Морозостойкость бетона для фундаментов

Обновлено: 14.05.2024

Документом, регламентирующим требования к бетону, является свод правил СП 28.13330.2012 «Защита строительных конструкций от коррозии. Актуализированная редакция СНиП 2.03.11-85». В обязательном Приложении Ж к данному документу приведена Таблица Ж.1 «Требования к бетонам и железобетонным конструкциям». Выдержка из данной таблицы, применимая к условиям Московского региона, приведена ниже:

Характеристика режима
Расчетная зимняя температура
наружного воздуха, ° С
Марка бетона по морозостойкости, не ниже
1. Попеременное замораженивание и оттаивание
в) в условиях эпизодического водонасыщения (например, надземные конструкции, постоянно подвергающиеся атмосферному воздействию)
Ниже -20 до -40 включительно F150
2. Возможно эпизодическое воздействие температур ниже 0°С
а) в водонасыщенном состоянии (например, конструкции, находящиеся в грунте или в воде)
Ниже -20 до -40 включительно
F150

Таким образом, согласно СП 28.13330.2012 вне зависимости от того, в земле находится конструкция (фундамент) или нет (внешние стены), морозостойкость заказываемого бетона должна быть не ниже F150.

Конкретные значения морозостойкости для бетона каждого класса нужно узнавать в каждом конкретном случае.
Но для упрощенного понимания вероятности получить морозостойкость F150 при заказе того или иного класса бетона можно ориентироваться так:

  • для классов В12,5 и ниже - морозостойкость F150 не характерна,
  • для класса В15 - возможна морозостойкость F150 (34% для бетона на гравийном щебне и 41% для бетона на гранитном щебне),
  • для класса В20 - морозостойкость F150 скорее всего будет достигнута (74% на гравийном щебне и 79% для бетона на гранитном щебне),
  • для класса В22,5 - морозостойкость F150 скорее всего будет достигнута (88% на гравийном щебне и 96% для бетона на гранитном щебне),
  • для классов В25 и выше - морозостойкость F150 будет достигнута 100%.

Что касается прочности, то для загородного строительства по прочности хватает даже бетона класса В15 (марки М200).
Поэтому решающим показателем, по которому производится выбор, является класс по морозостойкости, а не класс по прочности.

Сориентироваться по стоимости подходящего для вашего случая бетона можно с помощью таблицы ниже:

ВНИМАНИЕ! Летом-осенью 2021 года существенно повысились цены на бетон и раствор. За июнь-сентябрь цены на бетон на гравийном щебне повысились на ~500 рублей, на гранитном - на ~800 рублей. Смотреть подробнее
В связи с этим приведенные ниже РОЗНИЧНЫЕ цены за 1 м3 бетона и раствора от 13 мая 2021 г. для указанного региона, с НДС в рублях за м 3 , БЕЗ УЧЕТА СТОИМОСТИ ДОСТАВКИ сильно устарели, а опубликовать актуальные цены - проблематично, поскольку они постоянно обновляются.

Согласно п.4.20 СП 22.13330.2016 «Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*» при проектировании фундаментов и конструкций подземных сооружений из монолитного, сборного бетона или железобетона следует руководствоваться СП 63.13330, СП 15.13330, СП 28.13330, СП 70.13330, СП 71.13330.

Согласно п.6.1.3 СП 63.13330.2018 «Бетонные и железобетонные конструкции. Основные положения. СНиП 52-01-2003»:

  • Класс бетона по прочности на сжатие В назначают для всех видов бетонов и конструкций.
  • Марку бетона по морозостойкости F назначают для бетона конструкций, подвергающихся воздействию переменного замораживания и оттаивания, и устанавливают по первому базовому методу и по второму базовому методу в соответствии с действующими стандартами.
  • Марку бетона по водонепроницаемости W назначают для конструкций, к которым предъявляют требования по ограничению водопроницаемости.

Класс бетона по прочности на сжатие

В соответствии с п.6.1.6 СП 63.13330.2018 для железобетонных конструкций следует применять класс бетона по прочности на сжатие не ниже В15.

Примечание: класс бетона по прочности на сжатие В15, соответствует марке М200.

Марка бетона по морозостойкости

В соответствии с п.6.1.8 СП 63.13330.2018 марку бетона по морозостойкости следует назначать в зависимости от условий работы конструкций в среде знакопеременных температур в соответствии с СП 28.13330.

Требования к марке по морозостойкости приведены в таблице Ж.1 СП 28.13330.2017 «Защита строительных конструкций от коррозии. Актуализированная редакция СНиП 2.03.11-85».

Условия работы конструкций

Марка бетона по морозостойкости 1), не ниже

Расчетная зимняя температура наружного воздуха, °С

2 Одноразовое, в течение года, воздействие температуры, °С, в водонасыщенном состоянии (например, конструкции, находящиеся в грунте или под водой)

Ниже -20 до -40 включ.

F1 150

Ниже -5 до -20 включ.

  1. При консервации незавершенного строительства, а также в период строительства, следует обеспечивать защиту от увлажнения или теплоизоляцию конструкций, например, обваловкой грунтом фундаментных конструкций.
  2. Для конструкций, части которых находятся в различных влажностных условиях, например, опоры ЛЭП, колонны, стойки и т.п. марку бетона по морозостойкости назначают как для наиболее подверженного увлажнению и замораживанию участка конструкции.
  3. Марки бетона по морозостойкости для конструкций сооружений водоснабжения, мостов и труб, аэродромов, автомобильных дорог и гидротехнических сооружений при воздействии пресной воды следует назначать согласно требованиям СП 31.13330, СП 34.13330, СП 35.13330, СП 41.13330, СП 121.13330; при воздействии минерализованной воды (в том числе морской воды) — по настоящему своду правил.
  4. Расчетная зимняя температура наружного воздуха принимается по СП 131.13330 как температура наиболее холодной пятидневки, обеспеченностью 0,92.

Температуру наиболее холодной пятидневки, обеспеченностью 0,92, можно узнать по столбцу 5 таблицы 3.1 СП 131.13330.2018 «СНиП 23-01-99* Строительная климатология».

Например для городов: Москва -25 о С; Санкт-Петербург -24 о С; Нижний Новгород -30 о С; Краснодар -14 о С; Архангельск -33 о С; Астрахань -21 о С; Пермь -35 о С; Иркутск -33 о С; Сочи -2 о С.

Марка бетона по водонепроницаемости

Согласно п.6.1.9 марку бетона по водонепроницаемости следует назначать в зависимости от условий эксплуатации и уровня воздействия агрессивных сред на бетон конструкций в соответствии с СП 28.13330.

Требования к марке по водонепроницаемости приведены в таблице Ж.4 СП 28.13330.2017.

Экспертиза задала вопрос, что мол для экономии бюджетных средств, необходимо указать минимальные марки по морозостойкости строительных конструкций (и водонепроницаемости также, но с ней более менее понятно) в соответствии с нормами, обязательными к применению по Постановлению 1047.

Обязательные нормы:
СНиП 52-01-2003, п. 4.5:

Требования . по морозостойкости, по защите строительных конструкций от воздействия агрессивных сред и др. устанавливаются соответствующими нормативными документами (СНиП 2.01.07, СНиП 2.06.04, СНиП II-7, СНиП 2.03.11, СНиП 21-01, СНиП 2.02.01, СНиП 2.05.03, СНиП 33-01, СНиП 2.06.06, СНиП 23-01, СНиП 32-04).

Из них про морозостойкость есть указания в обязательных к применению:
СНиП 2.05.03-84* «Мосты и трубы» - для мостов и труб.
СНиП 2.06.06-85 «Плотины бетонные и железобетонные» - для плотин.
СНиП 32-04-97 «Тоннели железнодорожные и автодорожные» - для тоннелей.
СНиП 2.03.11-85 «Защита строительных конструкций от коррозии» :

2.9. К бетону железобетонных конструкций, подвергающихся воздействию агрессивных жидких сред (хлоридов, сульфатов, нитратов и других солей при наличии испаряющихся поверхностей) и одновременному переменному замораживанию и оттаиванию, должны предъявляться требования по морозостойкости
2.50. Для железобетонных труб с агрессивной газообразной внутренней средой следует применять бетон класса прочности не ниже ВЗО, по морозостойкости - марки не менее F200, по водонепроницаемости - марки не менее W8.

Необязательные нормы:
СП 52-101-2003 «Бетонные и железобетонные конструкции без предварительного напряжения арматуры»

Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной отрицательной температуре наружного воздуха в холодный период от минус 5 °С до минус 40 °С, принимают марку бетона по морозостойкости не ниже F75, а при расчетной температуре наружного воздуха выше минус 5 °С в указанных выше конструкциях марку бетона по морозостойкости не нормируют.

ГОСТ 31384-2008 «Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования».

Таблица Г.2 Требования к бетону конструкций, работающих в условиях знакопеременных температур
прим. 1) В случае затянутого, переходящего в холодный период года, монтажа конструкций отапливаемых зданий марка бетона по морозостойкости должна быть не менее F50. При вероятном увлажнения бетона необходимо обеспечить теплоизоляцию конструкций, например, обваловкой фундаментных конструкций.
прим 2) Для конструкций, части которых находятся в различных влажностных условиях, например опоры ЛЭП, колонны, стойки и т.п., марку бетона по морозостойкости назначают как для наиболее подверженного увлажнению участка конструкции.
прим 3) Марки бетона по морозостойкости и водонепроницаемости для конструкций сооружений водоснабжения и канализации, а также для свай и свай-оболочек следует назначать согласно требованиям соответствующих нормативных документов.
Таблица Г.3 - Требования к морозостойкости стеновых конструкций
2.10. Проектные марки бетона по морозостойкости и водонепроницаемости следует назначать согласно указаниям обязательного приложения.

Получается, что по нормам обязательным к применению, морозостойкость большинства конструкций определить невозможно? -(.
Как же мы тогда определяем морозостойкость?

А посмотри пособие к этому сп. Там немного подругому написано

2.5. Для надземных конструкций, повергаемых атмосферным воздействиям окружающей среды при расчетной зимней температуре наружного воздуха от минус 5°С до минус 40°С, принимают марку бетона по морозостойкости не ниже F75; при этом, если такие конструкции защищены от непосредственного воздействия атмосферных осадков, марку по морозостойкости можно применять не ниже F50.
При расчетной зимней температуре выше минус 5°С в указанных выше конструкциях марку бетона по морозостойкости не нормируют.

Получается по этому пособию минимальная морозостойкость F50 , только для теплых районов не нормируется

гадание на конечно-элементной гуще

Продажа навыков и умений

я везде F100 ставлю. от завода ничего не требуется, чтобы такая марка получилась сама собой.

гадание на конечно-элементной гуще

Продажа навыков и умений

У меня в большей мере не конкретный вопрос, а общий, или даже размышления вслух, так как требования ГОСТ 31384-2008 «Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования» по морозостойкости (и водонепроницаемости кстати тоже) завышены по отношению к табл. 4 пособия к СНиП 2.02.01-83, которой раньше пользовались все проектировщики.
По этой ГОСТ получается, допустим, что для фундаментов надо F100 W4, а по пособию вообще можно было не указывать.
Да и хотел програмульку небольшую написать для определения марок по морозостойкости и водонепроницаемости.

Если применять В25 то F100 и W4 думаю автоматом будет при надлежащем качестве производства монолитных работ, а может даже и до F150 и W6 дотянет )) Ну судя по действующим нормативам действительно F50 минимальная. Я сейчас не разбирался что там у нас в обязательном, просто кину инфу: СП 63.13330.2010 для надземных конструкций подвергающихся атмосферным воздействиям от -5 до -40 оС минимальная марка морозостойкости F75; требуемая марка морозостойкости бетона может быть определена (СНиП 2.03.01-84* табл. 9 и 10) или СП 43.13330.2012 табл. 1 - перекочевала вроде как; марка морозостойкости бетона для мостов и труб принимается по СП 35.13330.2011 «Мосты и трубы» п. 7.22 и п. 7.23 табл. 7.5 для труб по СНиП 2.03.11-85* c агрессивной газообразной внутренней средой следует применять бетон марки по морозостойкости не менее F200; ну и там свои требования к гидротехническим сооружениям.

Вопрос немного не по теме:
в ГОСТЕ 25820-2000 есть таблица 1, по которой при известной плотности легкого бетона можно узнать марку по морозостойкости.
Есть ли что-то подобное для тяжелых бетонов? Не обязательно ГОСТ.

Вопрос немного не по теме:
в ГОСТЕ 25820-2000 есть таблица 1, по которой при известной плотности легкого бетона можно узнать марку по морозостойкости.
Есть ли что-то подобное для тяжелых бетонов? Не обязательно ГОСТ.

Ну например можно использовать таблицу 9 СНиП (он вроде пока еще действует), в сериях на некоторые виды конструкций она указана (например на сваи морозостойкость F75).
А плотность одна 2400 у бетона и 2500 у жб.

__________________
"Тщательное планирование – ключ к безопасному и быстрому путешествию."
Одиссей (с)

СНиП 2.03.01-84* не действует

Если применять В25 то F100 и W4 думаю автоматом будет при надлежащем качестве производства монолитных работ

Мне скорее это интересно - какая минимальная марка по морозостойкости и водонепроницаемости обеспечена при заданном классе тяжелого бетона по прочности?

какая минимальная марка по морозостойкости и водонепроницаемости обеспечена при заданном классе тяжелого бетона по прочности?

какую укажите такую и обеспечат, если не указано и марка бетона ниже 300, то F50 W4 скорее всего будет

__________________
"Тщательное планирование – ключ к безопасному и быстрому путешествию."
Одиссей (с)

какая минимальная марка по морозостойкости и водонепроницаемости обеспечена при заданном классе тяжелого бетона по прочности

Продажа навыков и умений

__________________
"Тщательное планирование – ключ к безопасному и быстрому путешествию."
Одиссей (с)

Продажа навыков и умений

При нынешних добавках и технологиях можно и легкий бетон В30 сделать при желании. А керамзитобетон класса В20 - легко. Но не факт, что он будет водонепроницаем, как указано в статье. Не зря видимо в старом СНиПе стояло примечание, что мол для тяжелого и мелкозернистого морозостойкость и водонепроницаемость не указывается (пишу на память, завтра проверю).

Подниму тему.
Всегда указывали в монолитном каркасе для плит перекрытий F150, для колонн и стен F100 на основании таблицы Г.2 ГОСТ 31384-2008 и ГОСТ 25697, хоть последний и не относится к монолитным плитам. Поскольку плиты так или иначе работают в условиях наружного воздуха. Бетоны классов В25-В30, чаще всего W4. Пятидневка -35С.
Теперь вышел новый ГОСТ 31384-2017, в котором в таблице Е.1 пропал подпункт г) про условия работы на воздухе . А морозостойкость определяется с учетом базового метода ГОСТ 10060. И сейчас вроде как получается, что для плит перекрытия морозостойкость вообще д.б F 1 200 (интересно, на чертежах так и писать с индексом?) , ведь балконные плиты так или иначе контактируют с осадками, хотя бы те же открытые переходные лоджии.
А тут еще со стройки звонят. У них по документам бетон В25 F100 W4, а по чертежам д.б. F150, комиссия задает вопросы. И вроде бетон-то на щебне, должен был бы по умолчанию F150 дать при такой прочности. Вот с каким индексом у них морозостойкость?
СП 28 тоже переработали. От 17 года тоже пошла морозостойкость с индексом. При этом работаем то мы по постановлению, т.е. по СП 12го года.
а еще в новом СП и ГОСТе есть интересная фраза

Бетоны конструкций зданий и сооружений, подвергающихся воздействию воды и знакопеременных температур, марок по морозостойкости выше F 1 200 (F 2 100) следует изготовлять с применением

это что, морозостойкость по 1му базовому методу в 2 раза ниже морозостойкости по 2му? таблица 4 ГОСТ 10060 вообще вогнала в ступор.
В общем понятно, что ничего не понятно. У кого-то есть понимание, какую морозостойкость надо указывать и по какому нормативу? и в каком формате -с индексами, без?

В холодное время года стройматериалы с пористой структурой, в том числе бетон, подвергаются повышенным нагрузкам. Под воздействием отрицательных температур бетонный монолит пропитывается водой, которая проникает в поры и, становясь льдом, расширяется при замерзании. Длительное пребывание бетонных изделий на морозе, повторное оттаивание и замерзание существенно снижают эксплуатационные характеристики материала. Поэтому одним из ключевых технических характеристик бетона является класс его морозостойкости.

Морозостойкость — показатель, характеризующий способность бетона противостоять многократному замораживанию и размораживанию без потери прочности.

Морозостойкость — показатель, характеризующий способность бетона противостоять многократному замораживанию и размораживанию без потери прочности.

Эксперт о морозостойкости бетона

Классы морозостойкости бетона и сферы его применения

Класс (в просторечии марка) бетона по морозостойкости имеет буквенно-числовое обозначение. ГОСТ выделяет следующие классы морозоустойчивости по областям эксплуатации.

  • Низкий (ниже F50). Под воздействием отрицательной температуры такой материал трескается и рассыпается. Возможности его применения значительно ограничены. В России этот бетон практически не используется.
  • Умеренный (F50 – F100). Самая популярная марка бетона по морозостойкости. Изделия и фундаменты из него эксплуатируются во всех климатических зонах России, где четко выделяются четыре сезона.
  • Повышенный (F150 – F300). Выдерживает экстремальные температурные перепады, полностью сохраняя первоначальные эксплуатационные характеристики. Находит применение в районах с вечной мерзлотой, в Сибири и на Крайнем Севере.
  • Высокий (F300 – F500). Используется в особых случаях. Например, в зонах периодическими колебаниями уровня воды и многослойным промерзанием грунтов.
  • Сверхвысокий (выше F500). Находит штучное, сугубо индивидуальное применение в ответственных конструкциях, возводимых на очень длительный срок.

Классы морозостойкости бетона и сферы его применения

Как определяется морозостойкость бетона?

Ключевой критерий при определении морозоустойчивости бетона — установление максимального количества циклов заморозки-разморозки, при которых сохраняются первоначальные характеристики материала, а растрескивания и шелушения не определяются.

Лабораторные испытания материала имеют своей целью подробно продемонстрировать его поведение в естественных условиях эксплуатации. Результаты испытаний подтверждают либо не подтверждают реакцию материала на влияние внешних факторов. Условия испытаний на морозостойкость бетона подробно расписаны в ГОСТ 10060-95.

Морозостойкость бетона - способность сохранять физико-механические свойства при многократном переменном замораживании и оттаивании.

Морозостойкость бетона характеризуют соответствующей маркой по морозостойкости F.

Марка бетона по морозостойкости F - установленное нормами минимальное число циклов замораживания и оттаивания образцов бетона, испытанных по базовым методам, при которых сохраняются первоначальные физико-механические свойства в нормируемых пределах.

Цикл испытания - совокупность одного периода замораживания и оттаивания образцов.

Основные образцы - образцы, предназначенные для замораживания и оттаивания (испытания).

Контрольные образцы - образцы, предназначенные для определения прочности бетона на сжатие перед началом испытания основных образцов.

Как определяется морозостойкость бетона?

Лабораторные и альтернативные способы определения морозостойкости бетона

Для лабораторного исследования берутся основные (подверженные многократному замораживанию – размораживанию) и контрольные (новые, абсолютной прочности) образцы бетонного монолита.

Контрольные образцы бетона перед испытанием на прочность, а основные образцы перед замораживанием насыщают водой/раствором соли температурой (18±2) °С.

Для насыщения образцы погружают в жидкость на 1/3 их высоты на 24 ч, затем уровень жидкости повышают до 2/3 высоты образца и выдерживают в таком состоянии еще 24 ч, после чего образцы полностью погружают в жидкость на 48 ч таким образом, чтобы уровень жидкости был выше верхней грани образцов не менее чем на 20 мм.

Образцы помещают в морозильную камеру. После этого образцы размораживаются, и оценивается их состояние.

Вода, проникающая вглубь конструкции, разрушает не только сам бетон, но и вызывает коррозию стальной арматуры.

Существуют способы определения морозостойкости бетона подручными средствами. Для оценки показателя исследуются:

  • Внешний вид материала. Крупная зернистая структура, наличие трещин, пятнистости, шелушащихся и расслаивающихся зон — все это свидетельствует о низкой морозоустойчивости бетона.
  • Уровень водопоглощения. Когда показатель находится в диапазоне 5 - 6%, можно говорить о плохой устойчивости к низким температурам.

Еще один экспресс-метод определения морозоустойчивости реализуется по следующей схеме. Образцы исследуемого монолита погружаются в серно-кислый натрий и выдерживаются в нем в течение 24 часов. По истечении этого времени они подвергаются четырехчасовой сушке при 100 ºС. Цикл вымачивания и высушивания пятикратно повторяется аналогичным образом. По завершении эксперимента материал исследуют на предмет наличия трещин, сколов и других поверхностных дефектов.

Как повысить морозостойкость бетона?

Противоморозные добавки в раствор и бетон рекомендуется вносить тогда, когда температура окружающего воздуха составляет вплоть до -25 °С (если она ниже, то эффективность этих средств уже не гарантируется).

Известно несколько способом повышения морозостойкости бетона. В их основе лежит то, что устойчивость материала к воздействию низких температур определяется количеством и величиной пор, а также исходным качеством и составом цементной основы.

  • Уменьшение макропористости. Самый простой и доступный способ повышения уровня морозоустойчивости. Использование спецдобавок и создание особых условий для быстрого отвердевания цементного раствора минимизирует потребность продукта в воде. Результатом этого становится уменьшение пористости.
  • Уменьшение количества воды в исходном растворе. Чтобы уменьшить потребность начального раствора в воде, в него добавляются специальные заполнители.
  • Поздняя заморозка. Если заморозить бетон в позднем возрасте, это сократит его пористость. . С помощью специальной обмазки, окраски или пропитки на поверхности монолита создается защитная пленка, препятствующая проникновению в него атмосферной влаги.

Как заливают бетон в мороз

Морозостойкие добавки снижают расход воды на 10-15 %

Бетон применяется в холодное время года, если строительные работы запоздали или идут на территории с высокой насыщенностью грунта влагой. Чтобы заливка бетонной смеси была успешной, стройплощадку предварительно прогревают тепловой пушкой или термоэлектрическими матами. Последние выполняют сразу две функции — гидроизоляции и обогрева.

Чтобы обогреть площадку можно применить и стандартную термоизоляцию. Самый простой вариант — использовать двухстороннюю пленку, которая растягивается в 2-3 см от основания. На пленку накладывают изоляцию и устанавливаются теплогенератор. На отвердевание бетона зимой обычно уходит не менее 4 дней.

Добавление в раствор прогретых инертных материалов и противоморозных добавок при зимних работах обязательно. Оно позволяет уменьшить размер больших пор (изменить структуру за счет увеличения числа микропор) и максимально удалить воду из раствора.

Подробный рассказ о том, как заливается бетон в холодное время года

Вывод

Морозостойкость — одно из важнейших свойств бетона как основного строительного материала, характеризующее его способность долговременно противостоять колебаниям температур от сезона к сезону. В условиях умеренного, а тем более арктического климата, когда годовая температурная амплитуда достигает 80 и более градусов, использование морозостойкого бетона не имеет альтернативы. Однако универсальной марки бетона, подходящей для всех случаев, не существует. Морозостойкий бетон покупается индивидуально для каждого объекта с учетом его назначения и местных условий.

Бетон является одним из самых широко применяемых в строительстве материалов. Наряду с такими свойствами, как прочность и долговечность, морозостойкость — важная характеристика бетона.


Это качество особенно важно в России, где для многих регионов характерны суровые климатические условия: перепады температур и влажности, очень низкие температуры, в связи с чем бетон может насыщаться водой, растворами солей, а затем подвергаться многократному замораживанию и оттаиванию.

Рассмотрим, что такое морозостойкость, какими методами она определяется, и можно ли ее повысить.

Почему важна морозостойкость бетона

Бетон, являясь прочным материалом, все же имеет пористую структуру; в нем всегда есть поры и капилляры, способные поглощать влагу.


Осенью, а также зимой, во время оттепелей, бетонные конструкции насыщаются водой с растворенными в ней минеральными веществами (при контакте с влажным грунтом и атмосферными осадками, которые могут содержать агрессивные вещества от техногенных выбросов). Затем наступают заморозки, и вся оставшаяся в порах бетона влага замерзает, увеличиваясь в объеме.

C каждым циклом замораживания-оттаивания трещины становятся больше, пока бетон не начинает крошиться

В итоге возникают микротрещины, и с каждым циклом замораживания-оттаивания эти трещины становятся больше, пока бетон не начинает крошиться.

Что называется морозостойкостью

Согласно ГОСТ 10060-2012 «Бетоны. Методы определения морозостойкости», морозостойкостью называется способность бетона в состоянии, насыщенном водой или раствором соли, подвергаться замораживанию и оттаиванию без признаков разрушения, таких, как образование сколов, трещин, шелушения ребер.

В зависимости от того, сколько циклов замораживания и оттаивания образец выдерживает без повреждений, ему присваивается марка по морозостойкости.

Какие методы используются для испытания на морозостойкость

Образцы, которые подвергаются испытаниям, представляют собой бетонные кубики с размером стороны 10 или 15 см. Они отбираются из каждой партии бетона в стандартные формы в соответствии с ГОСТ 22685. Каждая серия образцов изготавливается из одной партии бетона.

ГОСТ определяет, каким образом отбирается бетон, и как хранятся образцы.

Важно!

Определение морозостойкости начинают только после того, как образцы достигли проектной прочности.

Образцы для определения морозостойкости

Образцы в течение 24 часов выдерживают в воде или растворе соли, погруженными на 1/3 от высоты. Через сутки уровень жидкости повышается вдвое, и образец снова выдерживают в течение суток. Следующие 48 часов кубики оставляют погруженными в раствор или воду полностью.

Испытания ведутся непрерывно.

Методы испытания делятся на две группы:

Испытания бетона

1. Первый

Первый метод используют для любых видов бетона, кроме бетонов для аэродромных и дорожных покрытий, а также бетонов, которые будут эксплуатироваться в условиях воздействия насыщенной минералами воды (эти виды бетонов испытываются вторым базовым методом).

Первый метод заключается в замораживании насыщенных влагой образцов на воздухе и последующем оттаивании их в воде (температура воды 20+/–2°С).

При использовании второго базового метода, насыщенные раствором хлорида натрия образцы замораживают на воздухе и размораживают в растворе NaCl (поваренной соли).

После проведения запланированного количества испытаний измеряют изменение массы образцов и их прочности и, с помощью расчетов по специальным формулам, определяют марку бетона по морозостойкости.

2. Второй

Второй метод используется для всех видов бетонов, кроме предназначенных для аэродромов и дорожных покрытий и легких бетонов, которые будут эксплуатироваться в условиях воздействия минерализованной воды.

3. Третий

Используется для всех видов бетонов, кроме легких бетонов.

Ускоренные методы используют образцы, насыщенные раствором NaCl. Их замораживают на воздухе и размораживают в 5-процентном растворе соли.

Затем обрабатывают результаты испытаний так же, как при использовании базовых методов.

К базовым методам относят первый и второй, а к ускоренным — второй и третий.

Какими бывают бетоны по морозостойкости, и где они используются

Для эффективного строительства важно точно знать, какова морозостойкость бетона. Именно поэтому бетонам присваивается марка по морозостойкости. Она обозначается литерой F и числовым показателем в диапазоне от 25 до 1000:

  1. Бетоны с морозостойкостью до F50 применяются, в основном, для внутренних и подготовительных работ.
  2. F50– F150 показывает средние значения морозоустойчивости. Такие бетоны подходят для строительства объектов, которые будут эксплуатироваться в условиях умеренного климата.
  3. Бетоны F150– F300 предназначены для строительства в холодных регионах.
  4. Марки выше F300 применяются для строительства в экстремально холодных условиях, а также для объектов специального назначения.

От чего зависит морозостойкость бетона

Очевидно, что слабая устойчивость бетона к низким температурам связана с его способностью насыщаться водой, которая впоследствии замерзнет. А насыщаемость водой тем выше, чем больше в бетоне пор и капилляров.

Поры и капилляры оказывают влияние также на водопроницаемость и прочность бетона.

Прослеживается прямая зависимость: чем плотнее бетон, чем меньше и меньшего диаметра в нем поры и капилляры, тем он более прочный, водостойкий и морозостойкий. А значит, что наиболее морозостойким будет плотный и прочный бетон.

Как повысить морозостойкость бетона

Чтобы получить плотный и прочный бетон, необходимо соблюдать следующие условия:

  1. Использовать качественный цемент высокой марки. Если планируются бетонные работы при пониженных температурах, или к бетону предъявляются повышенные требования по морозостойкости, прочности, водостойкости, применяют цемент более высокой марки.
  2. Для повышения водонепроницаемости бетона применять глиноземистые цементы.
  3. Выбрать правильное водоцементное соотношение.
  4. Обеспечить правильную укладку и уплотнение бетонной смеси, чтобы в готовом бетоне не было пустот.
  5. Обеспечить уход за бетоном и оптимальные условия твердения, чтобы бетон качественно набрал прочность (температура воздуха +18–22°С, влажность воздуха, близкая в 100%).
  6. Использовать различные добавки для бетона.

Какие добавки используют для бетона

Чтобы получить безупречный бетон, разрабатываются специальные химические добавки, позволяющие придать материалу те или иные желаемые свойства. Для повышения морозостойкости бетона необходимо повысить его плотность и водостойкость. С этой целью применяют пластификаторы и гидрофобизаторы.

Использование пластификатора

Пластификаторы, например, Plastix от Cemmix, действуют следующим образом:

  1. Позволяют сэкономить до 10–20% цемента без потери прочности либо, не увеличивая количество цемента, получить более прочный бетон.
  2. Повышают подвижность бетонной смеси на 1–2 ступени без увеличения количества воды замеса. Дело в том, что количество воды, которое необходимо для протекания реакций гидратации, гораздо меньше, чем количество воды, необходимое для замеса пластичной и удобной в укладке бетонной смеси. Однако, если повысить водоцементное соотношение, в смеси будет лишняя вода. Она не вступит в реакции с частицами цемента, со временем испарится, но оставит лишние поры в бетоне, которые негативно отразятся как на его прочности, так и на водостойкости и морозостойкости. Добавление пластификатора полностью решает эту проблему, ведь с ним бетон становится более подвижным и удобным в работе без потери прочности.
  3. Бетонная смесь с пластификатором, благодаря повышенной подвижности, лучше укладывается. С одной стороны, это позволяет экономить трудозатраты и затраты электроэнергии на обработку уложенного бетона, с другой стороны, бетон укладывается более плотно, вытесняется лишний воздух, благодаря чему уменьшается количество и диаметр пор и капилляров в готовом изделии.
  4. Бетонная смесь с пластификатором дольше остается готовой к работе и не расслаивается, что повышает удобство работ.

В свою очередь, добавки, предназначенные для объемной гидрофобизации бетона (гидрофобизаторы) повышают прочность и морозостойкость бетона, защищают арматуру, а в некоторых случаях повышают подвижность бетона, позволяя обойтись без пластификатора.

Важно!

Пластификаторы и гидрофобизаторы иногда применяются совместно.

Как заливают бетон в мороз

Рассматривая морозостойкость бетона, нельзя обойти вниманием такой вопрос, как производство бетонных работ в условиях пониженных температур. Ведь в России во многих регионах отрицательные температуры держатся более половины года, а строительные работы не ждут.

Но твердение бетона требует определенных условий. Чем ниже температура по сравнению с оптимальной, тем медленнее идут процессы набора прочности; при температуре ниже +5°С они почти прекращаются.

Являясь вяжущим веществом водного твердения, цемент вступает в реакции гидратации при смешивании с водой, но эти реакции протекают не одномоментно. Поэтому в бетонной смеси довольно длительное время есть свободная вода. При температурах ниже 0°С она замерзает. В результате прекращаются реакции гидратации и, даже если позже бетон оттаивает, его прочность все равно будет ниже запланированной.

Твердение бетона

В этих условиях разработаны различные методики ведения бетонных работ, которые позволяют не допустить замерзания бетонной смеси во время ее транспортировки и укладки, а также обеспечить правильный уход за уложенным бетоном.

Важно!

При проведении бетонных работ зимой наиболее важно обеспечить оптимальные условия твердения до набора бетоном критической прочности. Критическая прочность отличается от распалубочной, она задается проектной документацией и обычно составляет 30–50% от проектной прочности. После того, как критическая прочность набрана, бетон можно подвергать замораживанию без ущерба для его прочности.

Методы зимних бетонных работ делятся на две большие группы:

Важно!

Для зимнего бетонирования рекомендуется использовать бетон маркой не ниже, чем М400 (класс 32,5).

Теплым называют бетон, который так или иначе подогревают. Здесь возможны следующие варианты:

  1. Метод термоса. Бетонная смесь замешивается на теплой воде и прогретых заполнителях. Прогревается опалубка, а залитый бетон укрывается теплоизолирующими материалами. Если конструкция достаточно массивная, с толстыми стенками, то тепла, которое выделяется в процессе реакций гидратации, достаточно, чтобы обогреть ее и не допустить чрезмерного снижения температуры. Частный случай метода термоса — метод горячего сухого термоса, при использовании которого бетон можно укладывать даже на промороженное основание, предварительно засыпанное горячим (200–300°С) керамзитом.
  2. Устройство тепляков. В этом случае над залитым бетоном устанавливаются шатры, внутри которых ставят тепловые пушки, что позволяет поддерживать нужную температуру.
  3. Прогрев бетона различными методами (электродами, инфракрасным излучением, кондуктивным, индукционным методом и пр.)

У каждого из этих методов есть свои достоинства и недостатки. Так, метод термоса подходит только для крупных массивных конструкций, прогрев и обогрев бетона требуют расходов электроэнергии и дополнительного оборудования, а также постоянного контроля температуры в толще бетона, чтобы не допустить большого температурного градиента.

«Холодный» бетон — это метод ведения бетонных работ без прогревающих или обогревающих мероприятий. В этом случае используются противоморозные добавки и ускорители твердения бетона.

Важно!

В качестве противоморозных добавок в течение многих десятилетий используют электролиты, растворы солей калия и натрия. Однако эти добавки уместны далеко не всегда:

  1. хлорид натрия может приводить к коррозии металлической арматуры и закладных элементов;
  2. высокощелочные цементы и некоторые другие виды портландцементов не совместимы с электролитами;
  3. использование солей может привести к образованию высолов на поверхности изделия.

Вот почему оптимальный вариант — использование специальных противоморозных добавок для бетона, которые разработаны и проверены в лаборатории. Они не имеют тех недостатков, которые присущи солям и позволяют проводить бетонные работы даже в сильные морозы.

Противоморозные добавки часто сочетают в себе свойства пластификаторов и ускорителей твердения бетона

Противоморозные добавки часто сочетают в себе свойства пластификаторов и ускорителей твердения бетона. Они позволяют:

  1. Проводить бетонирование даже при очень низких температурах (до –20°С).
  2. Обходиться без тепловой обработки уложенного бетона.
  3. Снизить расход воды.
  4. Увеличить прочность бетона, как минимум, на 10%.
  5. Увеличить сцепление с арматурой.
  6. Повысить водонепроницаемость и морозостойкость бетона.

Важно!

Противоморозные добавки могут применяться и в «теплом» бетоне, позволяя экономить электроэнергию на прогрев бетона.

Читайте также: