Лахта центр строительство фундамента

Обновлено: 14.05.2024

Под фундамент 170-метрового небоскреба забетонировали плиту толщиной 4,5 м, армированную 2 200 тоннами стали.

Операция продолжалась 33 часа и 15 минут. Было залито 23 725 м3 бетона. Непрерывно работали 547 бетоновозов, которые возили с завода низкотемпературную бетонную смесь марки М600 - класс прочности соответствует В45.

Небоскреб, участвовавший в бетонном рекорде, - первый из девяти в One Bangkok, крупнейшем строительном проекте Таиланда. Какой толщины будет фундаментная плита под флагман этого комплекса – 436-метровый небоскреб One Bangkok O4H4 пока не сообщается. ( Collapse )

Строительный алфавит Лахта Центра. «Ф» - фундамент башни

Под башней Лахта Центра располагается фундамент, который характерен только для современных небоскребов.

Это не просто очень большая и очень надежная подземная конструкция. У нее особенное строение из расположенных друг над другом железобетонных плит. Такой фундамент называют коробчатым.
Впервые этот тип конструкций применил наш соотечественник – выдающийся инженер Николай Никитин при строительстве здания МГУ, где с его помощью победил прежде неразрешимые проблемы с грунтами основания – не достаточно надёжными, чтобы ставить на них тяжелую высотку.

С тех пор коробчатый фундамент – безотказное решение для самых сложных задач, возникающих перед небоскребостроителями.
Как этот уникальный, надежный и характерный только для высотного строительства тип фундамента реализован в башне Лахта Центра – наше сегодняшнее видео:

Строительный алфавит Лахта Центра. «С» - сваи, самые глубокие подземные конструкции комплекса

Свайное поле комплекса Лахта Центр поражает масштабами – тут около 3, 5 тысяч свай разных конфигураций.

Самые впечатляющие параметры, конечно, у свай башни – ведь чтобы вырасти на почти полукилометровую высоту, нужно сначала уйти очень далеко под землю, заглубившись до прежде невиданных минусовых отметок. Самые длинные сваи башни проходят до минус 82 метров – это рекордный параметр для петербургских и, вероятно, для российских зданий.

Зачем же нужно было так заглубляться? Ведь, как теперь известно многим, до опорного слоя - «всего» 20-30 метров. Почему нельзя было упереться в эту надёжную толщу, а не идти дальше в сторону магмы? Вот еще хороший вопрос – почему под башней сваи разной длины? Зачем такие широкие - по 2 метра? И в довершение - зачем это произведение геотехнической мысли снабдили «интеллектом» - большим количеством тензодатчиков?

Обо всем этом смотрите в нашем новом видео серии «Строительный алфавит Лахта Центра»:

Строительный алфавит Лахта Центра. «Р» - РЕКОРД

Строительство уникального комплекса состоит из ежедневных больших и маленьких достижений. Но иногда бывают особенно важные операции и особенно громкие победы. Именно к таким относится заливка нижней плиты коробчатого фундамента башни Лахта Центра.

Готовили эту операцию не один день и даже месяц. У строителей не было ни малейшего права на ошибку – невозможно переделать такой элемент, как железобетонная плита площадью с футбольное поле, высотой в 3,6 м и массой в десятки тысяч тонн.

Такой элемент можно сделать только один раз и только идеально. Подробности об этом событии, ставшем в итоге мировым рекордом, смотрите в новом видео серии «Строительный алфавит».

Грунты Джакарты против мегатолла. Пока строители выигрывают


Небоскреб высотой 638 метров в Джакарте построит китайская государственная строительная фирма China Construction Engineering. Разрешение получено еще в 2015-ом.


  • 1. Здание будет расположено в одной из самых активных сейсмических зон в мире.
  • 2. Грунт - чрезвычайно мягкие аллювиальные (намывные и несцементированные) отложения.
  • 3. Высокое здание нуждается в большом количестве воды. Скорей всего, её будут привозить потому что в Джакарте катастрофическая проблема с пресной водой.
  • 4. Пристально рассматривался вопрос прогнозирования трафика. Транспортные пробки – явление каждодневное.

Строительный алфавит Лахта Центра. "Д"- диски, главные по борьбе с грунтами

Предлагаем новое видео серии «Строительный алфавит Лахта Центра».

Сегодняшняя история посвящена дисковой распорной системе – конструкции, которую строители сначала изготовили, а затем – разобрали. К чему такие сложности?
Все дело в грунте. Думаете, после изготовления свай все трудности с ним остались позади? Это не так – оставался еще один раунд, наверное, самый сложный. Под фундамент башни нужно извлечь более 100 тыс. м3 грунта. По мере откопки строители неизбежно столкнутся с огромным давлением грунтов на только что сформированные стенки котлована. Если ничего не предпринять, то стенки будут осыпаться и вместо котлована получится просто большая яма. Но строители знают, как с этим бороться.



В Шэньчжэне состоялась церемония закладки фундамента самого высокого небоскреба в Китае - Shimao Shenzhen-Hong Kong International Centre высотой 668 м. ( Collapse )

О слабых грунтах и сильной геотехнике

Строительство 462-метрового небоскреба Лахта Центр в Санкт-Петербурге успешно движется к завершению.



Вокруг большого и неординарного проекта было много слухов и домыслов. Лахта Центр обвиняли в экономическом кризисе и в уничтожении редких клопов, восковника болотного, перелетных гусей и в возможном цунами в Финском заливе при падении башни. В нарушении циркуляция свежего воздуха в городе. В строительстве на старом индейском кладбище. Однажды депутаты петербургского ЗакСа устраивали спецзаседание и обсуждали неотектонические риски от строительства высотки.

Говорили, что на питерских грунтах нельзя строить небоскребы. Слабые грунты Петербурга – это, пожалуй, уже некий штамп, который все знают и употребляют.

Но как же тогда здесь вырос огромный город? ( Collapse )

Технологии, которые развились благодаря небоскребам

У НЕБОСКРЁБА ДВА РОДИТЕЛЯ: ПРОКАТНЫЙ СТАН И ЛИФТ



Небоскребы способствовали появлению и развитию технологий, без которых сегодняшняя стройиндустрия уже немыслима.

Цена на сталь

Развитие сталелитейной промышленности снизило цены на стальной прокат - основу любого высотного здания. ( Collapse )

Как менялся "Лахта центр" за прошедшие зимы?

Предлагаем посмотреть в ретроспективе как менялось место строительства и небоскреб "Лахта центр" на протяжении всех прошедших зим. Наверху - последние фото, чем ниже - тем раньше они были сделаны. Последняя фотография сделана в ноябре 2016, но он выдался таким холодным и снежным, что в этом году его можно смело засчитывать как зимний!


лц зима 2016.jpg

панорама 1.jpg

ядро 4.jpg

ядро 3.jpg

кран 3.jpg

кран 2.jpg

лц красиво.jpg

лц год назад.jpg

(без названия)

(без названия)

(без названия)

(без названия)

(без названия)


Уже не верится, глядя на стремительно растущий в небо "Лахта центр", что совсем недавно здесь было вот так.

Более 600 тысяч тонн на площади фундамента в 5700 квадратных метров… Вряд ли вы найдете в мире аналоги параметров петербургского «Лахта центра». Держать супертолл и супертяж помогают сваи. Непростые. Они не опираются, они – висят.

image

Стало не по себе? Не спешите обходить участок строительства по радиусу в 500 метров. Разберемся, как можно получить надёжную опору от того, что находится в «висячем» положении.

— А что, картошка? Ты думаешь, картошка – это так вот просто, сварил и съел? Не тут-то было! Из картошки знаешь, сколько можно блюд приготовить? А ну, считай: картошка жареная, отварная, пюре, картофель фри, картофель пай. Картофельные пирожки с мясом, с грибами и так далее. Картофельные оладьи, картофельная запеканка, картофель тушеный с черносливом, картофель тушеный с лавровым листом и с перцем, картофель молодой отварной с укропом, шаньги… (Х/ф «Девчата», 1961 г)

Я не случайно вспомнил этот отрывок из старого советского фильма. Как же ошибаются те, кто считает, что свая – это некий «столб», простой и безыскусный, как картофельный клубень.

Сегодняшние сваи бесконечно далеко ушли от прадедов — деревянных бревен. Они могут быть бетонными, стальными, железобетонными, комбинированными – по материалам. Забивными, вдавливаемыми, вкручиваемыми, буровыми, набивными, буронабивными – по способу, которым они попадают в грунт. Их могут сделать заранее и погрузить в шахту или изготовить прямо в ней. По методу работы свая может быть висячей или опорой- стойкой. Современная свая – само по себе искусное инженерное сооружение.

image


А можно еще так. 1988 г. Экспериментальный способ доставки свай в грунт — «застреливание», в данном примере — сквозь воду. Армейское орудие перепрофилировано для строительных целей. Глубина забивки увеличена в 2-2,5 раза за один выстрел в «в сравнении с иным использованием той же энергии».
Источник.

А теперь еще усложним задачу – сваи работают в группе — свайном поле. В рамках поля свайные параметры могут меняться. Рецептуру поля прописывают геотехники – свою, в каждом отдельно взятом случае. В случае башни «Лахта центра» — уникального сооружения в грунтовых условиях третьей, самой сложной категории – эта рецептура составлена виртуозно.

image


Туман над свайным полем «Лахта центра». 2013 г

А нужны ли сваи?

При всей очевидности ответа, он не очевиден. Высотные здания в принципе могут обойтись и без них. Пока несостоявшийся петербургский небоскреб Ingria Tower (165 м), который должны возводить на Поклонной горе, по проекту не имеет свай – только плиту. Конечно, не от хорошей жизни: под землей в этом месте проходит зона влияния тоннелей метро. Тем не менее, расчеты компании подтверждали надежность конструкции, впоследствии решение одобрила «Главгосэкспертиза».

image

Проект строительства не получил согласования «Госстройнадзора». Не из-за свай. Причина – несоответствие Градплану и «лишний» подземный этаж. Авторы проекта – «Архитектурная мастерская Царицына». Фотоисточник

Может, и в «Лахта центре» обойтись без свай? Просто сделать плиту помощнее да поглубже?
Первое, что делают геотехники, получив результаты подземных изысканий – отвечают на этот вопрос. Вердикт однозначен – строительство на естественном основании для «Лахта центра» невозможно. Опорные слои — вендские глины, расположены слишком глубоко. Как не заглубляй фундаментную плиту, до них все равно далеко.
Даже если бы опорный слой был близко – без свай не обойтись. На то есть причина.

Чего боятся геотехники

Любое здание дает осадку. Механику процесса легко представить – вы садитесь на диван и продавливаете подушку.

Здание и грунт работают также

Сама по себе осадка не представляет угрозы. Проблемы начинаются только когда она проходит неравномерно. Страшный сон любого геотехника – это крен или прогиб фундамента до закритического состояния.

В случае супертолла ставки растут. Не только из-за высоты башни.

В «Лахта центре», как в большинстве современных небоскребов, основной элемент системы устойчивости – ядро.

image

У петербургской башни оно железобетонное, очень массивное – толщина стены от 2,5 до 0,8 метра с утоньшением по мере набора высоты. Диаметр тоже убывает, максимальный радиус – 26 метров в основании башни.

Большая часть нагрузки на фундамент должна прийтись именно на этот 26-метровый участок.

image


Ядро «Лахта центра» на уровне фундамента. 2015 г

Блюдце, суповая тарелка или стакан

Наибольшее давление на основание – по центру, наименьшее – по краям. Сплошная плита фундамента будет прогибаться. В «стакан» она, конечно не превратится – закритическое состояние наступит еще на этапе «суповой тарелки».

Можно сделать плиту жестче – больше арматуры, больше железобетона, больше прочности! По расчетам, требуемая жесткость достижима в плите толщиной 8 метров.

Таких монолитных плит в мире нет. Небоскреб Messe Torhaus (Франкфурт) имеет в фундаменте 6-метровые участки. Больше такой подвиг никто не повторял.

image


Messe Torhaus, 117 м. Фотоисточник

Есть причина, по которой никто и никогда не будет делать плиту толщиной 8 метров из бетона. Парадоксально, но она просто не будет прочной. Это произойдёт из-за появления трещин во время остывания бетонной смеси. Управлять процессом экзотермии на монолите такой толщины вряд ли возможно.

image


Фото из инстаграма Саратовского завода бетонных смесей. (Иллюстрация, не является демонстрацией качества продукции завода — см. инстаграм)

Messe строили в 1983-84-м, сейчас есть более эффективное техническое решение – коробчатый фундамент. Чтобы не отходить далеко от свайной темы, пока просто примем как факт – под башней «Лахта центр» в итоге фундамент именно такой, коробчатый. Как он работает на равномерное распределение нагрузок, расскажем в отдельном посте.

Коробчатый фундамент не даст плите уподобиться суповой тарелке. Но добиться идеально одинакового давления по всей площади основания ему все же не под силу. Чтобы предотвратить эффект «блюдца», в бой вступает свайное поле.

СИНХРОНИЗАЦИЯ ОСАДКИ

Первое, что нужно знать для создания равномерной осадки – как нагружены разные участки под основанием.

Посмотрим на схему.

image


Три зоны нагрузки

Первый сюрприз – благодаря коробчатому фундаменту теперь под центром будут малонагруженные сваи.

Зона повышенного внимания – вторая, между центром и периферией — значительная нагрузка из-под ствола здания перешла в эту зону. Дальше – за контуром здания, на периферии, давление ослабевает.

Теперь нужно сделать так, чтобы все участки оседали синхронно. Дирижировать оркестром будут геотехники.

Есть три параметра свай, которые можно регулировать.

Первый – длина. Она повышает несущую способность сваи и замедляет скорость осадки. За контуром здания — сваи по 55 метров. Внутри — на десять метров длиннее.

Второй параметр – частота свайного шага. Под ядром и в периферии он равен 5 метрам. В зоне концентрации нагрузки «ускоряется» до 3-4 метров.

image


Свайное поле под башней. Темным значком обозначены сваи длиной 65 м., светлым — 55 м.

Третье – ширина сваи. Она не меняется – диаметр всех конструкций — 2 метра. Это – самые широкие сваи в мире.

image


Подготовка армокаркаса сваи

Ширина повышает несущую способность. По расчетам, средняя нагрузка на сваи – 2 545 Тс при двойном запасе несущей способности и прочности.

Так что такое висячая свая

Многие считают, что свая — это такой аналог «ног»: здание опирается на свайные «конечности» как человек – на ноги. Такое сравнение отчасти справедливо. В случае со сваей-стойкой опора идет на конец конструкции. Ее даже называют анатомически и ласково — «пята». Для простых случаев работы пяты достаточно.

В Петербурге сваи часто имеют длину не более 20 метров. Их упирают пятой в слой морены, представляющий собой скопление обломков горных пород. Получается хорошо – и свая плотно уперлась, и валуны разбуривать и извлекать не нужно.

Свая становится висячей, когда основная несущая способность обеспечивается не пятой, а боками за счет того, что между боковой поверхностью свай и грунтом возникает трение. У «Лахта центра» 85 % несущей нагрузки обеспечено именно боковыми поверхностями свай.

image


Схема передачи нагрузки сваями на грунты основания. Источник

Что надежнее – стойка или висячая свая?

Большинство уникальных зданий с фундаментами глубокого заложения стоит на висячих сваях. Можете держать пари – если перед вами небоскреб и нескальный грунт – вероятность висячих свай приближена к 100%.

Но это не значит, что сваи-стойки ненадёжны. Тип свай определяется характеристиками здания и грунта. Каждый тип хорош на своем месте.

Итоговые параметры

По результатам расчетов минимальная осадка составит 84,8 мм, максимальная – 121,9 мм за весь период. О равномерности можно судить по следующей цифре — крен фундамента с учетом ветровой нагрузки — 0,00016. Шестнадцать стотысячных — такое не всякой техникой зафиксируешь.

image


В следующем посте читайте об изготовлении свай для «Лахта центра»: как не потерять направление при бурении? Что делать с валунами? Где и зачем поставили датчики в сваях? Как проводили съемки на глубине 82 метра и что там снимать?

В.М. Лукин – руководитель проекта по железобетонным конструкциям «Лахта центра», к.т.н.

Когда начиналась стройка «Лахта центра», здания весом почти в 600 тысяч тонн, один из главных вопросов от наблюдателей был связан с представлением о том, что «Петербург стоит на болоте» и строить здания категории «супертяж» тут нельзя в принципе — засосет.

image

В ту пору ходило множество теорий. В топ, пожалуй, можно вынести пару апокалиптических сценариев о том, что «башня продавит землю до магмы», и «башня сползет в Финский залив, поднимет цунами и гигантская волна смоет „Зенит-Арену“ и все остальное. Может даже так:

image

Стоит ли веселится над этими гипотезами? Пригоден ли грунт в Петербурге для зданий-тяжеловесов? Если нет, то какие технологии позволяют все же сказать „да“? Если да, то откуда тогда взялось представление про „болото“?
Предлагаем разобраться в серии тематических постов. Начнем с грунтовой обстановки в городе — ведь именно она являет благодатную почву для „болотных споров“. Дальше перейдем собственно к проекту.

Строительный парадокс Петербурга: вода в грунте не враг, а союзник

Первое, что приходит в голову при обсуждении вопроса о несущей способности грунтов — это обратится к исторически сложившемуся опыту. Как „на болоте“ отстроили целый город?

image


Постройка берегового устоя для Нового Исаакиевского моста. Литография по рисунку Треттера (Источник)

Итак, Санкт-Петербург возник на ровных, «мшистых, топких берегах» дельты Невы. Точней не скажешь — до 75% территории, разлинованной под создание Северной Венеции, было заболочено.

image


Одна из карт местности, 17 век. (Фото отсюда)

Вроде бы с грунтами действительно „не повезло“. Но строители тогда об этом сильно не задумывались — просто строили, благо, добытые опытным путем методы позволяли. Методы перенимали в том числе из любимой Петром Голландии, где с грунтом было не лучше, а со зданиями — все в порядке.

image


Королевский дворец в Амстердаме и по сей день уверенно держится на своих 13.5 тысячах деревянных свай. (Фото отсюда)

Петербургское строительство начиналось с лежневых фундаментов из дубовых бревен, которые предварительно вымачивали — то есть „морили“ в воде для повышения прочности древесины. Мореные сваи длиной 6-8 метров вбивали в грунт, для его уплотнения, и покрывали „свайное поле“ деревянным же настилом.

image


Вид деревянных свай (Кеннигсберг, фото отсюда)

Другой вариант петербургских фундаментов – в траншею на основу из лежней укладывали бутовый камень (известняк, гранит).

image


Пример бутового фундамента

По сей день большинство зданий исторического центра стоят на фундаментах таких типов. Вы не ошибетесь, если предположите деревянные лежни или бутовый камень под домами на Исаакиевской площади, Невском проспекте.

image


И под Московским вокзалом тоже. В середине 20 века деревянные лежни под зданием антисептировали, законсервировали, грунт укрепили.

Уже наши современники выяснили, что водонасыщенная почва для такого рода фундаментов — не враг, а союзник. Грунтовые воды оберегают деревянные сваи и лежни от разрушения, препятствуя соприкосновению с воздухом. Во времена, когда здания возводились, строители этого еще не знали. Выходит, что простоять века петербургским постройкам помог „плохой“ грунт. Вот такой парадокс.

Супертяжи: Исаакиевский собор

Два века петербургские здания росли не выше отметки 23,4 м. Красная линия — карниз Зимнего дворца. Нарушитель — Исаакиевский собор, чья высота 101,5 м превысила регламент в 4 раза.
Он же, с весом в 300 тысяч тонн, стал пионером в супертяжелой категории.
Творение Монферрана доказало, что строить высокое и тяжелое можно даже на слабом грунте. Как?

image


Исаакиевский собор. Автор фото — Иерей Максим. Длина постройки — 102 м., ширина — 92 м., высота -101,5 м.

Ключевой момент — массивность конструкций храма обеспечила ему высокую пространственную жесткость. Стены собора в толщину — от 2,5 до 5 м, своды — 1,25 м. Пирамидальность помогла распределить давление постройки на грунты.

image


Одна из 49 литографий Монферрана, повествующих о строительстве.

Способ обустройства фундамента технологически не отличался от описанных выше, но потрясал масштабом работ.
Глубина котлована — 5 м. В нем — 37 тысяч деревянных свай!

Из них 24 000 штуки, длиной от 6,3 до 8,4 м., установили строители из „команды“ Монферрана.
13 000 свай, длиной от 8,4 до 10,5 м. — досталось в наследство от собора-предшественника — того, который был построен по проекту Ринальди, но оказался „неудачным“. Наследство, к слову, вышло боком — именно этот свайный участок впоследствии оседал опережающими темпами, вызывая деформации.

Грунт между сваями уплотнен щебенем и пролит известково-песчаным раствором.
Сверху уложены известняковые плиты и гранитные блоки. Толщина плиты — 7,5 м., а вес — 100 тыс. тонн! — треть от веса собора.
Эти параметры останутся непревзойденными до окончания эры деревянно-бутовых фундаментов.

Когда город начал расти вверх

Высота советских построек в Петербурге оставалась дореволюционной всю первую половину 20 века. В том числе и потому, что геотехнологии не менялись.
В 60-х годах появились забивные железобетонные сваи, фоновая застройка сразу сделала скачок до 14 этажей. В 1975 сданы два 22-этажных дома- „пластины“, ростом по 76 метров.

image


22-этажки у площади Победы (конец Московского проспекта) (Фото отсюда)

Во второй половине 1990-х к нам пробиваются современные зарубежные геотехнологии.
Новые фундаменты — новые высоты. Сегодня в Петербурге более 3,5 сотен зданий ростом от 75 до 100 метров. Еще не небоскребы, но может для податливых грунтов и это уже — перебор?

Что находится под Петербургом

В вопросе о пригодности мягких почв для небоскребов без гранита научных знаний не разобраться.
Обратимся „к Марксу“.

Слово «грунт» происходит из немецкого языка и обозначает «основу». Это не только почва или земля под нашими ногами.

image


Грунтовый пласт в разрезе

Грунт — многокомпонентные динамичные системы (горные породы, почвы, осадки и техногенные образования), рассматриваемые как часть геологической среды и изучаемые в связи с инженерно-хозяйственной деятельностью людей. (ГОСТ 25100-2011)

image


(Источник)

Типичный грунт в пойме Невы имеет такие напластования (цитируется по д.т.н, проф. Алексееву С.И.):
1. Техногенные отложения мощностью 2-3 м.

image


К техногенному грунту относят культурный слой (Фото отсюда)

2. Дельтовые отложения (пески от пылеватых до средней крупности переслаивающиеся и выклинивающиеся между собой) мощностью до 5-6 м.

image

3. Морские отложения (супеси и суглинки от мягкопластичной до текучей консистенции) мощностью до 12-16 м.

image

4. Ледниковые моренные отложения в виде суглинков и супесей тугопластичной консистенции, расположенные на глубине от 20 м.

image


Для морены характерны еще и вот такие валуны — на стройке „Лахта центра“ с ними пришлось „повоевать“. Этот представитель сфотографирован в Ломоносовском районе Петербурга, фото отсюда.

А что находится ниже минус 20 метров?

Щит и платформа

Петербург находится в зоне сочленения Балтийского (Фенноскандинавского) щита и Русской (Восточно-Европейской) платформы.

image


Краевой шов между Балтийским щитом (сам щит обозначен цифрой 1) и Русской платформой (Источник)

Балтийский щит состоит из твердых кристаллических пород. А платформа имеет двухэтажное строение. Нижний этаж — это тоже кристаллические породы самого древнего архей-протерозойского возраста (4-2,5 млдр. лет назад) – граниты, гнейсы, диориты и др.

image


Эти камни — из эпохи зарождения жизни на земле.

В пределах Петербурга кристаллический этаж залегает глубоко — от минус 140 м в Курортном районе до минус 300 м на юге города.

image

Как среду размещения подземных объектов этот этаж пока не рассматривают, по понятным причинам — слишком глубоко.

Верхний этаж состоит из осадочных пород. Они разные по возрасту, происхождению, составу, состоянию и свойствам. Подход к оценке их устойчивости, соответственно, тоже разный.

Тут обратимся к анализу „Инженерно-геологических условий Санкт-Петербурга“, выполненному группой под руководством проф., доктора г.м.н. Дашко.

Итак, в северной и центральной частях города под четвертичным слоем (т.е. — сформировавшимся в современную геологическую эпоху) залегают верхнекотлинские глины верхнего венда. Они же есть и на юге, под нижнекембрийским слоем.

image


(Источник)

Мощность этих отложений от 12-20 м до 95-126 м.

Верхнекотлинские глины представляют собой плотные (плотность 2,17-2,24 г/см3) твердые алевритовые (пылеватые) тонкослоистые разности зеленовато-серого цвета.

А вот плотность кристаллических скальных грунтов: от 1,2 до 2,5 г/см3 (ГОСТ 25100-2011).

Из сравнения ясно, почему в рассказе мы так долго копали до этих глин. Они — наиболее устойчивая из доступных среда для размещения подземных сооружений. И ничего общего с „болотом“.
Именно в верхнекотлинских глинах проложены глубокие канализационные коллекторы, там же — основная часть тоннелей и станций петербургского метро.

image


Поездка на метро — путешествие сквозь верхне-вендский период (Фото отсюда)

„Верхнекотлинские глины часто называют «протерозойскими», что не совсем точно. Их возраст – верхний венд (верхний отдел протерозоя) — интервал 680±20 — 570±20 млн. лет. Это одни из самых древних отложений планеты“

Строительство осадочное и безосадочное

Конечно, эталонным для высотного строительства считается скальный грунт.
Такой, как под Нью-Йорком. Там до него — всего 10-20 метров. Толщу (которую и толщей-то не назовешь) осадочных отложений проходят неглубокими сваями.

image


Фото с проведения подземных работ в центре Нью-Йорка дает наглядное представление о качестве грунтов, дающий возможность безосадочного строительства. (Фото отсюда)

В Петербурге, как мы установили, до скального основания (это нижний „этаж“ Русской платформы) — в среднем, 200-метров и его невозможно использовать в качестве несущего слоя.

Осадочное строительство многого требует от конструкции высотных зданий: надо обеспечить пространственную жесткость и устойчивость. Конструкция должна сопротивляться не только сжимающим, но и изгибным и крутящим нагрузкам. Такими свойствами обладают каркасы из металла или железобетона. В мировой практике это взяли на вооружение с первой трети двадцатого века.

Петербург — не единственный город, где приходится строить, опираясь на осадочные отложения. Прекрасно чувствуют себя на таком основании небоскребы Франкфурта-на-Майне и Берлина. Слабы грунты и в Китае. Например, в Шанхае, для точечного небоскреба делают большой подиум в виде мощной коробки, для снижения нагрузки на грунт. Сам небоскреб 50х60 метров, а под ним — подиум 20-30 тыс. квадратных метров. Под коробкой — еще и сваи.

image


Небоскребы Шанхая — не только на мягком грунте, но еще и расположены кучно. (Фото отсюда)

Так что с небоскребом „на болоте“?

В 2013 году на площади Конституции первый петербургский небоскреб-таки возвели.Им стал „Лидер Тауэр“, 140 метров, 42 этажа. До официального „небоскребного“ статуса он не дотягивает совсем немного — 10 метров, но думаем, в обсуждаемом контексте на это можно закрыть глаза.

О конструктивных особенностях авторы проекта сообщают:

„В фундамент башни вбито порядка 800 свай, которые опираются на твердый слой глины. В центре здания – ядро жесткости, в котором размещены лифтовые шахты. Шаг колонн – 6х6 м“

image


Конструкция надземных уровней. Фото оттуда же, автор — Star2007

До июля 2016 „Лидер Тауэр“ был самым высоким зданием в городе (без учета телебашни), затем его обогнал „Лахта центр“. Вот тут-то и начинается самое интересное. Такого давления, как в Лахте, петербургский грунт еще не испытывал. Но об этом — в следующий раз.

Читайте в новой „серии“ — кто исследовал пригодность грунта под «Лахта центром», зачем исследователи копали до минус 150 метров, нашли ли они Балтийский щит и вообще как там, внизу?


Начало всей истории положил проект комплекса «Охта-центр», или «Газпром-сити». Комплекс с 396-метровым небоскребом планировалось опять-таки привязать к Неве — он должен был возвышаться на мысе, который образуют Нева и впадающая в нее речка Охта. На противоположной стороне Невы — знаменитый Смольный институт, бывший в свое время штабом большевиков, а ныне служащий резиденцией губернатора Санкт-Петербурга. Проект тогда наделал немало шума, в основном невосторженного. Стеклянная игла небоскреба радикально дисгармонировала с архитектурным стилем питерского центра, создавая при этом новую высотную доминанту, спорящую со шпилями Адмиралтейства и Петропавловского собора. Такое вмешательство в исторический малоэтажный городской ландшафт многим показалось кощунственным.

В конце концов «Охта-центр» стал «Лахта-центром»: строительство газпромовского небоскреба, теперь уже высотой 462 м, было перенесено на северный берег Финского залива. Здесь нет поблизости городской застройки, а до исторического центра целых 9 км, так что «игла» больше не будет вторгаться в узнаваемые очертания старого Питера. Комплекс из высотного здания, вспомогательного корпуса и обширной рекреационной территории планируется завершить в 2018 году, и тогда…

Есть ли практический смысл в сооружении подобных высоких зданий там, где вроде отсутствует дефицит земли? Конечно, в Лахте нет тесноты американских даунтаунов, однако не всегда архитектура призвана выполнять утилитарную функцию. Иногда ее задача — создание символов, объектов притяжения. Исторически такими центрами притяжения становились храмы, которые должны были возвышаться над окружающей застройкой. Никакого другого смысла, кроме символического, в этом не было. Когда появились лифты, и города принялись стремительно расти, то лидерами, доминантами стали высотные здания. «Лахта-центр» будет встречать идущие в Санкт-Петербург круизные лайнеры и паромы подобно статуе Свободы в Нью-Йоркской бухте, он станет новым символом города, и именно в этом его главная эстетическая задача. Так считают авторы проекта.



Даже те, кто не силен в географии, наверняка помнят: город, построенный в дельте, опирается на рыхлые, пропитанные водой грунты. У всех на памяти разорванная плывуном почти на десятилетие ветка петербургского метро. В отличие от хрестоматийного Манхэттена, который есть по сути голая скала, в районе Петербурга гранитный щит залегает ниже 200 м, и опереть на него здание малореально. Как же здесь строить небоскреб? Оказывается, с точки зрения геотехники — науки о грунтах — каких-то чудовищных сложностей в этом случае не возникает. В малайзийском Куала-Лумпуре, где строились два супернебоскреба-близнеца, ситуация была и того хуже: здания стоят на 120-метровых сваях. Конечно, опереться на скальный грунт в Лахте слишком сложно — для этого понадобились бы сваи беспрецедентной в мировой практике длины, так что приходится использовать такие, которые держат здание за счет силы трения. Верхние слои грунта весьма рыхлые, но уже ниже 30 м начинаются достаточно твердые вендские глины, и в них сваи держатся надежно.

Традиционная конструкция фундамента небоскреба — массив свай, на который опирается мощная плита. В принципе, нечто подобное сделано и в Лахте, однако фундамент питерского небоскреба будет иметь свои особенности. Он представляет собой коробчатую конструкцию, зарытую в землю на глубину 17 м. Таким образом, здание окажется как бы «утопленным» в грунте, что послужит более равномерному распределению веса конструкции и поможет избежать в будущем сильной осадки небоскреба.

Внешняя граница фундамента — стена в грунте (в плане — правильный пятиугольник, или пентагон). Она не является опорным элементом, но защищает силовую часть фундамента от давления грунта, и главное — от просачивания грунтовых вод. Внутри стены в грунте роют котлован, а чтобы стена не обрушилась, ее поэтапно укрепляют четырьмя находящимися друг над другом железобетонными конструкциями — так называемыми распорными дисками. Когда котлован готов, обнажаются оголовки предварительно установленных свай. Свай 264, а длина самых мощных из них составляет 82 м. На дне котлована заливают опирающуюся на оголовки бетонную плиту, а уже на ней монтируют арматуру для главной несущей конструкции — нижней плиты фундамента. У проектировщиков не было дефицита места, и потому они смогли опереть здание на значительный по площади фундамент, чтобы обеспечить максимальную устойчивость.


Фото 2.


Фото 3.

Трагедия башен ВТЦ в Нью-Йорке, а особенно жуткая картина их обрушения, настолько отчетливо врезалась в память каждого из нас, что вопрос «а что будет, если. » возникает вполне естественно, коль скоро речь заходит о новом высотном сооружении. Тут следует вспомнить, что основным заказчиком комплекса выступает «Газпром», и можно сказать, что это здание имеет для нашей экономики стратегическое значение.

Именно поэтому была поставлена задача обеспечить высочайшие стандарты безопасности. В принципе, небоскреб будет построен по известной схеме: цилиндрическое железобетонное ядро, перекрытия, колонны по внешнему контуру. Примерно такую же конструкцию имели и башни ВТЦ. Это были крепкие здания, рассчитанные на удар «Боинга-747», однако разрушение одних силовых конструкций внешнего контура привело к прогрессирующему разрушению других, получился эффект домино, и в результате небоскребы обрушились. Высотное здание «Лахта-центра» спроектировано таким образом, что может держаться на одном ядре. Можно взорвать все десять колонн, идущих по внешнему контуру, но даже тогда небоскреб устоит. Это настоящая крепость, которая, по расчетам архитекторов, должна пережить многие десятилетия.

Устойчивости конструкции служит особая схема перераспределения нагрузки внешнего контура здания на ядро. Через каждые 16 этажей от железобетонного ядра отходят десять мощных консолей — своего рода висячих фундаментов, на которые будет дополнительно опираться секция здания. Таких аутригерных уровней в небоскребе предусмотрено четыре.

В итоге «Лахта-центр» будет иметь уникальный среди зданий подобного рода запас прочности, значительно превышающий установленные международные стандарты.

Нежелание экономить на безопасности отнюдь не означает, что идея повышения эффективности сооружения и снижения эксплуатационных расходов вовсе чужда авторам проекта. Напротив, «Газпрому», учитывая, что он строит здание «для себя», весьма важно сохранить приверженность современным технологиям энергосбережения, особенно в условиях неласкового питерского климата. Например, здание получит двойной фасад, то есть между двумя нитками остекления будет изолирующий слой воздуха. В системе отопления применят такие высокоэкономичные устройства, как инфракрасные излучатели. Кроме того, накапливаемое в здании тепло от работающих компьютеров и прочей оргтехники будет отводиться, а затем использоваться в системе отопления. Свои особенности имеет система кондиционирования — в ее основе не обычная схема отвода тепла из помещения наружу, а размещенные под землей аккумуляторы холода, которые за ночь смогут вырабатывать до 1000 т льда, а затем в дневное время отдавать его холод помещениям. Также повсеместно получат распространение датчики присутствия, которые, когда в помещении никого нет, станут отключать осветительные приборы.

Но будет ли здание обитаемым от нижних этажей до самой верхней точки? Высотные сооружения, возводимые в чисто коммерческих целях, зачастую обитаемы снизу доверху, и там нет никаких «излишеств». Однако, если речь идет о символе, будь то здание МГУ на Воробьевых горах в Москве или Бурдж-Халифа в Дубаи, значительную часть их высоты составляет необитаемый шпиль, призванный придать сооружению эстетическую завершенность. При том, что высота небоскреба «Лахта-центра» составит 462 м, все обитаемые этажи окажутся ниже отметки 400 м. Всё, что выше — это архитектурный элемент, который поможет зданию выполнять функцию городского ориентира и украшения морских ворот Санкт-Петербурга.

Небоскреб в Лахте получит винтообразный облик, то есть его фасады будет отличать довольно сложная и асимметричная поверхность. Особенно интересно использование холодногнутого стекла, позволяющего сделать остекление абсолютно гладким. Вкупе с двойным фасадом это даст необычные оптические эффекты — например, отражение облаков, как бы поднимающихся по диагонали по стене здания.


Фото 4.

Строительство делового и общественного центра в Лахте — это не только попытка повернуть Санкт-Петербург к морю «человеческим лицом», но и стремление следовать центробежной тенденции в современном градостроительстве. Новые бизнес-парки создаются вдали от плотной городской застройки, здесь большие территории, здесь нет проблем с парковкой. Поток машин к «Лахта-центру» будет всегда находиться в противофазе с потоком, который утром движется в центр города, а вечером устремляется к окраинам и пригородам. Так будет частично разгружен исторический центр Петербурга, а деловая активность в «Лахта-центре», напротив, активизируется. Разумеется, доступность «Лахта-центра» будет обеспечена не только для автомобилистов, но и для тех, кто пользуется общественным транспортом: комплекс свяжет с центром города линия метро.

Однако назначение «Лахта-центра» выходит далеко за пределы задачи обеспечения города дополнительными офисными площадями. В небоскребе и во вспомогательном корпусе проектом предусмотрены не только деловые помещения, но большой Центр занимательной науки для детей, конференц-залы, выставочные пространства, спортивный и медицинский комплексы, кафе, рестораны, магазины и даже ультрасовременный планетарий. Обширная прилегающая территория разместит скверы, парки, прогулочные дорожки и амфитеатр с видом на Финский залив.

Можно сказать, что история «Лахта-центра» связана не только с градостроительством и архитектурой. Ведь так получилось, что столкновение интересов крупной национальной корпорации и чаяний гражданского общества Северной столицы по поводу «Охта-центра» привело не к торжеству одной стороны в ущерб другой, а к новому качеству и к новому этапу развития Санкт-Петербурга.


Фото 5.

Строительство высотного здания в районе дельты полноводной реки — задача сложная, но не невозможная. Верхние слои грунта обладают плывунными свойствами, однако на глубине 30 м залегают так называемые вендские глины, которые по твердости сравнимы с природным камнем. В связи с этим появилась возможность заменить щелевые фундаменты буронабивными сваями, которые будут удерживать здание не за счет опоры на скалу, а за счет силы трения. Сваи, самые мощные из которых достигают длины 82 м, не забивают, а устанавливают. Такие сваи называются буронабивными: сначала бурят скважину, затем в нее опускают обсадную трубу (чтобы стенки скважины не осыпались), внутрь трубы устанавливают арматуру, а затем заливают бетон.


Фото 6.


Фото 7.


Фото 8.


Фото 9.


Фото 10.


Фото 11.


Фото 12.


Фото 13.


Фото 14.


Фото 15.


Фото 16.


Фото 17.


Фото 18.


Фото 19.


Фото 20.


Фото 21.


Фото 22.


Фото 23.


Фото 24.


Фото 25.


Фото 26.


Фото 27.


Фото 28.


Фото 29.


Фото 30.


Фото 31.


Фото 32.


Фото 33.


Фото 34.


Фото 36.


Фото 37.


Фото 38.


Фото 39.


Фото 40.


Фото 41.


Фото 42.


Фото 43.


Фото 44.


Фото 45.


Фото 46.


Фото 47.


Фото 48.


Небоскрёбы – это авангард строительной отрасли. Супервысотные здания всегда требуют от своих создателей особого подхода. В 2018 году в Петербурге завершится строительство «Лахта центра», который станет самым высоким небоскрёбом Европы. Какие технологии используются для возведения питерского гиганта?

Общественно-деловой комплекс «Лахта центр» строится в Приморском районе Санкт-Петербурга, на побережье Финского залива. Его центром станет станет штаб-квартира группы Газпром и компании «Газпром нефть», другую часть площади займут общественные пространства: научно-образовательный комплекс для детей и молодежи, планетарий, выставочные пространства, медицинский и спортивный центры, многофункциональный зал-трансформер и другие.

Комплекс состоит из четырёх сооружений: многофункционального здания с атриумом, стилобата (там разместится паркинг и вспомогательные помещения), арки главного входа и небоскрёба высотой 462 метра. Именно он станет самым высоким не только в России, но и во всей Европе. Супертолл «Лахта центра» на 88 метров перерастёт нынешнего европейского рекордсмена – башню «Федерация» в «Москва-сити» – и окажется на 11 месте мирового высотного рейтинга.


Бытует мнение, что Петербург построен на вязких грунтах, и строить небоскрёбы здесь невозможно. Специалисты отвечают: строить можно везде, но нужен хороший расчет. Возведению петербургского супертолла предшествовали полтора года инженерно-геологических исследований. Авторы проекта изучили геологические, геодезические, экологические, историко-культурные особенности участка.

Выяснилось, что слабые грунты составляют только верхний слой. Под ним залегает вендский горизонт – это древнейшие глины, которым 635-540 миллионов лет. Прочные как скальный грунт или бетон, эти глины являются отличной опорой для небоскрёба. Но добраться до них непросто: на пути у строительной техники – отложения ледникового периода в виде гигантских валунов и песчаных супесей с гравием. Комплекс исследований, проведенные расчеты и натурные испытания стали основой для создания конструкции «Лахта центра».

От давления и воды в верхних слоях почв фундамент защищает пятигранная подземная конструкция по периметру основания небоскрёба. Её высота – 30 метров, длина стен – более 300 метров. Внутри пятиугольника установлены 264 сваи, уходящие на глубину до 82 метров. Их диаметр – 2 метра. Это самые широкие сваи в мире. Сваи фундамента небоскреба не забивают, а создают прямо на месте — в грунте. Шахту выбуривают, затем устанавливают армокаркас и заливают бетоном.

На сваи опирается фундамент небоскрёба. Он состоит из трёх плит, разделенных десятью радиальными стенами, расходящимися «лучами» от ядра. Самая знаменитая из плит – нижняя, толщиной в 3,6 метра. Именно она попала в Книгу рекордов Гиннесса: строители за 49 часов уложили 19 624 кубометра бетона в основание здания. Причем уникальность плиты не в физическом размере, а в методике, которая обеспечивает необходимую несущую способность при оптимальных размерах конструкции.

Каждая свая под башней представляет собой отдельное сложное инженерное сооружение высотой с 30-этажный дом. Контроль за ее строительством – это целая система, включающая опускаемые в шахту камеры видеоконтроля и ультразвуковые датчики, установленные в арматуре каркаса сваи для определения плотности и отсутствия пустот.


Вес башни «Лахта центра» составит 670 тысяч тонн, давящих на грунт сравнительно малой площади. Под давлением грунт будет уплотняться, а небоскрёб оседать – как и любое другое здание. Основная задача в том, чтобы эта осадка проходила равномерно и здание не отклонялось от вертикали. Для наблюдения за поведением грунта, подземными конструкциями и их взаимодействием создана система геомониторинга, которая объединяет 4800 датчиков.

Датчики размещены и в грунте, и во всех элементах подземных конструкций башни. Так, 95 датчиков «следят» за вертикальными перемещениями, 40 – за поровым давлением грунта, 336 измеряют деформации в сваях, 10 – давление под подошвой фундамента, 2136 – динамику усилий в конструкциях фундамента. Все датчики объединены в автоматическую систему. После возведения каждых пяти новых этажей башни система выдает полный отчет о том, что происходит с грунтом, сваями, фундаментом. Такие знания полезны не только для строителей, но и для научных исследований.


Осадка может пройти равномерно. Но ведь и само здание может быть построено с наклоном. Это будет неудивительно при высоте почти в полкилометра: не исправленное отклонение в 1 мм внизу приведет к отклонению на 1 метр наверху. «Лахта центр» не может себе позволить сильного отклонения: небоскрёб устойчив «в наклоне», только если специально так спроектирован (как, например, Capital Gate – здание с самым большим наклоном в мире: при 160 метрах высоты – 18 градусов крена). Максимальное разрешенное проектом отклонение ядра «Лахта центра» – 6 миллиметров на все 462 метра. А цель – сместить дельту отклонения к нулю, хотя в мировой практике достичь абсолютного нуля пока никому не удавалось.

В мире есть примеры зданий, которые успешно существуют в состоянии отклонения от вертикали на метры. Например, церковь 1382 года в Бад-Франкенхуазене : отклонение шпиля от вертикали составляет 4,45 метра при «росте» 25 метров.

Небоскрёб нельзя просто построить «насколько хватит кирпичей». Существуют разные системы, которые обеспечивают устойчивость супервысоких зданий. У башни «Лахта центра» она состоит из ядра, аутригеров и несущих колонн по периметру здания.

Представляет собой «трубу» диаметром 24,5 метра с толщиной железобетонной стены 0,8 метра. Отвечает за вертикальную устойчивость.

Аутригеры расположенные на технических этажах, состоят из кольцевой балки вокруг ядра и идущих от нее диагональных металлических ферм и колонн. Эти элементы передают усилия от ядра на внешние колонны и снижают опорный момент внизу здания, а также придают горизонтальную жесткость – например, гасят раскачивание башни от ветра. Всего аутригеров в башне «Лахта центра» - пять, из которых четыре имеют вид сдвоенных этажей, а пятый – нетипичный, в виде мощной железобетонной «шайбы»

Выполнены из композитных материалов – стальной сердечник с железобетонной оболочкой. Такое решение применено впервые в гражданском строительстве в России. Благодаря ему стоимость колонн значительно снижается, а срок возведения


По словам создателей, башня «Лахта центра» задумывалась как современная интерпретация высотной доминанты, выделяющейся на фоне традиционной горизонтальной застройки Санкт-Петербурга. Её «собратья» – шпиль Петропавловского собора, Адмиралтейская игла, купол Исаакиевского собора – украшают центр города, в то время как новый супертолл станет организующим элементом в стремительно развивающемся Приморском районе. Новому небоскрёбу досталась роль главного акцента делового пространства, которое возникнет на линии «морского фасада» города.

«Форма здания символизирует энергию воды, перетекание пространств, открытость и легкость, – объясняют авторы проекта. – Эффект невесомости и максимального слияния будущего комплекса с окружающей средой будет усилен за счет применения особого типа стекла, благодаря которому в зависимости от времени суток высотное здание будет менять цвет, что создаст ощущение «живого объекта».

Петербургский супертолл – второй в рейтинге небоскрёбов спиралевидной формы, составленном Международным советом по высотным зданиям и городской среде (CTBUH). Первое место занимает Шанхайская башня (высота 632 метра).


Башня «Лахта центра» скручивается вокруг своей оси на 90 градусов. В строительстве такого здания есть определённые особенности. Например, из-за расширения, сужения и «кручения» все 189 тысяч составляющих металлоконструкций башни отличаются друг от друга (строго говоря, одинаковых всего две). Также разнятся по форме и изгибу фасадные элементы: 16 505 панелей покрывают площадь 72 500 квадратных метров,при этом 71% стеклопакетов отличаются друг от друга размерами и своей геометрией. Размер каждого стеклопакета 2,8 на 4,2 метра, вес 740 килограммов. Для обслуживания такого прихотливого сооружения разработана специальная система обслуживания фасадов (сокращенно СОФ).С ее помощью фасады будут поддерживаться в чистоте, а при необходимости и ремонтироваться.


Покорение высоты – это всегда вопрос наличия соответствующих технологий. Лифт, вентиляция, электричество — в своё время именно высотки первыми испытывали все эти «новинки». После успешного старта производство технологий стало массовым: из категории эксклюзивных благ они перешли в категорию минимальных стандартов при строительстве уже типового жилья и общественных зданий.

Возведением небоскрёбов обусловлены разработки современной подъемной строительной техники, изобретение конструкций устойчивости зданий, внедрение новых технологий пожарной безопасности, современных высокопрочных строительных материалов. Высотное строительство – область, где формируется заказ на высокотехнологичные решения, которые затем перейдут в другие сферы нашей жизни.

Петербургский «Лахта центр» активно внедряет технологии – что-то впервые на региональном и российском строительном рынке, что-то – на мировом. Значение этой стройки для строительной отрасли можно будет оценить позже, но уже сейчас видно, как меняется среда: появляются совместные производственные предприятия, растут квалифицированные кадры, поставщики используют новые технические решения – так осваиваются новые высоты в стандартах качества.


«Подвиг» петербургских строителей заключается в достижении несущей способности фундамента при минимально возможных размерах. Это стало осуществимо благодаря технологии непрерывного бетонирования.

Когда бетон заливают с перерывами, между старыми и новыми слоями возникают «холодные швы». Это значит – расслоения и снижение несущей способности. Максимальной прочностью обладает абсолютный монолит, меньшей – плита, сделанная как «лоскутное одеяло» или «слоеный пирог».

К заливке нижней плиты готовились заблаговременно, ведь «переделать» работу невозможно. Участники отрепетировали все, что возможно. Например, 13 бетонных заводов-поставщиков тренировались в изготовлении бетонной смеси по уникальной рецептуре до тех пор, пока не достигли её абсолютной идентичности.

Скорость заливки составила более 400 кубометров в час, а миксеры совершили более 2450 рейсов. Процесс был организован так, что о событии местные жители узнали из СМИ – не было ни дополнительной пробки на загруженном Приморском шоссе, ни шума со строительной площадки.

За дельтой отклонения следят геодезисты. В их арсенале семь систем оборудования (оптических и лазерных), дублирование помогает перепроверить показания приборов. Три из семи геодезических систем представлены в России впервые, но успели хорошо себя зарекомендовать на ведущих мировых стройках.

Мировая геодезическая премьера – импульсный высокоскоростной лазерный сканер с двухосевым компенсатором. Прибор впервые используется на строительстве небоскреба. С его помощью строители «Лахта центра» проверяют положение металлоконструкций внутри бетонной среды при изготовлении, например, композитных колонн со стальным сердечником внутри бетонной конструкции.

Для ведения ядра строго вертикальным курсом задействована и «космическая» технология – геодезический прибор Trimble 4D Control. Он использует спутниковый сигнал и систему геодатчиков, установленных на стройплощадке. С помощью показаний GPS и ГЛОНАСС система определяет точные координаты ядра и дельту смещения, которая постоянно корректируется на основании полученных данных.

Для сборки используют BIM – относительно новую для России технологию. Она представляет собой виртуальную трехмерную модель здания, объединяющую все данные проектной документации. При добавлении измерения времени выстраивается виртуальная технология возведения объекта: проекты организации строительства, производства работ, логистики поставок. В «Лахта центре» к стандартному использованию модели добавили еще одно применение. Из-за своей сложной геометрии башня собирается из металлоконструкций, каждая из которых имеет единственно возможное место монтажа. Правильность сборки контролируется, в том числе с помощью BIM. Конструкции, поставляемые на площадку, имеют штрих-коды, связанные с BIM- моделью. Код детали однозначно указывает её место монтажа в общей конструкции.

Про петербургский супертолл строители говорят, что он – «ручной работы». Речь идёт об уникальности решений, а что касается труда – автоматизируют всё, что возможно. Например, для возведения ядра используют систему «скользящей» (автоматизированной) опалубки.

Опалубка – это форма для бетонирования, образованная двумя рядами щитов, пространство между которыми – будущая стена ядра. Бетон заливается между щитами и застывает.

Обычную опалубку нужно раскреплять, переставлять на новое место и собирать заново – гигантская потеря времени и производительности. А автоматическая по мере заливки бетона «передвигается» с помощью гидравлических домкратов.

Подобные самопередвижные инструменты на лахтинской стройке очень любят. По сходному принципу работает ветрозащита на башне – её панели скользят вслед за опалубкой. К «шагающим» механизмам относится кран в ядре башни – первый такого рода в Петербурге.

Читайте также: