Метод ударного импульса для кирпича

Обновлено: 18.05.2024

Кирпич - это достаточно распространенный материал для строительства зданий и сооружений, а значит, лаборатория строительных материалов достаточно часто проводит испытания кирпича.

Кирпич стали использовать очень давно, по некоторым источникам, в нашей стране его уже активно применяли в X веке. На данный момент существуют разные виды этого строительного материала, но самый распространенный - это керамический кирпич. Есть еще, например, шамотный, но его чаще используют в печах, так как он обладает высокой жаростойкостью, но вот для строительства больше подходит керамика.


В этой статье мы поговорим об основных методах исследования кирпича и показателях качества этого материала. Ведь для того, чтобы понимать методику, сначала необходимо знать, что мы будем определять.

Показатели качества кирпича

Качество кирпича определяют, опираясь на показатели его сцепления, прочности, геометрии, а также способности противостоять внешним воздействиям.

Итак, по порядку: какими показателями характеризуется качество керамического кирпича?

  1. Начнем с геометрии и внешнего вида кирпича, то есть с того, что в принципе можно определить органолептически. Это в первую очередь размер самого изделия, а также пустот и трещин в нем, длина и глубина отбитости и притупленности. Также сюда относится показатель отклонения от перпендикулярности граней кирпича, то есть, проще говоря, его ровность. Сюда же можно отнести массу и среднюю плотность изделия.
  2. Далее мы обсудим показатели прочности кирпича. Её определяют при сжатии и изгибе.
  3. Что касается способности противостоять внешним факторам, то сюда относятся показатели влагопоглощения и морозостойкости кирпича.

Хотя, конечно, чтобы комплексно оценить качество кирпича, в лаборатории смотрят на общие показатели строительного материала и делают резюме. То есть логично предположить, что если кирпич недожженный, то и прочность у него будет ниже, то же самое касается известковых включений, которые нарушают целостность кирпича при воздействии на него внешних факторов. То есть лаборатория всегда старается дать наиболее объективную оценку, по крайней мере наша лаборатория.

Исходя из критериев качества, устанавливается марка прочности кирпича. По ГОСТу кирпич проверяется на прочность при изгибе и сжатии, по результатам испытаний ему ставят марку от М75 до М300 (кгс/м2). Всего их 8.

Методы исследования кирпича

Как и в случае с испытанием бетона , контроль качества кирпича определяют разрушающими методами. Их мы уже кратко описали: это контроль прочности при изгибе и сжатии. При сжатии кирпич сжимают под прессом (аналогично процессу испытания кубиков бетона), а при испытании на изгиб его просто пытаются сломать и вычисляют приложенные усилия.

Сейчас мы просто упомянем о морозостойкости и водопоглощении, а в будущем посвятим этим методам отдельную статью на нашем сайте.

С водопоглощением понятно: это способность кирпича вбирать в себя влагу за счет микротрещин и разнообразия составных частей кирпича. Определить её относительно нетрудно: сухой кирпич кладут в воду и насыщают влагой, после чего рассчитывают с учетом изменения массы то количество влаги, которое он в себя вобрал.

С морозостойкостью сложнее. Насыщенный влагой кирпич помещают в морозильную камеру (- 18 +-2 градуса) и ждут, пока он замерзнет. После замерзания его оттаивают при температуре 20 градусов. И так совершают несколько циклов до тех пор, пока на кирпиче не появятся дефекты или нарушение целостности. Таким образом определяют марку прочности кирпича (F25, F35, F50). У нас самый распространенный - это F35.

В ГОСТ 31937-2011 есть пункт, в котором написано, что на сплошных участках стен, а также в простенках можно проводить испытания кирпича и кладки неразрушающими методами контроля.

Неразрушающие методы контроля кирпича

Обычно определение прочности проводят механическими методами неразрушающего контроля. Однако для этого также существуют и приборы.

Для испытания используют ультразвук, а также проверяют прочность сцепления каменной кладки при помощи ПСО-10МГ4КЛ, ПСО-30МГ4КЛ.

При механических методах контроля используют инструменты типа молотков Шмидта, геофизические методы, эндоскопы и т.д. - в общем, методы, используемые при контроле качества бетона (метод пластической деформации, метод ударного импульса и т.д.).

В случае, если прочность стены имеет решающее значение, то необходимо установить этот показатель в лаборатории, а для этого в стене выбуривают кирпичные керны с последующими испытаниями разрушающими методами. При выбуривании керна происходит нарушение целостности стены, что нежелательно, поэтому неразрушающие методы имеют преимущество, однако они не всегда могут дать точный результат и имеют погрешности.

Исходя из вышенаписанного, отбор проб кирпича делают специалисты лаборатории, так как они нанесут лишь минимальные повреждения стене, которые никак не отразятся на её прочности. Если отбор произвести неправильно, это может повлечь за собой слабость конструкции. Поэтому будьте внимательны и доверяйте такое задание специалистам.

Регламентируют контроль качества кирпича по следующими ГОСТам: 530-2012, 7025-91, 58527-2019.

Заключение

Мы лишь затронули методы контроля качества кирпича. Если в одной статье подробно рассматривать каждый метод, то она превратится в книгу. Поэтому мы обязательно разместим у себя подробное описание каждого метода в отдельности, ведь они полны нюансов. Следите за нашим блогом и не пропускайте наши новые статьи!

Как всегда, если у вас возник вопрос, вы всегда можете задать его нашему специалисту в форме ниже, а также посетить нашу страницу "Лаборатория испытания кирпича и стеновых блоков" и заказать испытания кирпича в лаборатории.

Строительная лаборатория ООО "Бюро "Строительные исследования" занимается испытаниями конструкций и материалов в Санкт-Петербурге и Москве

Основная специализация лаборатории:

1. Заполнив форму на нашем сайте

3. Написать нам на почту

Подписывайтесь на наши социальные сети и YouTube канал, там много интересной информации и лайфхаков.

Как-то пролистывал отчет по одному зданию, там ребята зачем-то определяли прочность кирпича методом ударного импульса! Насколько мне известно данный метод применим для железобетона, но не для кладки! Залипуха!?

В современных приборад метода ударного импульса имеются градуировочные зависимости для определения прочности кирпича и раствора. Например прибор ИПС 4.3 возможно и в Оникс.

Обследование (влагометрия) проектирование

medved
Вы правы. Имею прибор ИПС МГ.4+ с заводской градуировкой для определения прочности кирпича.
Применяю его для определения ПОВЕРХНОСТНОЙ прочности кирпича при выборе новой штукатурки на исторических зданиях.
Использование данных для определения прочности кирпичной кладки считаю рискованным мероприятием, поскольку кирпич, в отличие от бетона, имеет в своем объеме большое количество пор и пустот. И этот объем пор не постоянен даже в одной партии, не говоря уже о продукции разных заводов.
Заводская КОСВЕННАЯ градуировочная зависимость построена на сравнении полученных данных (упругого отскока, времени пробега ударного импульса. ) с фактической прочностью материала, полученной испытанием на прессе.
Фактически, испытывая керамический кирпич методом ударного импульса мы получаем результат с ошибкой, которая увеличивается с изменением пористости испытываемого кирпича от пористости неких ЭТАЛОННЫХ кирпичей, по которым и была построена зависимость.
Откровенно говоря, мне не понятно, на основании какого ГОСТа проводятся испытания КЕРАМИКИ методом ударного импульса.

Скорее всего за основу взят ГОСТ 24332-88 "КИРПИЧ И КАМНИ СИЛИКАТНЫЕ. Ультразвуковой метод определения прочности при сжатии", который адаптирован под ударно-импульсный метод.
Вообще следует понимать, что госты по неразрушающему контролю в большинстве своем сильно устарели и не рассматривают в полной мере возможности современных приборов.
Достоверности получаемых результатов для керамики с помощью ударно-импульсного метода действительно весьма сомнительна. В общем то досегодняшнего дна единственный разумный способ оценить прочность кирпича - это испытать его в прессе.

Обследование (влагометрия) проектирование

Силикатные кирпичи довольно плотные изделия, как и бетон. В них нет такого большого количества пор, какие есть в керамическом кирпиче. Поэтому "притянуть" ГОСТ 24332-88 "КИРПИЧ И КАМНИ СИЛИКАТНЫЕ. Ультразвуковой метод определения прочности при сжатии" к испытанию керамики не получается.
Более того, в "Руководстве. " на прибор отсутствуют ссылки на утвержденные нормативы, согласно котором были получены градуировочные зависимости для керамического кирпича.
Зато есть фраза, что при испытании пустотного (допустим, семи-щелевого) кирпича необходимо самостоятельно вычислить количество пустот и учесть их при расчете прочности.
Тем не менее такие приборы удалось каким-то образом внести в "РЕЕСТР средств измерения" с "нужной" градуировкой.
Забавно получается: ГОСТа на испытание КЕРАМИКИ ударно-импульсным методом нет, а прибор - ГОСТирован, а значит и его показания - правильные.
Абсолютно согласен с SergeyU1982 в том, что ". единственный разумный способ оценить прочность КЕРАМИЧЕСКОГО кирпича - это испытать его в прессе."

Завод железобетонных игрушек

При испытании керамики Ониксом 2.5 получал слишком высокие показатели прочности, сравнительного анализа в сравнении с прессом нет, но по-памяти это 20. 40% завышение.

Собственно применение неразрушающих методов для бетона тоже требует уточнения испытанием в прессе либо методом отрыва со скалыванием. Так что - без разрушения достоверность - "никакая".
При обследованиях зданий, постоянно сталкиваемся с тем что разрушения проводить невозможно. Приходится применять сразу несколько неразрушающих методов и в расчетах принимать минимальные значения. Хотя такой подход может быть забракован лю.бой испытательной лабораторией, поскольку это есть прямое нарушение ГОСТов.
Интересно - как другие выходят из ситуации, когда нет возможности провести разрушающие испытания или отрыв со скалыванием?

Для определения прочности используется прибор ИПС-МГ4.03. Скажу сразу, в этом деле я человек новый, опыта мало. ГОСТы читал, но не понял что конкретно нужно для определения КЛАССА бетона. Конструкции 20-летней давности.

согласно гост неразрушающие методы контроля
непосредственно по ипс (измеритель поверхностного слоя) класс бетона оценивать нельзя
выход - в комбинации с методами локального разрушения

Согласно ГОСТ я видел алгоритм оценки класса бетона (например, отрыв со скалыванием). Но тогда что же определяет ИПС?

Незнаю как по рос.нормам, но для экспертизы по нашим класс бетона определяется по результатам лаб-ных испытаний отобранных образцов. Да из практики - приборы неразрушающего контроля могут дать прогнозную сравнительную оценку, и их показания сильно колеблятся в зависимости от качества поверхности. Более-менее адекватно показывает отрыв со скалыванием.

И все же, если нет возможности измерения прочности отрывом, точнее есть только показания ИПСа. Мне не нужно умных советов, как измерять прочность правильно. Я все прекрасно понял из вышесказанного, но как исполнитель я должен определить класс бетона, используя то, что есть, другого прибора мне не дадут. Если кто знает четкий алгоритм, поделитесь бесценным знанием. Заранее благодарю.

Прибор у вас отторирован? Если да, просто произведите цикл испытаний в соответствии с инструкцией. Если нет торировочных графиков, посмотрите какие цифры он выдает при простукивании конструкций (или образцов) с известной прочности, и сравните с исследуемым образцом.

Поподробнее, пожалуйста. Повторюсь, я в этом деле человек новый. Я так понимаю, торировка - это степень погрешности?

тОрировка, наверно это когда прибор проверяют Тором))) Возьми значение прибора и умножь на 0,8 так в сп по обследованию написано

Возможно ты имел в виду склерометр ИПС. Сразу справедливый вопрос о тарировке. Я не встречал хорошо оттарированных ИПС, и вообще не знаю - тарируют ли их в Питере сейчас. В общем, алгоритм действия и правда сложен - чтобы составить (придумать) репрезентативную выборку на нетарированном ИПС нужно знать как он себя ведёт на бетоне с известным классом. Сам понимаешь - это вопрос опыта работы с данным\конкретным прибором.

Да, я имел в виду склерометр. Прошу прощения, не уточнил сразу. Загвоздка в том, что прибор выдал значения прочности от 50 до 80 МПа на плите покрытия (стреляли в 5-ти разных точках). Что-то многовато на мой взгляд. Попробую конечно на образце с известным классом, но какие выводы надо будет сделать после проведения этих измерений? Получить процент погрешности?

Лучше измерять не наобум, а выбрать место, в котором выполнить не меньше 10 измерений. Поверхность для бойка нужно тщательно подготовить - очистить от грязи, влаги и затереть. На результаты измерений очень сильно влияют шероховатость поверхности, наличие на ней мелкого щебня, высолов и карбонизации. Процент погрешности - конечно, но это на вскидку, - она иногда меняется. Рекомендую посмотреть инструкцию к прибору и сделать в excel таблицу обработки выборки по принятой в работе статистике - в ней и обрабатывать поправленные значения. Метод косвенный и ссылаться на измерения можно только в заключении о соответствии класса бетона проектному.

ЭПБ, обследование стр. конструкций

При такой прочности бетон звенит, когда по нему молотком ударяешь, и следов не остается на поверхности.

Возьми зубило и молоток. Тогда приблизительно определишь класс бетона.

Посмотрев распечатку, которую выдает прибор, я заметил некую зависимость. Жалко картинки нет под рукой, но смысл в следующем. Класс бетона получается простым умножением среднего значения на 0,74. Если все так примитивно, тогда к чему такие мощные трехэтажные формулы в ГОСТе?

ЭПБ, обследование стр. конструкций

Так этот коэф. на дисплее прибора высвечивается, ниже 100 сут. В ониксе вроде коэф. 0,67 выставляется и 1000 суток. Потом эти показания уменьшаются, если привязывать к образцам или к вырыву со скалыванием.

(стреляли в 5-ти разных точках). Что-то многовато на мой взгляд. Попробую конечно на образце с известным классом, но какие выводы надо будет сделать после проведения этих измерений? Получить процент погрешности?

Если на приборе нажать ввод (если меньше 15 испытаний), он выдаст среднюю прочность, отбраковав ненужные результаты. В вашем случае прибор среднюю прочность бы не выдал, написал бы большой разброс результатов. Статистику на месте надо вести, когда в щебень боек попадает, сразу высокий результат выскакивает.

Понимаете, дела какие, стреляли в перекрытия в 3-х разных подъездах, по 20 раз (4 на каждую точку), и во всех такие гигантские цифры. Опять же, прочность прибор-то выдает, но меня там не было и хлопцы сняли только показания и все, а мне теперь на основании этих цифр надо выводы делать.

ЭПБ, обследование стр. конструкций

Хлопцы направление удара могли в приборе не поменять и если стучали вверх, при направлении удара горизонтально или вниз, то показания завышенными будут.
Какие плиты перекрытия, пустотки? Если пустотки, то к 30 МПа подводите показания, и завышенные показания просто выкиньте.

Добрый день! Возник небольшой вопрос по определению прочности бетона на сжатие неразрушающим методом.
Возникла необходимость в использовании покрытия монолитного паркинга, бетон которого не набрал полную прочность. Нет 28 суток. Бетонирование велось в конце февраля при температуре ниже 0. Подрядчик предоставил исполнительную схему с точками съемки склерометром. Удары производились снизу перекрытия. Показатели прочности на сжатие от 22 Мпа до 40Мпа. Только схема с точками съема и цифрами с прочностью. Обычно в отчетах обследований указывались: прочность по тарировочному графику,погрешность определения конкретным прибором,прочность на сжатие и ближайшая марка(класс бетона).
Вопрос в следующем. Правомерно оказалось мое требование предоставить полноценную таблицу с хар-ками бетона,включая класс бетона? Склерометр ведь выдает косвенные характеристики.Либо достаточно было умножить на 0,7 выданные подрядчиком показатели прочности на сжатие ,полученные с применением склерометра? И примерно выйти т.о. на класс бетона.
Пролеты перекрытий по 8 метров. Вес крана 40 тонн. Как-то напрягает отсутствие точных цифр

Марка бетона, сейчас, является неофициальной характеристикой прочности. В документе должен присутствовать класс бетона.

Марка бетона, сейчас, является неофициальной характеристикой прочности. В документе должен присутствовать класс бетона.

Да,конечно. Но все-таки по посту 18. Достаточно ли таких показаний склерометра для определения предела прочности на сжатие бетона(Rпризм)?

В составе любого обследуемого здания могут быть стальные, железобетонные, деревянные и каменные конструкции. Как любые строительные материалы, каменная кладка имеет свои параметры прочности. Каменная кладка состоит из непосредственно камня (различные по плотности блоки или кирпичи) и раствора (цементно-песчаного, глиняного или известкового). Каменная кладка образует строительную конструкцию (стену или колонну), работающую на сжатие (центральное или внецентренное), на сжатие с изгибом или на смятие.

Соответственно, каменная кладка имеет свойства сопротивления вышеперечисленным внешним воздействиям, называемыми расчетными сопротивлениями сжатию и смятию (это основные расчетные характеристики кладки).

При проведении технического обследования строительных конструкций зданий и сооружений выполняется этап по инструментальному контролю параметром прочности, и для каменной кладки это не исключение. Определение фактической прочности кирпичной кладки и дальнейшее соответствие ее проектным значениям либо выполнение расчета несущей способности является основным при оценке технического состояния каменных конструкций.

Определение фактической величины прочности кирпичной кладки достигается следующими способами:

разрушающим - при помощи приборов механического воздействия, или неразрушающим - наиболее часто использующимся при проведении натурных исследований.

При использовании разрушающего метода определения прочности кирпичной кладки стен или колонн производят отборку образцов необходимого размера высверливанием алмазным дисковым инструментом. Далее ослабленное место отбора восстанавливается замещающей кладкой либо бетоном или специальным ремонтным составом. После этого отобранный образец доставляется в лабораторию для разрушения его на специальном испытательном прессе или стенде.

При использовании неразрушающего метода определения прочности кирпичной кладки, данная работа делится на две составляющие:

определение прочности кирпича и определение прочности раствора. Прочность блока или кирпича может быть определена с помощью прибора "Оникс" или "ПроКондтрол" методом ударного импульса либо ударом бойка молотка.

Умение пользования последним способом достигается опытом при неоднократном инструментальном определением прочности бетона и камня прибором и молотком с дальнейшим сравнением результатов. В учебных пособиях приведены правила определения прочности кирпича и бетона при помощи удара молотка путем изучения следа от удара, однако, инженер-обследователь, как правило, помимо изучения следа от удара основывается на ощущениях и звуке при ударе. Ультразвуковой метод при определении прочности кирпичной кладки не используется, т.к. он основывается на зависимости между величиной скорости распределения ультразвука в теле кладки и параметров прочности, а кирпичная кладка имеет пустоты в кирпичах. Прочность раствора кладки можно определить по испытаниям отобранных горизонтальных образцов.

Также прочность раствора кладки определяют с помощью ножа: с достаточным усилием проводят лезвием ножа по раствору и смотрят какой остался след. Если на растворе остается только след (раствор царапается), то марка раствора выше М75, если раствор немного крошится, то марка М50, если раствор сильно выкрашивается, то от М10 до М25, если же раствор сильно выкрашивается, то прочность раствора от "нулевой" до М5. По результатам натурного обследования кирпича и раствора уже можно определить прочность самой кирпичной кладки при помощи таблицы 2 СНиП "Каменные и армокаменные конструкции".


Испытания бетона на прочность – одно из самых важных исследований на протяжении всего процесса строительства. Реалии строительства таковы, что упустив малейшую деталь на этапе производства бетона или возведения непосредственно железобетонной конструкции, можно не только получить проблемы с внешней составляющей архитектурного облика зданий, таких как высолы, но и серьезные потери несущей способности. В конечном итоге службы технадзора начинают проверять строительного подрядчика, которому при отсутствии определенной документации, подтверждающей качество бетона и его соответствие проектным требованиям, будет тяжело доказать отсутствие халатности при проведении работ. Избавить нас от таких затруднений призваны различные испытания и методы контроля прочности бетона. ГОСТ 22690 регламентирует 4 схемы испытания: А, Б, В и Г. Вкратце: схемы А и Б предназначены именно для предприятия-изготовителя. Их основная задача – контроль приемки, при этих схема коэффициента однородности качественных показателей будет варьироваться от 6 до 13 процентов. Схемы же В и Г предназначены уже для контроля на выходе, и по ним осуществляют проверку бетона сами строители, занимающиеся монолитным железобетоном. Не все эти схемы и не всегда можно легко понять и применить, именно поэтому в услугах росаккредитованных строительных лабораторий так нуждаются на этом этапе строительства. Но все же мы подробно разберем схемы В и Г, а также поговорим о коэффициенте вариации.

Коэффициент вариации прочности бетона

Коэффициент вариации показывает относительную изменчивость бетона, тем самым выявляя однородность величин. Он не должен превышать 33%, чтобы мы могли в точности знать однородность измерений или показателей прочности бетона.

Рассчитать его достаточно сложно не искушенному в математических формулах человеку. Если говорить об этом простым языком, то нам нужно понимать, как прочность бетона, измеренная в конкретной точке, отличается от среднего арифметического показателя всех точек поверхности. Коэффициент даст нам возможность понять, насколько рискованно вводить такой бетон в конструкцию возводимого здания, соответствует ли класс бетона требованиям проекта. Это значит, что коэффициент вариации может дать нам информацию о качестве производства бетона, качестве самого материала и его реальной стоимости.


Бетон создается искусственным путем, при этом в нем редко используются только лишь однородные продукты (цемент, песок, вода). В большинстве случаев в бетон добавляется крупный заполнитель, который также влияет на прочностные характеристики в определенных точках. Фактически получается, что плотность бетона в различных его точках отличается от необходимой, и нам стоит провести проверку, чтобы убедиться, влияет ли это на качество бетона, и, если влияет, то каковы значения по разбросу этих показателей.

Бетон классифицируется не только по структуре и плотности, но и по условиям уплотнения. В расчет также принимается назначение бетона и вид заполнителя. Все это определяет коэффициент вариации прочности бетона.

Определение коэффициента вариации при производстве бетона непосредственно на заводе-изготовителе происходит путем отбора проб из массы в количестве 25-30 серий. Важную роль при заборе и подготовке образцов играют условия хранения: на этом этапе нам важно соблюсти условия по назначению бетона, иначе говоря, воссоздать условия твердения бетона непосредственно при возведении конструкции. В этом нам помогут специальные климатические камеры.

По итогам испытания мы выводим коэффициент вариации, который есть частное от среднеквадратичного отклонения и среднего арифметического значения прочности бетона. Чем ниже этот показатель, тем однороднее, а значит, и прочнее будет бетон. По результатам испытания бетону присваивается класс, который влияет на проверку его соответствия проектным требованиям. Присвоенный класс фиксируется в акте испытания и прикрепляется к общему комплекту документов при возведении сооружения.

Основные тезисы в работе по схеме Г мы описывали ранее, но оптимально будет еще раз все разложить по полочкам.
Итак, схема «Г» на данный момент является одной из самых востребованных и часто применяемых в строительных лабораториях. Она позволяет произвести контроль прочности на самом начальном этапе производства работ. Важно проверить все характеристики материала: морозостойкость, влагостойкость, плотность. Однако самой интересной и нужной является прочность бетона. Первый же вопрос, который возникает, когда мы начинаем плотнее знакомиться со схемой «Г»: почему в ней не рассчитывается коэффициент вариации, и стоит ли в связи с этим отказаться от этого метода и перейти на метод «В»? Напомним вам одну очень важную вещь: для того, чтобы определить коэффициент вариации, необходимо произвести минимум 25 (!) испытаний образцов бетона. В условиях работы по возведению конструкции это часто не представляется возможным, следовательно, мы получим весьма некорректную картину на выходе. Испытание по методу «Г» позволяет с той же точностью определить прочностные характеристики бетона, но уже при помощи косвенных методик неразрушающего контроля, таких как ультразвук, отскок и ударный импульс, каждому из которых мы уже посвятили отдельные статьи, с которыми вы можете ознакомиться. Коэффициент вариации берется по принципу Bф=0.8*Rm.

Читайте также: