На сроки схватывания цементного камня влияет

Обновлено: 22.04.2024

По стандарту начало схватывания цемента должно наступать не ранее 45 мин, а конец — не позднее 12 ч от начала затворения. Как слишком быстрое, так и чересчур медленное схватывание существенный недостаток цемента. Если цемент слишком быстро схватывается, то он превращается в камневидное тело прежде чем его успевают употребить в дело. При работе с такими цементами необходимо быстро их транспортировать и укладывать после затворения водой, что очень трудно. Использование же медленно схватывающихся цементов часто сильно замедляет темпы строительства.

Скорость схватывания цемента зависит от ряда факторов. Большое значение имеет его минералогический состав, в особенности содержание трехкальциевого алюмината, который ускоряет схватывание. Степень обжига цементного клинкера также влияет на скорость схватывания. Сильно обожженный цемент схватывается медленнее, а слабо обожженный — быстрее, чем цемент нормального обжига. С увеличением тонкости помола ускоряется схватывание цемента вследствие большей удельной поверхности цементного порошка. Повышенное количество воды при затворении цемента замедляет его схватывание, а уменьшенное — ускоряет. С повышением температуры окружающей среды процесс схватывания ускоряется, а с понижением — замедляется. Магазинирование клинкера и силосование цемента замедляют схватывание, так как при хранении цемент реагирует с влагой и углекислой воздуха, в результате чего зерна цемента покрываются оболочкой, состоящей из углекислого кальция и других новообразований, а это затрудняет взаимодействие цемента с водой при затворении.

Для замедления сроков схватывания цемента к клинкеру при помоле добавляют гипс, однако количество его должно быть таким, чтобы содержание SО3 в цементе не превышало 3,5%, что в пересчете на CaS04*2Н2О составляет -7,53%, а на CaS04*О,5Н2О — 6,34%. Следует всегда учитывать, что сам клинкер содержит некоторое количество SО3. Величина оптимальной дозировки гипса зависит от минералогического состава клинкера, тонкости помола и некоторых других факторов и в ряде случаев приближается к верхнему пределу допускаемого стандартом, а в отдельных случаях, при большом содержании С3А и весьма тонком помоле, может даже превышать его. Объясняется это тем, что гипс добавляют цементу в первую очередь для того, чтобы, вступая во взаимодействие с трехкальциевым алюминатом, образовывать в начальный период твердения (до получения жесткой недеформирующейся структуры твердеющего цементного камня) гидросульфоалюминат, что регулирует (замедляет) сроки схватывания цемента и улучшает ряд его свойств. Наряду с этим следует учитывать, что при твердении цемента, содержащиеся в нем алюмоферриты хотя и медленнее, но также вступают во взаимодействие с гипсом, связывая определенное его количество в комплексные новообразования. Количество гипса, вступающего в реакцию с алюминатами и алюмоферритами кальция, зависит от тонкости помола цемента, температуры его при выходе из мельницы, режима охлаждения и связанного с этим содержания в клинкере стекловидной фазы степени присадки золы и ее состава, а также от ряда других производственных факторов. Поэтому для каждого завода оптимальная дозировка гипса будет иной.

Большой избыток гипса может привести к появлению внутренних напряжений, иногда вплоть до образования трещин вследствие запоздалого появления гидросульфоалюмината кальция в уже затвердевшем цементном камне за счет твердых исходных компонентов. При недостаточном количестве гипса не удается использовать все заложенные в цементе возможности для быстрого твердения; такой цемент чересчур быстро схватывается. Следует отметить, что добавка гипса также благоприятно влияет на процесс твердения содержащихся в цементе силикатов кальция. Поэтому ограничено и минимальное содержание SО3 не менее 1,5%.

Серьезное значение имеет нагревание цемента при помоле, так как вследствие развивающейся при этом температуры гипс в той или иной степени переходит из двуводного в полуводный, т. е. в модификацию, значительно более растворимую в воде, что изменяет условия твердения цемента.

Дозировку добавляемого гипса целесообразно определять исходя из того его количества, которое связывается в первые сроки твердения, когда реакции происходят за счет растворенных в воде компонентов. За оптимальную дозировку гипса, в случае твердения при обычных температурах, можно принять то наибольшее его количество, которое практически может быть химически связано в твердеющем цементе в течение первых 24 ч после затворения цемента водой.

Добавками, ускоряющими сроки схватывания, являются: хлористый кальций, соляная кислота, глиноземистый цемент, растворимое стекло, углекислый натрий (сода) и ряд других. К замедлителям схватывания наряду с гипсом относятся слабый раствор серной кислоты, сернокислое окисное железо и ряд других.

Цемент – это минеральное вещество вяжущей консистенции, которое производится искусственно и превращается после взаимодействия его с водой в пластичную массу, затвердевающую после высыхания. От прочих вяжущих субстанций данный стройматериал отличается своей способностью схватываться, набирая прочность, даже при повышенной влажности. Цемент используют в основном для приготовления бетонной смеси, а также различных растворов. Чтобы научиться грамотно использовать этот уникальный стройматериал, необходимо изучить все его свойства и характеристики и понять, какие процессы происходят в бетоне либо цементных растворах (штукатурных, клеевых и других назначений).

Гидратация
Как известно, цемент представляет собой вяжущее гидравлическое вещество. Иными словами, для получения твердого камнеподобного тела, используемый порошок следует залить водой. Добавив необходимое количество воды, вы запустите необратимый процесс, которым можно при желании управлять.
Что же происходит в ходе этого необратимого процесса?
Проясним простыми словами. Начинается химическая реакция: молекулы воды соединяются с молекулами минералов, которые входят в состав цемента. Это приводит к растворению порошка и образованию пластичной массы. Явление, в ходе которого вода соединяется с растворенным в ней материалом, называется гидратацией.

В ходе гидратации происходит постепенное насыщение раствора продуктами реакции, отвечающими за прочностные характеристики будущего изделия.

В определенный момент процесс растворения заканчивается, а цементная масса утрачивает свою подвижность и схватывается, превращаясь в желеподобную массу. Схватывание происходит вскоре после замешивания раствора – в первые же часы.

Время начала данного процесса, называемого коллоидацией , а также его продолжительность зависят:

  • от количества использованной воды;
  • температурного режима;
  • состава цемента;
  • тонкости помола цементного порошка;

Чем мельче помол, тем более быстрым будет схватывание. Что отсрочить процесс схватывания и растянуть его, подвижную массу следует постоянно перемешивать. Но поддерживать пластичность раствора бесконечно долго невозможно, вязкая масса в определенный момент начинает утрачивать полезные свои свойства.

Рекомендуется изучить цемент заранее, что поможет определить фактические сроки схватывания этого материала и при необходимости скорректировать их при помощи специальных добавок. Иногда материал схватывается очень быстро, почти сразу после взаимодействия с водой, и выделяет при этом много тепла. Это явление называют ложным схватыванием! И чтобы его не допустить, раствор можно «оживить» путем перемешивания.

«Ложное схватывание» — негативное свойство цемента, такой материал обычно отбраковывают.

Когда раствор утрачивает свою подвижность, растворенные в нем частички цемента начинают кристаллизоваться, увеличиваться и переплетаться, сращиваясь в цементный камень. Данный процесс протекает с различной скоростью – вначале масса быстро становится все более прочной, а затем ее кристаллизация несколько замедляется.

Окончательное затвердевание может продолжаться годами, однако проектная марка прочности получаемых изделий достигается за двадцать восемь дней, распалубка при благоприятных влажности и температуре возможна уже через три-пять дней.

Опишите в комментариях под этой статьёй свой опыт, если вам удавалось оживить схватывающийся раствор! Что вы для этого предпринимали?

В статье представлены исследования влияния комплексной добавки полифункционального действия на процессы структурообразования и твердения цементных систем. Авторами произведены испытания по нахождению нормальной густоты и сроков схватывания цементного теста в зависимости от концентрации комплексной добавки полифункционального действия. Было установлено, что применение добавки уменьшает пористость цементного камня с 2,21 % до 1,64 %, при этом увеличивается количество микропор. Анализ полученных результатов показывает, что такие добавки снижают нормальную густоту цементного теста с 27 % до 24,5 % в зависимости от дозировки и изменяет сроки начала схватывания с 3 часов до 1,6 часа, а конца схватывания с 5,5 до 3,1 часов. Структура цементного камня изучалась методами рентгеноструктурного, петрографического анализа, а также при помощи сканирующей электронной микроскопии (СЭМ). Дополнительно изучались шлифы срезов цементного камня с целью уточнения закристаллизованности вяжущего, определения размеров кристаллогидратов и анализа контактных швов при склейке поверхностей без применения клеев. Изучено влияние комплексной добавки полифункционального действия на шлаковые зерна, которые имеют разрушенную структуру.


1. Лермит Р. Проблемы технологии бетона / Р. Лермит. – М.: Российское Общество оценщиков, 2017. – 296 с.

3. Зоткин А.Г. Бетоны с эффективными добавками / А.Г. Зоткин; ред. Зайцев А.Н. – Вологда: Инфра-Инженерия, 2014. – 160 с.

4. Серова Р.Ф. Влияние модифицирования на морозо- и коррозиестойкость цементных материалов. / Р.Ф Серова, А.К. Кожас, Б.М. Тоимбаева, А.М. Рахимов // Фундаментальные исследования. – 2012. – № 9–3. – С. 690–693.

5. Рахимов М.А. Исследование влияния комплексных гидрофобизирующих органо-минеральных модификаторов на эксплуатационные свойства тяжелого бетона / М.А. Рахимов, Г.М. Рахимова, А.М. Рахимов, А.М. Садирбаева, Е.К. Иманов // Фундаментальные исследования. – 2016. – № 2–2. – С. 294–298.

С целью определения влияния комплексной добавки полифункционального действия СС-3ТН на процессы структурообразования, изучено влияние дозировки на сроки схватывания. В табл. 1 приведены результаты испытаний цементного теста по определению нормальной густоты и сроков схватывания.

Анализ полученных результатов показывает, что добавка СС-3ТН снижает нормальную густоту с 27 % до 24,5 % в зависимости от дозировки и изменяет сроки начала схватывания с 3 часов до 1,6 часа, а конца с 5,5 до 3,1 часов. Можно предположить, что сочетание суперпластификатора С-3 и ускорителя твердения тиосульфата натрия подобрано в оптимальных соотношениях. Индивидуальное применение отдельных компонентов комплексной добавки полифункционального действия не позволяет комплексно влиять одновременно на нормальную густоту цементного теста и сроки схватывания [1, 2].

Исследования формирования структуры цементного камня в зависимости от различных факторов проводились рядом исследователей [3].

При проведении исследований ставилась задача по выяснению влияния комплексной добавки полифункционального действия СС-3ТН на свойства цементного камня в условиях естественного твердения, вида и строения продуктов гидратации, характера распределения и строения порового пространства цементного камня.

Структура цементного камня изучалась методами рентгеноструктурного, петрографического анализа и сканирующей электронной микроскопии (СЭМ) [1, 3].

Исследованию на СЭМ подвергался скол цементного камня после его наклейки на подложку и последующего напыления на его поверхность графита в вакуумной установке. Фотографирование поверхности скола СЭМ также проводилось при вакуумировании образцов, что было учтено при анализе фотоматериалов.

Дополнительно изучались шлифы срезов цементного камня, полученные путем их наклейки на стеклянную подложку и последующего шлифования до получения полупрозрачного шлифа. Шлифы в основном использовались для уточнения закристаллизованности вяжущего, определения размеров кристаллогидратов и анализа контактных швов при склейке поверхностей без применения клеев.

Количество пор и их размеры определялись методом их подсчета с использованием метрических приборов (сетка и линейка), учитывающих рабочее увеличение изображения исследуемой поверхности цементного камня. Известно, что дисперсность новообразований и их количество при гидратации вяжущего в присутствии ПАВ увеличивается в сравнении с гидратирующим вяжущим без добавки. При этом повышается плотность и упорядочивается структурная пористость цементного камня. Это объясняется тем, что адсорбировавшаяся молекула ПАВ замедляет рост новообразования, что в свою очередь порождает появление новых активных центров и повторение процесса [2].

Можно предположить, что добавка СС-3ТН также будет изменять структуру и пористость цементного камня. Различие микроструктуры цементного камня с добавкой и без добавки СС-3ТН показывает, что цементный камень без добавки (рис. 1, а) имеет более трещиноватую структуру и менее плотную упаковку гидратных новообразований. Кроме того, в его составе обнаружены в значительных количествах усадочные трещины, которые можно связывать с его высыханием при твердении в естественных условиях в ранние сроки – 1…3 суток. Цементный камень с добавкой СС-3ТН имеет более плотную упаковку кристаллогидратов, и в нем практически отсутствуют усадочные трещины, что можно связывать с нормальным твердением в естественных условиях.

Влияние комплексной добавки полифункционального действия СС-3ТН на нормальную густоту и сроки схватывания цементного теста

Количество от массы цемента, %

Сроки схватывания, ч

bajd1a.tif
bajd1b.tif

Рис. 1. Микроструктура цементного камня после 28 суток естественного твердения: а) без добавки; б) с добавкой СС-3ТН

Заметно влияние СС-3ТН на шлаковые зерна, которые имеют разрушенную структуру [1, 2]. Раскалывание шлакового зерна можно связывать с воздействием на него тиосульфата натрия, который активирует растворение его остеклованной поверхности, повышая его гидравлическую активность, кристаллизуется в образующихся микротрещинах и в результате разрушает его. На рис. 1, б, видно образование продуктов взаимодействия тиосульфата натрия и осколков шлакового зерна в виде светлого налета на их поверхности.

Поровая структура цементного камня с СС-3ТН в значительной степени отличается от поровой структуры цементного камня без добавки (рис. 2, а, б). Распределение пор в цементном камне без добавки более хаотичное и неоднородное, как по плотности, так и по размерам. Внутри пор наблюдаются различные кристаллы, например, многоугольника Са(ОН)2, заполняющие пору. Структура рыхлая, трещиноватая, контакт со шлаковым зерном в верхней части поры неплотный [2].

Цементный камень с комплексной добавкой полифункционального действия СС-3ТН имеет равномерное распределение пор и более близкий их размер друг к другу. Дно поры имеет гладкую поверхность, переходящую через контактную золу в плотный камень (рис. 2, б).

Зерна шлака плотно впаяны в структуру вяжущего, усадочных трещин значительно меньше. Гладкую поверхность пор можно связывать с гидрофобными свойствами их поверхности, препятствующими кристаллизации извести и других соединений. Гидрофобизированные поры значительно сильнее, чем гидрофобные, препятствуют накоплению и миграции через них как воды, так и водных растворов различных соединений. Флегматизация массопереноса создает благоприятные условия для его работы в условиях агрессивной среды при твердении в естественных условиях.

bajd2a.tif
bajd2b.tif

Рис. 2. Строение пор цементного камня (28 суток естественного твердения): а) без добавки; б) с добавкой СС-3ТН

bajd3a.tif
bajd3b.tif

Рис. 3. Микроструктура цементного камня (28 суток естественного твердения): а) пора с продуктами совместной гидратации ТСН и цементного теста; б) зерно шлака, диспергированное воздействием ТСН

bajd4a.tif
bajd4b.tif

Рис. 4. Петрография цементного камня (28 суток неестественного твердения): а) без добавки; б) с добавкой СС-3ТН

Влияние добавки на размеры и количество пор цементного камня

Состав по пористости

диаметр х 10-2 см

Цементный камень без добавки

Цементный камень с добавкой СС-3ТН

С целью уточнения действия тиосульфата натрия на структуру цементного камня его добавляли в цементную пасту в количестве индивидуально от 2 % до 8 % массы вяжущего. Исследования показали, что присутствие ТСН влияет на плотность цементного камня, пористость, однородность и структуру новообразования. Большая дозировка ТСН от массы вяжущего произведена с целью установления новообразований в цементном камне на рентгеноустановке. Анализ результатов как СЭМ, так и рентгеноструктуры позволяет предположить, что в результате взаимодействия ТСН с вяжущим образуются кальциевые соли тиосульфата, которые более устойчивы, чем соли тиосульфата натрия. Подтверждается также диспергирующее действие его на зерна шлака (рис. 3, а, б), что способствует повышению прочности цементного камня [4].

Петрографический анализ цементного камня показывает, что закристаллизованность цементного камня с добавкой СС-3ТН выше (рис. 4, б), чем без добавки (рис. 4, а).

Кристаллы с добавкой более мелкие и лучше закристаллизованы, видны четкие очертания новообразований в массе цементного камня. Кроме того, исследование пористости цементного камня показывает, что поры состава с добавкой имеют правильную округлую форму и равномерно распределены в объеме.

Подсчет пористости (табл. 2) выполнен по методу окулярной сетки. Общая пористость с применением добавки снижена на 0,6 %, что свидетельствует об уплотнении цементного камня. Кроме того, изменился качественный состав пор: так, количество пор размером до 0,5•10-2 см увеличилось на 5 %, размером до 1,0•10-2 см тоже на 5 %. Результаты петрографических исследований подтверждаются прочностными данными цементного камня.

Поскольку технология монолитного бетонирования предусматривает послойное возведение сооружений с перерывами в бетонировании, представляет интерес исследование контактного шва старого и нового бетонов [4, 5].

bajd5a.tif
bajd5b.tif

Рис. 5. Петрография контактного шва цементного камня: а) верхняя граница контакта; б) нижняя граница контакта

В настоящее время работы по обеспечению контактного шва между слоями бетона при непрерывном бетонировании более 3 суток выполнялись в основном полимерными композициями или коллоидными цементными клеями.

Основными факторами, по мнению Н.В. Михайлова, влияющими на сцепление старого и нового бетонов, являются условия образования и свойства кристаллического вещества контактной зоны. Исследования свойств контактной зоны проводились в «чистом виде», абстрагируясь от других факторов, которые могут существенно влиять на прочность сцепления, но не определяют физико-химические процессы, протекающие при сращивании бетонов [1, 5].

Для сопоставимости результатов экспериментов все операции со всеми составами цементных паст повторялись в одинаковой последовательности.

В.И. Соловьевым был предложен способ бесшовного возведения монолитных сооружений, позволяющий обеспечивать монолитность контактного шва [2]. При проведении опытов было обнаружено, что обработка поверхности твердеющего бетона различными солями приводит к постепенному растворению соли на его поверхности. Опыты были повторены в условиях, исключающих увлажнение солей за счет влажности воздуха, но результат был тот же самый – соль увлажнилась. Далее был определен срок твердения бетона, который приводил к увлажнению солей на его поверхности. Оказалось, что увлажнение идет на цементном камне, твердевшем не более 3 суток. Миграция влаги из цементного камня к растворяющейся соли освобождает приграничный с контактом слой и создает небольшое осмотическое давление внутри него, которое позволяет проникать в камень образовавшемуся раствору. Это сшивает приграничный слой с отвердевшей массой. Поверхностный слой карбоната кальция в этом случае уже не оказывает значительного влияния на образование новых сростков в отвердевшем цементном камне. Исследование осмотических свойств цементного камня позволило использовать это явление для склеивания старого цементного камня с новым.

Кроме отмеченного, было обнаружено, что, если в момент растворения соли оказывать вибрационное воздействие на поверхность цементного камня, находящегося в контакте с растворяемой солью, она разжижается, превращаясь в цементный гель. После прекращения вибрационного воздействия разжиженный слой затвердевал, как и обычный цементный камень. Полученный цементный камень не обнаруживает следов повторного его разрушения и не снижает прочность, в сравнении с контрольными образцами. Подобные операции можно было осуществлять с цементным камнем, твердевшем в естественных условиях.

По результатам проведенных опытов был разработан способ бетонирования монолитных сооружений, положенный в основу концепции бесшовного бетонирования. Опыты по бесшовному бетонированию проводились следующим образом: готовили цементную пасту с В/Ц 0,35. Затем закладывали ее в форму размером 10х10х10 см до половины объема, выдерживали ее 3 суток, после чего готовили такую же цементную суспензию, затем наносили на поверхность твердевшего в форме образца порошкообразный тиосульфат натрия и вибрировали ее микробулавой до образования на поверхности гелеобразной массы. После чего производили закладку второго слоя и уплотняли его обычным способом на вибростоле. Количество тиосульфата натрия было принято из расчета 0,5 г на 1 см2.

Из затвердевших образцов изготавливали образцы-шлифы и производили их фотографирование [2, 3, 5]. На рис. 5, а, б, показан контактный шов старого и нового цементного камня, бетонированного разработанным способом. Причем отдельно отсняты верхняя и нижняя его части.

Было установлено, что гидрат окиси кальция распределен как в объеме старого, так и в объеме нового цементного камня. Хорошо видно, что контактный шов не имеет четкой границы, как в контактных участках, так и внутри себя. Цементный камень выглядит как монолит и содержит в контактном слое некоторый избыток тиосульфата натрия, который значительно диспергирует его кристаллогидраты, что в свою очередь уплотняет и упрочняет его.

Анализ полученных результатов показывает, что разрушение цементного камня идет по образцу, а не по шву контактного слоя, что можно объяснить высокой прочностью контактного слоя старого и нового бетонов. Повышение В/Ц ведет как к некоторому снижению прочности контакта, так и к снижению прочности образцов при сжатии.

Необратимый процесс потери подвижности бетона или цементно-песчаного раствора называется – время схватывания цемента. Это важный, нормируемый показатель качества для всех общестроительных цементов (портландцемент, шлакопортландцемент, пуццолановый цемент, композиционный цемент и др. видов) кроме тампонажных.

Схватываемость цемента

Для тампонажных цементов нормируется «время загустевания». Практическое применение данного показателя заключается в определении времени возможности продолжения строительных, а также возможности использования бетонной конструкции по прямому назначению.

Начало схватывания цемента

После затворения строительных смесей (бетона или цементно-песчаного раствора) в состав которых входит цемент, начинается химическая реакция – гидратация цемента. В гидратации участвуют цемент и вода. В ходе протекания реакции пластичное связующее обволакивающее наполнитель раствора (щебень, песок, гравий, строительный мусор, шлак и т.п.), затвердевает и превращается в монолитный каменный материал.

Реакция гидратации является необратимо экзотермической – протекает с выделением теплоты. При этом время затвердевания (схватывания) зависит от температуры окружающей среды, количества затворителя, тонкости помола цемента, влажности воздуха, присадок и типа цемента.

Сроки схватывания цемента

Важная техническая характеристика любого бетонного раствора – начало схватывания цемента гост 30515-2013 при стандартных условиях (средняя температура окружающего воздуха 20 градусов Цельсия, средняя влажность окружающего воздуха 75%). «Святое писание» каждого строителя – ГОСТ 30515-2013, дифференцирует общестроительные цементы на три категории:

  • Медленносхватывающиеся. Время начала схватывания более 2 часов после затворения.
  • Нормально схватывающиеся. Время начала схватывания более 45 минут до 2 часов после затворения.
  • Быстросхватывающиеся. Время начала схватывания менее 45 минут после затворения.

Также ГОСТ 30515-2013 определяет предельные отклонения начала схватывания. Для медленносхватывающихся и нормально схватывающихся цементов – минус 15 минут от нормируемого показателя, для быстросхватывающихся – плюс 5 минут от нормируемого показателя. На скорость гидратации цемента кардинально влияет температура воздуха.

При понижении температуры до 5 градусов Цельсия и ниже процесс гидратации практически останавливается. В этом случае конструкцию укрывают специальными матами, строят над ней временный шатер, либо прогревают другими доступными способами. Сроки схватывания любого цемента можно как увеличить, так и уменьшать внесением специальных добавок.

Ускорители схватывания цемента

В зависимости от конкретных условий строительства и ремонта застройщику необходимо ускорить начало и период времени схватывания. Например, близится холодное время года и стоит задача максимально ускорить все виды строительных работ, Ускорить схватывание цемента можно с помощью внесения в бетонную смесь специальных присадок.

Схватываемость цемента - скорость схватывания при различных условиях

Популярные присадки для ускорения схватывания цемента:

  • Ускоритель твердения для бетона «УП2М», Россия, средняя цена 43 руб/кг.
  • Ускоритель твердения для бетона «Форт Ускорин», Россия, средняя цена 24 руб/кг.
  • Супер пластификатор ускоритель твердения «Реламикс Т-2», Россия, средняя цена 98 руб/кг.

Указанные и другие присадки для ускорения схватываемости цемента вносятся в момент затворения и начала перемешивания бетонного раствора. В общем случае при стандартных условиях (температура окружающей среды 20 градусов Цельсия, относительная влажность воздуха 75-80%) с помощью указанных видов присадок можно укорить период схватывания и набора марочной прочности в три раза без потери прочности и долговечности конструкции.

Замедлители схватывания цемента

Максимально уменьшить время начала и конца схватывания цемента может потребоваться в следующих случаях. Производится заливка масштабной конструкции (фундамент многоэтажного здания, конструкции гидротехнического или подземного сооружения, чаша бассейна или бетонной емкости).

Схватываемость цемента - скорость схватывания при различных условиях

В этом случае замедлитель срока схватывания цемента нтф и другие виды замедлителя схватываемости связующего позволяют обеспечить непривычность строительных работ при всех прочих равных условиях.

Замедлители схватываемости цемента:

  • «Бисил Ретардер», Испания, цена 285 руб /кг.
  • Пластификатор бетона «РЕТАДОЛ», Греция, цена 159 руб/ кг.
  • Гиперпластификатор «FREM GIPER S-SBlз», Беларусь, цена 112 руб/кг.

Использование замедлителей схватываемости цемента позволяют увеличить время необратимого процесса потери подвижности бетонных растворов в среднем до 24-48 часов после затворения.

Ложное схватывание цемента

При приготовлении бетонных растворов своими силами непосредственно на строительной площадке существует опасность ложного схватывания цемента. Лаборатории бетонных заводов четко отслеживают этот вредный показатель и принимают соответствующие меры. Поэтому приобрести готовый бетон с ложным схватыванием практически невозможно.

Определение ложного схватывания цемента – ложным схватыванием связующего принято называть сиюминутное загустевание бетона в течение нескольких минут после затворения. Причиной ложного схватывания, является нарушение технологии производства цемента либо наличие щелочи. В соответствии с ГОСТ 30515-2013 существуют следующие виды ложного схватывания

  • Ложное схватывание I типа. Моментальная потеря подвижности цементным тестом, связанная с нарушением технологии производства. Устраняется с помощью повторного перемешивания смеси без добавления затворителя.
  • Ложное затвердевание II типа. Временная либо частичная потеря подвижности цементной субстанции по другим причинам, также устраняемая с помощью повторного перемешивания смеси без добавления затворителя.

Заключение

Частным застройщикам, использующим готовый бетон или бетон собственного изготовления, следует, по возможности, производить масштабные бетонные работы в теплое время года. В противном случае неизбежны дополнительные затраты на приобретение ускорителей схватывания цемента и организацию утепления и прогревание бетонного сооружения.

Схватывание бетона – химический процесс, первый этап гидратации состава. При взаимодействии с водой цемент, входящий в состав бетона, твердеет, превращается в цементный камень. Вода проникает в цементные зёрна, и минералы, содержащиеся в их составе, вступают с ней в химическую реакцию и превращаются в гидросиликаты калия.

Схватывание бетона разных марок

На первом этапе гидрации бетон обретает 70% крепости, а остаток набирает примерно через месяц после заливки. Этот этап важен, поскольку от него зависит, насколько прочным и безопасным будет изделие из бетонной смеси.

От чего зависит схватывание бетона

На процесс схватывания бетона влияют многие факторы. Наиболее важные среди них: вид бетона и температура окружающего воздуха.

Влияние марки бетона

Таблица ниже отображает зависимость скорости схватывания бетона от его марки.

Класс бетонаВремя схватывания (час)
М2002-2,5
М3001,5-2
М4001-2

Влияние температуры

Температура схватывания бетона влияет на скорость этого процесса. Таблица ниже демонстрирует, через сколько часов он запускается и завершается в зависимости от температуры окружающего воздуха.

Температура ( 0 С)Через сколько часов начинается схватывание с момента затворения цементного раствораЧерез сколько часов завершается схватывание с момента затворения цементного раствораОбщая длительность процесса (час)
+30 1
+20231
06-1015-209-10
-514217

Схватывание бетона при низких температурах существенно замедляется, а вместе с ним набор прочности. Важно обеспечить бетону тепло- и гидроизоляцию сразу после заливки. Слишком большая длительность этого процесса пагубно влияет на прочность и долговечность.

При высоких температурах, дополнительном подогреве скорость процесса значительно повышается, но это может негативно сказаться на его качестве. Влага испаряется слишком быстро, из-за чего страдает прочность.

На графике указана зависимость схватывания бетона от температуры:

Схватывание бетона разных марок

При температуре ниже -10 0 С не рекомендуется заливать бетонное основание при строительстве дома или иных построек на частной территории. Вода, входящая в состав раствора, замерзает и увеличивается в объёме. Так она разрушает структуру бетона изнутри, его прочность уменьшается, а процесс отвердения может вовсе прекратиться.

В промышленном строительстве заливка при минусовых температурах допустима, поскольку бетонную конструкцию постоянно подогревают.

Как можно влиять на скорость схватывания

Скорость схватывания влияет на качество бетонной смеси. Любое отклонение от стандартов негативно отражается на прочности и долговечности.

Как замедлить схватывание бетона

Отсрочить схватывание требуется в следующих случаях:

  • При заливке бетона в жаркую погоду.
  • При транспортировке бетонной смеси на большие расстояния.
  • При затруднённом, интенсивном движении на дорогах, когда автобетоносмесителю приходится длительное время стоять в пробках.
  • При поэтапной заливке бетона, чтобы смесь находилась в изначальном состоянии длительное время.

С помощью замедлителей удаётся отложить химическую реакцию между цементными зёрнами и водой на несколько часов, от 48 до 72. При этом сохраняются свойства бетонной смеси, включая прочность и долговечность. Применяются следующие замедлители схватывания бетона:

  • Линамикс;
  • Полипласт Ретард;
  • Sika Retarder.

Как ускорить схватывание бетона

При проведении строительных работ в зимнее время и при изготовление железобетонных изделий время схватывания бетонной смеси искусственно сокращается с помощью специальных добавок. В состав добавляют ускорители схватывания бетона в нужной пропорции. Не допускается превышение предельного уровня, который устанавливается в строительных лабораториях экспериментальным путём.

Применяются следующие вещества:

  • Сульфат натрия. Предельный показатель применения – 2%. Этот ускоритель применяется при изготовлении бетонных смесей и железобетонных конструкций.
  • Соль азотной кислоты. Верхний лимит – 4%.
  • Хлорид кальция. Предельно допустимый уровень – 3%.

Если применение ускорителей объединять с автоклавной обработкой, время на схватывание ещё больше сократится. Плиты и прочие железобетонные изделия помещаются в автоклав-парилку, где они пропариваются под большим давлением.

Чтобы бетонная смесь гарантированно схватилась в зимнее время, её готовят из предварительно подогретых материалов, а затем нагревают электротоком и паром. Смесь в процессе приготовления нагревают до 80 0 С, после чего укрывают утеплителем, чтобы тепло сохранялось в течение 2-5 суток.

Заключение

Свежеуложенным бетонным конструкциям необходим тщательный уход: защита от вибрации, механического воздействия, резких температурных колебаний. Первые часы после заливки самые важные, поэтому с таким вниманием регулируется время схватывания бетона. С помощью специальных добавок удаётся замедлить или ускорить этот процесс при сохранении качества и долговечности состава.

Читайте также: