкции маяков и щелемеров: а — пластинчатый маяк; б — щелемер конструкции ЛенГИДЕПА;

в — маяк конструкции Белякова:

1 — трещина; 2 — гипсовые плитки; 3 — пластинки; 4 — скоба; 5 — измерительная шкала; 6 — запеканка

конструкция щелемера

конструкция щелемера

Рис. 2. Конструкции щелемеров: а — с мессурой; б — для длительных наблюдений;

1 — трещина; 2 — мессура; 3 — марка; 4 — фланец; 5 — анкерная скоба

Щелемер для измерения широких трещин и швов

Рис. 3. Щелемер для измерения широких трещин и швов

Стрелочный рычажный прибор для определения интенсивности

Рис. 4. Стрелочный рычажный прибор для определения интенсивности

Помимо маяков для наблюдений используются электронные системы, состоящие из датчиков, устанавливаемых на трещинах, и приёмного устройства, постоянно принимающего сигналы с датчиков. Есть модели с компенсацией температурных изменений и другими дополнительными функциями, повышающими точность измерений.

Правила установки маяков

При использовании маяков следует придерживаться таких правил:

  • Гипсовые маяки устанавливаются на одну трещину в количестве не менее двух штук, либо на удалении друг от друга в один метр.
  • Гипсовые маяки нельзя использовать как на улице, так и в помещениях с высокой влажностью или резкими перепадами температуры.
  • Перед установкой маяка исследуемую поверхность необходимо надлежащим образом подготовить, чтобы обеспечить надёжность крепления инструмента или приспособления.
  • Монтаж маяков осуществляется перпендикулярно направлению, в котором развивается трещина.
  • В процессе наблюдения необходимо контролировать, не отошёл ли маяк от поверхности и, в случае отрыва устанавливать новый.
  • Если гипсовый или цементный маяк разорвался, то следует устанавливать новый, так как это свидетельствует об активном развитии трещины.
  • Габаритные размеры гипсовых маяков могут варьироваться в соотношении ширины к длине, как 1:3 до 1:5.
  • Толщина маяка не должна превышать 15 мм, а в месте образования трещины иметь как можно меньшую толщину (6 мм).

Для механических маяков или электронных систем наблюдения за трещинами правила использования приводятся в руководствах по эксплуатации, прилагаемых к инструментам производителями.

Заключение

Наблюдение за трещинами является важнейшим этапом общего обследования зданий и конструкций. Цель мероприятия — выявить трещины, определить их параметры, динамику развития и причину, а также составить рекомендации относительно дальнейшей эксплуатации конструкции. Для наблюдения за трещинами в стенах используются измерительные инструменты и маяки — гипсовые, пластинчатые, механические и электронные.

Комплексное техническое обследование зданий помогает объективно оценить состояние строительных конструкций и обнаружить все дефекты, в том числе скрытые повреждения – трещины, прогибы и отклонения элементов от вертикальной или горизонтальной оси. Для идентификации проблемных мест специалисты проводят комплекс измерительных и оценочных мероприятий. Результатом работы становится экспертный отчет.

Трещины – одни из наиболее опасных видов дефектов. Если своевременно не предпринять меры по устранению повреждения, произойдет перераспределение нагрузки на отдельные строительные конструкции. Часть сооружения или все здание может обрушиться.

Трещины в здании: причины появления повреждений

Во время комплексного обследования здания необходимо уделять особое внимание наиболее уязвимым участкам объекта. Например, зонам промерзания и увлажнения фундамента, точкам прохождения водостоков в крыше, узлам опирания балок в колоннах.

Обследование

Трещины в здании – распространенный тип дефектов, к появлению которых приводят следующие причины:

  • Отсутствие корректного технического обслуживания, небрежная эксплуатация здания.
  • Ошибки, допущенные на стадии проектирования, использование неподходящих технологических и конструктивных решений.
  • Влияние внешних (перепады влажности и температуры, физические и механические воздействия) и внутренних факторов, осадка грунта.
  • Нарушение технологии возведения здания, применение некачественных строительных материалов.
  • Отсутствие укрепляющих конструкций в точках расположения грунта с малой несущей способностью.
  • Незаконные перепланировки.
  • Установка тяжеловесного оборудования, которое создает нагрузку большую, чем предусмотрено проектно-технической документацией.

Специалистам не всегда удается быстро выявить настоящую причину появления трещин. Порой для этого необходимо провести дополнительные исследования и анализ сведений, собрать детальную информацию об особенностях эксплуатации и строительства объекта: в какое время года возводили здание, применялось ли ограждение шпунтом старого фундамента, на какой глубине расположен котлован.

Во время эксплуатации на строительную конструкцию оказывают негативное влияние множество внешних факторов. Перечислим конкретные причины, которые чаще всего становятся причиной появления дефектов:

  • деформация из-за отсутствия или нарушения технологии создания температурных швов, некорректного прогноза влияния климата на техническое состояние материала;
  • неравномерная осадка грунтов основания;
  • влияние внешних динамических, механических или физических факторов, сила которых превышает предельно допустимое напряжение обследуемой конструкции;
  • перегрузка конструкции, которая становится причиной перенапряжения сечений и элементов, серьезных деформаций;
  • сосредоточение нагрузки на локальном участке, например опорная балка давит на кирпичную пилястру без распределительной опорной подушки.

Для некоторых строительных материалов можно обозначить характерные, наиболее распространенные причины образования трещин. Например, в металлических элементах дефекты появляются из-за явлений усталостного характера. Типичный пример – трещины в подкрановых балках часто возникают из-за регулярного негативного воздействия переменных динамических нагрузок.

Характерные причины появления трещин в строительных конструкциях из камня и железобетона:

  • ошибки, допущенные на стадии строительства или проектирования: использование материалов недостаточной прочности, неправильное армирование элементов, некачественное соединение деталей (неправильное выполнение сварных швов, установка заклепок и болтов);
  • динамические факторы, колебания, вибрация, взрывы, удары от транспортных средств и технологического оборудования;
  • повышенные показатели влажности бетона;
  • перенапряжение на локальных участках;
  • коррозия арматуры;
  • многократные намокания и промерзания строительных конструктивных элементов;
  • расклинивающее действие льда в структуре материала;
  • нарушение сцепления арматуры с бетоном или с другим композиционным материалом;
  • пожары, резкие температурные перепады, воздействие воды на раскаленные строительные конструкции;
  • влияние других труднопрогнозируемых факторов, например биологическое повреждение при попадании в щели плесени, семян кустарников и трав.

Важно отметить, что дефекты в железобетонных элементах могут появиться не только на стадии эксплуатации. Причиной их образования часто становится нарушение технологии изготовления, правил хранения, установки и транспортировки. Примеры трещин, которые появились в доэксплуатационной стадии:

  • трещины из-за усадки материала;
  • дефекты из-за быстрого высыхания бетона;
  • трещины из-за набухания или сокращения объема бетона;
  • дефекты из-за неравномерного охлаждения материала;
  • повреждения технологического характера.

Отдельно стоит сказать о трещинах, которые появляются в строительных конструкциях здания рядом с недавно возведенным новым объектом. Повреждения возникают в стенах, лестничных клетках, перекрытиях из-за неудачных конструктивных, архитектурно-планировочных и организационно-технологических решений. Величина деформации обычно пропорциональна этажности нового здания. В этом случае можно выделить четыре причины появления трещин:

  • новые дополнительные нагрузки стали причиной неравномерной осадки грунта;
  • изменились гидрогеологические и инженерно-геологические условия;
  • выбрана неудачная технология земляных работ;
  • снизилась несущая способность свайного фундамента из-за сползания и оголения строительных элементов.

Экспертиза поможет с высокой долей вероятности определить причину появления трещин. Если повреждения вызваны погодными условиями, небрежной эксплуатацией, иными внешними и внутренними факторами, специалисты помогут разработать оптимальную стратегию решения проблемы и предотвратить ее повторное возникновение.

Виды трещин в зданиях

Существуют разные классификации трещин: в зависимости от причины возникновения, ширины раскрытия и глубины, места расположения. Но наибольшее распространение получила другая система разделения, которую рассмотрим ниже.

Обследование швов

Виды трещин в зданиях в зависимости от опасности, которую они представляют для ограждающих и несущих конструктивных элементов:

  1. Неопасные трещины. Основное последствие их появления сводится к ухудшению внешнего вида лицевой поверхности стены.
  2. Опасные трещины, которые грозят значительным ухудшением прочностных характеристик. Они вызывают интенсивное ослабление сечений, частичное или полное разрушение.
  3. Трещины, которые негативно отражаются на прочности и надежности здания, эксплуатационных характеристиках, но не способны вызвать разрушение конструкции.

Наименьшие расходы потребуются на устранение трещин первого типа. Чтобы оценить целесообразность ремонтных мероприятий и разработать оптимальный план работ при появлении опасных повреждений, необходимо организовать техническое обследование. Третий тип трещин требует особо внимательного контроля. Чем раньше будут выявлены дефекты и предприняты адекватные меры по их ликвидации, тем меньше негативных последствий будет создано для несущих и ограждающих конструкций.

Мониторинг трещин здания

При появлении повреждений в первую очередь необходимо выяснить причины их появления и разработать оптимальные конструктивные решения проблемы. Мониторинг трещин – ответственный этап комплексной экспертизы здания. На данной стадии важно зафиксировать все видимые и скрытые дефекты, выявить причины их появления, оценить динамику развития. Источник проблемы часто напрямую влияет на последствия, помогает спрогнозировать влияние трещин на основные и вспомогательные конструктивные элементы здания.

Геометрические характеристики трещины измеряют разными способами:

  1. Микроскоп, лупу или другие приборы с погрешностью измерений не более 0,1 мм – основные инструменты для изучения ширины дефектов.
  2. Проволочные щупы и иглы – распространенный метод определения глубины трещин. Альтернативный вариант – использование ультразвукового метода и современного оборудования. Часто применяют приборы УКБ1М или УК-10П.
  3. Во время осмотра маяков для фиксации ширины раскрытия дефекта применяют ручные измерительные инструменты – трещиномер или щелемер.

Установка маяков – базовая процедура, позволяющая получить подробную информацию о состоянии трещин. Для их изготовления используют стекло, цемент и гипс. Маяк – это одна или две совмещенных пластинки. Их накладывают поперек дефекта. На развитие дефекта указывает разрыв маяка или смещение составляющих пластинчатых элементов. Если через 30 суток после наблюдения изменение размера трещины не зафиксировано, маяки снимают, а развитие дефекта считают законченным.

Наблюдение продолжается длительное время. Первый контрольный осмотр организуют через неделю после установки, затем мероприятие проводят раз в месяц. Периодичность может меняться. Например, при интенсивном развитии повреждения осмотр проводят каждый день. Маяки помогают определить, насколько быстро увеличивается размер трещины, в каком направлении она развивается.

Правило установки маяков:

  • каменная стена должна быть ровная;
  • облицовочный слой перед размещением маяков снимают;
  • если маяки необходимо установить на горизонтальной и наклонной поверхности, предварительно создают штрабы;
  • для каждой трещины следует предусмотреть минимум два маяка;
  • один маяк размещают в конце трещины, второй – в точке максимального раскрытия;
  • на схеме стены фиксируют участок расположения трещин и точки размещения всех маяков;
  • каждый маяк идентифицируют с помощью номера и фиксируют дату его установки, аналогичные сведения отображают на чертежах.

Периодически специалисты осматривают маяки, а результаты заносят в журнал. После каждого обхода необходимо зафиксировать ширину раскрытия и длину трещины. Результатом осмотра становится акт с указанием следующих данных:

  1. Дата наблюдения.
  2. ФИО и должность специалиста, который его проводил осмотр.
  3. Сведения о маяках: идентификационный номер и дата размещения.
  4. Изменение состояния маяка.
  5. Информация об увеличении трещины.
  6. Сведения о замене старых разрушившихся маяков на новые.
  7. Информация о новых обнаруженных трещинах.

ДЕПАРТАМЕНТ

Сведения, полученные в ходе наблюдения за трещинами, позволяют спрогнозировать последствия появления повреждений:

  • вероятность обрушения строительной конструкции и всего здания;
  • влияние трещины на другие элемента здания, эксплуатационные характеристики отдельной конструкции и всего объекта;
  • другие негативные последствия появления трещины: снижение энергоэффективности здания, проникновение и скопление влаги, разрушение материала из-за изменения влажности, повышенная нагрузка на фундамент и основания.

Главная цель обследования трещин в здании – разработка оптимального плана ремонтных мероприятий. Кроме того, специалисты должны определить причину возникновения дефектов и предотвратить повторение ситуации.

Трещины кирпичных стен зданий

Если вам необходимо выполнить комплексную экспертизу объекта или обследование трещины кирпичных стен зданий, обратитесь за помощью в компанию «Департамент». Специалисты с профильным образованием и опытом используют современное оборудование и передовые методы. Они оперативно идентифицируют все видимые и скрытые дефекты, определят причину их появления и помогут разработать мероприятия по устранению повреждений. Собственная аттестованная лаборатория позволяет проводить более 190 видов испытаний в области строительства.

Если вы оформляете документы для прохождения экспертизы и согласования в контрольных инстанциях, мы гарантируем помощь в получении положительного заключения. При необходимости бесплатно внесем изменения в технический отчет.

Стоимость строительной экспертизы зависит от объема работ и рассчитывается индивидуально. Оставьте заявку на сайте компании «Департамент», и мы отправим вам коммерческое предложение в течение 2 часов. Для точной оценки стоимости мы организуем бесплатный выезд специалиста на объект.

Читайте также: