Комнатный термостат и теплый пол

Обновлено: 01.05.2024

Если рассмотреть классическую схему простого автоматического управления комбинированной системой отопления (рис. 1), в которой комнатные термостаты управляют сервоприводами термостатических клапанов коллекторных блоков, то возникает вопрос: что случится, когда все клапаны окажутся закрытыми?



Рис. 1. Регулирование комбинированной системы отопления с помощью комнатных термостатов и сервоприводов

Очевидно, что в этой ситуации откроются перепускные клапаны на контурах и теплоноситель будет циркулировать по малым циркуляционным кольцам через байпасы. При этом насосы будут расходовать электроэнергию впустую. Если же контуры не оборудованы байпасами с перепускными клапанами, то циркуляционные насосы будут работать «на закрытую задвижку», тратя энергию только на нагрев самих себя и теплоносителя в ограниченном пространстве. Циркуляционные насосы VT.RS оборудованы встроенными датчиками перегрева, которые отключат насос при нагреве обмотки статора свыше 150 °С, однако это является аварийным режимом, и его регулярное повторение всё-таки приведёт к межвитковому замыканию обмоток.

В насосно-смесительном узле VT.DUAL на этот случай предусмотрен предохранительный термостат, который отключает насос при достижении заданной пользователем температуры (от 30 до 90 °С), но у остальных узлов такого термостата нет.

Для предотвращения работы насоса «вхолостую» и «на закрытую задвижку», а также для удобной увязки работы сервоприводов с остальным оборудованием системы отопления разработан зональный коммуникатор VT.ZC8 (рис. 2).



Рис. 2. Зональный коммуникатор VT.ZC8

К коммуникатору подводятся провода от каждого комнатного термостата, и он передаёт принимаемые сигналы на соответствующий сервопривод или группу сервоприводов. При отсутствии запроса на отопление (все термостатические клапаны коллектора находятся в закрытом положении), коммуникатор отключает циркуляционный насос или теплогенератор (в зависимости от тепломеханической схемы системы).

Коммуникаторы выпускаются двух типов: для сервоприводов с питающим напряжением 24 и 220 В.



Рис. 3. Пример схемы подключения коммуникатора VT.ZC8

Назначение клеммных пар, переключателей и светодиодов в коммуникаторе следующее (рис. 3):
К1 – подача электропитания (220 В или 24 В в зависимости от модификации коммуникатора;
К2–K9 – подключение комнатных термостатов. К одному коммуникатору можно подключить восемь термостатов;
J1–J8 – переключатели передачи сигнала. В положении OFF управляющий сигнал передаётся на клеммную пару управления сервоприводами, расположенную напротив (K2–K13–C1; K3–K14–C2 и т.д.). В положении ON сигнал на клеммную пару управления сервоприводами передаётся от соседнего (расположенного cлева) термостата. Это позволяет одним термостатом управлять сразу несколькими сервоприводами. Например, на рисунке 3 сервоприводами С2, С3 и С4 управляет один термостат Т2 через клеммную пару К3, а сервоприводами С5, С6 и С7 управляет термостат Т3 через клеммную пару К6;
К10 – передаёт питание на соседний коммуникатор при объединении их в группы (рис. 4);
К11 – при объединении нескольких коммуникаторов принимает информацию о состоянии сервоприводов от соседнего коммуникатора для управления циркуляционным насосом;
К12 – управление циркуляционным насосом. При подаче команды закрытия сервоприводов на всех клеммных парах насос отключается;
К13–K20 – подключение сервоприводов термостатических клапанов коллектора;
J9–J16 – переключатели типа сервопривода. В положении OFF подключаются нормально закрытые приводы, в положении ON – нормально открытые;
К21 – передача информации о состоянии сервоприводов на соседний коммуникатор при объединении их в группы (рис. 4);
G1 – переключатель принудительного отключения насоса (ON – насос включён для управления коммуникатором; OFF – насос принудительно выключен);
S1–S8 – индикаторы горят при подаче питания на привод;
S9 – индикатор горит при подаче питания на клеммную пару K1;
S10 – индикатор горит при включённом циркуляционном насосе.



Рис. 4. Схема соединения двух коммуникаторов

Таблица 1. Основные технические характеристики коммуникатора VT.ZC8

Необходимость и важность автоматического регулирования системой напольного отопления лучше всего доказывать на конкретном примере по принципу «от противного».

Предположим, имеется помещение, оборудованное системой тёплого пола с расчётным удельным тепловым потоком q0 = 60 Вт/м 2 . Этот тепловой поток рассчитан при расчётной температуре наружного воздуха tн0 = –28 °С (Санкт-Петербург). Конструкция «пирога» пола показана на рис. 1.



Рис. 1. Конструкция тёплого пола

Для определения требуемой температуры теплоносителя можно воспользоваться расчётным модулем программы VALTEC.PRG версии 3.1.3 (рис. 2). Средняя температура теплоносителя составляет tт = 31,5 °C. При перепаде температур в петлях Δt = 5 °C термоголовка насосно-смесительного узла будет установлена на температуру 31,5 + (5/2) = 34 °С.

Допустим, никакой регулировки кроме поддержания температуры теплоносителя в насосно-смесительном узле система не имеет. При наружной температуре tн0 = –28 °С пол действительно будет отдавать q0 = 60 Вт/м 2 , поддерживая температуру воздуха в обслуживаемом помещении tв0 = 20 °С. Однако с повышением температуры наружного воздуха картина будет меняться.



Рис. 2. Результат расчёта температуры теплоносителя

Температуру воздуха в помещении при изменившейся температуре наружного воздуха tвi нетрудно определить из уравнения теплового баланса:

где tнi – текущая температура наружного воздуха, °С

Удельный тепловой поток можно определить по формуле:

Текущая температура пола составит:

Результаты расчёта сведены в таблицу 1.

Таблица 1. Температура воздуха, удельный тепловой поток и температура воздуха при различной температуре наружного воздуха

Температура наружного воздуха, °С

Температура внутреннего воздуха, °С

Удельный тепловой поток от тёплого пола, Вт/м2

Температура пола, °С

Как видно из приведённой таблицы, отсутствие регулирования напольным отоплением приводит в межсезонье к чрезмерному перегреву воздуха в помещении, а также к повышению температуры пола.

    Можно, конечно, при резких изменениях температуры открывать форточки, но отапливать за свой счёт вселенную навряд ли кто захочет. Можно также бегать к насосно-смесительному узлу, чтобы перенастроить уставку термоголовки, однако, такая беготня совершенно не вяжется с понятием «комфорта». Таким образом, можно сформулировать следующие основные задачи автоматического регулирования напольным отоплением:
  • поддержание внутреннего климата в помещении в комфортных рамках;
  • экономия энергоресурсов;
  • исключение излишнего вмешательства пользователя в работу системы.

Комнатные термостаты

Самым простым и доступным решением по регулированию системы напольного отопления является использование комнатных термостатов совместно с электротермическими приводами, управляющими термостатическими клапанами коллекторного блока.

Принцип работы термостата элементарен: пользователем задаётся желаемая температура внутреннего воздуха (уставка). При отклонении температуры воздуха в помещении от уставки на величину гистерезиса (разница между температурами включения и выключения), происходит переключение контактов реле, через которые на сервопривод подаётся электропитание. В зависимости от схемы подключения и типа сервопривода (нормально открытый или нормально закрытый), происходит либо открытие, либо закрытие термостатического клапана, регулирующего подачу теплоносителя в петлю тёплого пола.

Термостат на схеме 1 рисунка 3 при повышении температуры разомкнёт питание нормально закрытого сервопривода и там самым перекроет подачу теплоносителя в петлю. На схеме 2 рисунка 3 термостат подключён к нормально открытому приводу. При повышении температуры воздуха в помещении термостат подаст питание на сервопривод, также перекрыв петлю.



Рис. 3. Принцип работы комнатного термостата и сервопривода

В номенклатуре VALTEC имеется несколько видов комнатных термостатов.

Термостат комнатный проводной с датчиком температуры пола VT.AC602



Рис. 4. Комнатный термостат VT.AC602

Термостат VT.AC602 (рис. 4) кроме встроенного датчика температуры воздуха имеет выносной датчик, который встраивается в конструкцию стяжки тёплого пола в гофрокожухе.

При одновременном подключении двух датчиков встроенный датчик температуры является рабочим, а выносной – предохранительным (заводская настройка). То есть, при превышении предельной температуры на выносном датчике происходит отключение нагрузки, независимо от показаний встроенного датчика. Эта функция особенно полезна при покрытиях пола, чувствительных к повышению температуры (например, паркет).

При выборе в качестве рабочего выносного датчика температуры пола, встроенный датчик температуры воздуха становится предохранительным.

Переключение рабочих датчиков производится на шестиполюсном джампере, расположенном под лицевой панелью (рис. 5).



Рис. 5. Схема переключения датчиков

К термостату подводится питание 220 В, которое он при понижении температуры воздуха ниже уставки передаёт на сервопривод (рис. 6).

Такая схема предусматривает работу только с нормально закрытыми сервоприводами, а также исключает возможность использования зонального коммуникатора VT.ZC8.



Рис. 6. Схема подключения термостата VT.AC602

Термостат комнатный проводной VT.AC701
Термостат VT.AC701 (рис. 7) работает от двух батареек ААА 1,5 В и имеет жидкокристаллический дисплей, который в рабочем режиме отражает текущую температуру воздуха в помещении. Он выполнен в настенном исполнении, то есть крепится непосредственно на стену и не требует устройства гнезда с монтажной коробкой.



Рис. 7. Термостат комнатный VT.AC701

Требуемая температура (уставка) задаётся с помощью двух клавиш на передней панели. Термостат может работать как с нормально открытыми (НО), так и с нормально закрытыми (НЗ) сервоприводами с напряжением 220 В и 24 В. Сервопривод подключается в разрыв цепи питания (рис. 8).



Рис. 8. Схемы подключения термостата VT.AC701

Хронотермостат комнатный проводной с датчиком температуры пола VT.AC709
Давайте представим реальный рабочий день обычной семьи. Утром, когда домочадцы поднимаются с постелей, завтракают и собираются на работу, учебу и т. п., температура воздуха в помещениях должна поддерживаться на уровне 20–22 °С. Затем квартира остаётся на попечение кошек и собак, и вполне достаточно, чтобы температура не опускалась ниже 14–15 °С. Вечером семья возвращается домой, и до тех пор, пока все не улягутся спать, нужно снова поддерживать 20 °С. Наконец семья уснула.

Для нормального здорового сна температура воздуха в помещении не должна превышать 17 °С (рис. 9). Получается, что жильцу несколько раз в день придётся подходить к комнатному термостату и менять его настройку. Но даже в этом случае комфортная температура наступит не сразу. В зависимости от тепловой инерционности конструкций и использованного отопительного оборудования тепловой эффект проявится лишь через 20–30 минут, а то и позже.



Рис. 9. Пример графика температуры воздуха в помещении

Можно, конечно, ничего не регулировать, а по старинке открывать и закрывать форточку, установив на термостате стабильные 20 °С. Владельцы частных домов, коттеджей и квартир, оборудованных теплосчётчиками такому решению уже сейчас не обрадуются. Ведь платить за «открытую форточку» и нагрев «мирового пространства» им приходится из своего кармана. Тем, у кого теплосчётчики ещё не установлены, можно этот метод использовать, если им нравится бегать к форточкам и хлюпать носом от постоянных сквозняков.

Гораздо разумнее поступит тот, кто вместо обычного термостата установит электронный хронотермостат VT.AC709 (рис. 10).



Рис. 10. Хронотермостат проводной VT.AC709

Хронотермостат позволяет программно задавать режимы отопления в разное время рабочих суток и выходных дней. Для этого каждые сутки условно делятся на шесть периодов, время начала каждого из которых задаётся пользователем. То есть, при пятидневной рабочей неделе надо запрограммировать шесть периодов для пяти суток (рабочих) и 2 х 6 = 12 периодов для выходных дней. Для каждого из назначенных периодов задаётся требуемая температура воздуха или пола (при назначении в качестве рабочего выносного датчика).

В любой момент времени хронотермостат позволяет вмешаться в программу и перейти на режим ручного управления. Например, кто-то пришёл с работы раньше обычного. Перейдя на режим временного ручного управления, он назначает нужную температуру, и прибор будет её поддерживать до конца текущего программного периода, игнорируя программную настройку, а затем автоматически вернётся к работе по программе.

В обычных комнатных термостатах гистерезис (разница между температурами размыкания и замыкания контактов) является фиксированной величиной и составляет, как правило, 1 °С.

Кого-то это устраивает, а кому-то желательно поддерживать температуру более точно. Кому-то, наоборот, хочется, чтобы включение/выключение отопительного контура происходило реже. В хронотермостате VT.AC709 гистерезис можно настраивать в диапазоне от 0,5 до 10 °С.

Многие владельцы обычных комнатных термостатов замечают, что температура воздуха, фиксируемая термостатом, часто отличается от температуры, показываемой обычным комнатным термометром. Причин тому может быть несколько: разная температура в разных точках помещения, нагрев прибора при работе, неверная калибровка и т.п. Приходится держать в уме некую поправку, чтобы постоянно корректировать настройку на эту величину. Хронотермостат VT.AC709 имеет режим ручной калибровки встроенного датчика, поэтому поправка будет всегда учитываться автоматически.

Кроме всего прочего, хронотермостат VT.AC709 позволяет включить функцию защиты от замерзания (рис. 11). Даже при выключенном термостате (режим OFF) снижение температуры воздуха ниже 5 °С подаст напряжение на сервопривод, обеспечив циркуляцию теплоносителя.



Рис. 11. Информация, отображаемая на экране и назначение кнопок управления VT.AC709 (синим цветом показано значение заводских настроек)

Выносной датчик температуры пола встраивается в стяжку тёплого пола и служит в качестве предохранительного. При превышении предельно допустимой температуры пола, независимо от текущей температуры внутреннего воздуха, термостат подаст команду на отключение отопления (рис. 12 а и 12 б).



Рис. 12 a. Схемы подключения хронотермостата VT.AC709 к сервоприводам 220 В



Рис. 12 б. Схемы подключения хронотермостата VT.AC709 к сервоприводам 24 В

Хронотермостат комнатный проводной с датчиком температуры пола VT.AC710
В отличие от мдели VT.AC709, хронотермостат VT.AC710 (рис. 13) имеет автономное питание от двух батареек АА по 1,5 В. Выносного датчика температуры пола у этого прибора нет.



Рис. 13. Хронотермостат VT.AC710

В соответствии с введённой недельной программой хронотермостат управляет напольным отоплением, поддерживая в помещении один из двух предварительно заданных режимов («Комфорт» и «Эконом»).

Каждый из семи дней недели разбит на 48 временных зон (по 30 минут каждая), что позволяет пользователю при программировании хронотермостата обеспечить оптимальный климатический режим в помещениях.

Для удобства оперативного управления климатической системой хронотермостат имеет кнопку ждущего режима, которая позволяет при необходимости временно отключить работу программы и действовать по задаваемому пользователю командам.

Состояние реле (замкнуто / разомкнуто) отображается светодиодным индикатором и надписью на жидкокристаллическом дисплее (System ON / System OFF; рис. 14).



Рис. 14. Схема подключения хронотермостата VT.AC710

Хронтермостат комнатный беспроводной VT.AC707
Все ранее рассмотренные комнатные термостаты соединяются с сервоприводом с помощью провода, что не всегда удобно, а в ряде случаев просто невозможно. В этом случае на помощь придёт беспроводной хронотермостат VT.AC707 (рис. 15).



Рис. 15. Хронотермостат беспроводной VT.AC707

В его комплект входит приёмник, который принимает управляющий сигнал от хронотермостата, установленного в обслуживаемом помещении и по проводной схеме передаёт его непосредственно на сервопривод коллекторного блока. Сигнал к приёмнику передаётся по радиоканалу на разрешенной частоте 433 МГц. Приёмник, как правило, располагается рядом с сервоприводом в коллекторном шкафу.

    Прибор снабжён сенсорными кнопками управления и позволяет выполнять следующие функции:
  • поддержание температуры воздуха в обслуживаемом помещении на уровне, заданном пользователем (программно или вручную);
  • дистанционная передача управляющего сигнала на расстояние до 30 м;
  • суточное и недельное программирования температурных режимов в помещении (шесть режимов в сутки);
  • поддержание режима защиты от замерзания;
  • настройка разницы между температурами размыкания и замыкания контактов;
  • калибровка показаний встроенного датчика температуры воздуха по данным поверочного термометра;
  • экранная индикация режимов работы, времени, температуры воздуха в помещении и заданной для текущего режима температуры воздуха;
  • подсветка дисплея;
  • блокировка настроек для защиты от несанкционированного вмешательства.

Хронотермостат двухконтурный проводной VT.AC711
Система напольного отопления достаточно часто применяется в качестве дополнения к радиаторному отоплению. В случае использования такой комбинированной схемы, управление отоплением тоже должно быть ком- бинированным. Это значит, что совместная одновременная работа двух систем в межсезонье (при температуре наружного воздуха от –10 до +8 °С) не требуется.

Тёплый пол вполне и сам справится с этой задачей. Для управления комбинированной системой отопления идеально подходит двухконтурный хронотермостат VT.AC711 (рис. 16).



Рис. 16. Хронотермостат двухконтурный VT.AC711

Этот хронотермостат выполняет такие же функции, как и VT.AC709, но управляет уже не одним, а двумя контурами отопления при помощи дополнительного реле. В меню настроек такого термостата введена величина dT, которая определяет зону температур выше уставки, при которой включено только одно реле (рис. 17).



Рис. 17. Схема работы хронотермостата VT.AC711

На термостате задаётся две величины: первая – уставка самого термостата (например 20 °С) и вторая величина – dT (например 3 °С), которая настраивается один раз и применима при любых значениях уставки. Если фактическая температура воздуха в помещении ниже уставки на 0,5 °С (половинное значение гистерезиса), то это означает, что в помещении холодно и необходимо включить и радиаторное и напольное отопление. Такая ситуация возникает, как правило, в пиковые периоды холода, когда на улице устанавливается температура, близкая к зимней расчётной (для Санкт-Петербурга это –28 °С).

При возрастании температуры выше уставки (20 + 0,5 = 20,5 °С) реле, управляющее радиатором, отключается. Таким образом при оптимальном диапазоне температур будет выключен радиатор, но тёплый пол для обеспечения комфорта в помещении останется включённым. Дальнейшее увеличение температуры воздуха до значения 20 + dT + 0,5 = 23,5 °С приведёт к выключению и тёплого пола (рис. 18).



Рис. 18. Схемы подключения хронотермостата VT.AC711

Остывание помещения сначала запустит тёплый пол при температуре 20 + dT – 0,5 = 22,5 °С, а при понижении температуры до значения 20 – 0,5 = 19,5 °С подключится и радиаторное отопление.

По умолчанию, значение dT задана равной 3 °С, однако задавать его рекомендуется, исходя из особенностей конкретной системы и тепловой инерционности помещения.

Таблица 2. Основные технические характеристики комнатных термостатов

Конструирование систем комфортного обогрева помещений – достаточно сложная задача. Требования к этим системам возрастают. Сегодня потребители не хотят получать просто абстрактную нормативную температуру воздуха в помещении, а стремятся к тому, чтобы комфортные условия поддерживались вне зависимости от внешних и внутренних факторов. В этом случае не обойтись без использования водяного теплого пола, который перестал быть диковинкой и широко применяется как в коттеджах, так и в многоэтажных домах.

Комфортность нахождения в помещении, обогреваемом с помощью напольного отопления, обеспечивается за счет равномерного распределения тепла по всей поверхности пола и способности системы к саморегулированию. Для понимания сути явления «саморегулирование теплого пола» рассмотрим абстрактную систему напольного отопления и проанализируем, как ведет себя эта система при изменении параметров наружного и внутреннего воздуха (рис. 1а–1г).



Рис. 1а

На улице холодно, солнца нет. Температура поверхности пола составляет 24, воздуха в помещении – 20 °С. Из-за разности этих значений происходит теплообмен между поверхностью пола и внутренним воздухом. Тепловой поток составляет ≈ 45 Вт/м 2 .



Рис. 1б

На улице холодно, появилось солнце. Температура поверхности пола составляет 24 °С, а температура воздуха в помещении поднялась за счет солнечной радиации до 22 °С. Разность температур уменьшилась, и соответственно снизился тепловой поток в помещение: ≈ 21 Вт/м 2 .



Рис. 1в

На улице тепло. Температура поверхности пола составляет 24 °С, а температура воздуха в помещении поднялась за счет солнечной радиации до 24 °С. Разность температур отсутствует. Поэтому теплообмена нет. Тепловой поток равен 0 Вт/м 2 .


Рис. 1г

На улице холодно, солнца нет, открыто окно. Температура поверхности пола составляет 24 °С, а температура воздуха в помещении снизилась до 16 °С за счет увеличения теплопотерь и поступления через окно холодного воздуха. Разность температур между поверхностью пола и внутренним воздухом значительно возросла. Тепловой поток составляет 86 Вт/м 2 .

Однако из-за инерционности системы поверхностного обогрева процесс изменения температуры воздуха в помещении достаточно продолжителен. Повысить оперативность реакции водяного теплого пола можно с помощью грамотного применения средств автоматики и управления.

При использовании напольного отопления в качестве основной системы обогрева вопрос регулирования решается установкой теплогенератора с погодозависимой автоматикой в связке с комнатными термостатами и сервоприводами на каждой петле. Однако в климатических условиях России теплый пол не всегда способен обеспечить компенсацию теплопотерь помещениями. Поэтому в большинстве случаев система отопления проектируется комбинированной, например, водяной теплый пол дополняется радиаторами. При таком подходе система отопления условно делится на два температурных контура: первичный (высокотемпературный, радиаторный) и вторичный (низкотемпературный, теплый пол). Это требует более сложной системы управления отоплением, но в результате получается гибкая, оперативная и надежная схема.

Примером технического совмещения контура радиаторного отопления и водяного теплого пола может служить схема с использованием насосно-смесительного узла VALTEC COMBI (COMBIMIX).



Рис. 2. Внешний вид и схема работы узла VALTEC COMBI (COMBIMIX)

Наименование
1Термоголовка жидкостная с выносным датчиком погружного типа, установленная на термостатическом клапане
Капиллярная трубка термоголовки
1bГильза с установленным датчиком температуры термоголовки
Гильза под датчик температуры
2Балансировочный клапан вторичного контура
3Автоматический поплавковый воздухоотводчик
4Перепускной клапан для предотвращения работы насоса в тупиковую сеть
5Термометр
6Шаровой клапан для отключения циркуляционного насоса
7Перепускной байпас для поддержания циркуляции во вторичном контуре
8Дренажный клапан
9Циркуляционный насос (в комплект не входит)
10Обратный трубопровод вторичного контура для возврата излишнего теплоносителя в первичный контур
11Запорно-балансировочный клапан вторичного контура
Т1Присоединение подающего трубопровода первичного (высокотемпературного или радиаторного) контура
Т2Присоединение обратного трубопровода первичного (высокотемпературного или радиаторного) контура
Т11Присоединение подающего трубопровода или коллектора вторичного (низкотемпературного или теплого пола) контура
Т21Присоединение обратного трубопровода или коллектора вторичного (низкотемпературного или теплого пола) контура

Узел предназначен для поддержания заданной температуры и расхода теплоносителя во вторичном контуре системы отопления, гидравлическую увязку первичного и вторичного контуров. Он оснащен всей необходимой запорно-регулировочной арматурой и сервисными элементами и обеспечивает стабильную работу вторичного контура и предохраняет насос от работы «на закрытую задвижку», что увеличивает срок его безаварийной службы.

Ключевым для данного узла является реализация управления смесительным клапаном теплого пола. Вариантов можно предложить несколько.

Вариант 1. Термостатический клапан с чувствительным элементом (термостатической головкой), рис. 3.



Рис. 3. Управление смесительным узлом с помощью
термостатического клапана с чувствительным элементом

Приведенная на рис. 3 схема является наиболее простой в реализации и соответственно самой дешевой. Она содержит:

Температура теплоносителя в подающем коллекторе теплого пола поддерживается термостатической головкой (диапазон настройки 20–60 °С), которая выставляется на расчетное значение заложенное проектом системы, соответствующее максимально отрицательной температуре наружного воздуха в отопительный период. В таком случае во всех помещениях будет поддерживаться постоянно максимально-расчетная температура.

Аварийное ограничение превышения температуры во вторичном контуре обеспечивается термостатом с выносным датчиком VT.AC616 I (рис. 4). Этот термостат включается в цепь питания циркуляционного насоса и отключает его при превышении настроечного значения температуры теплоносителя.



Рис. 4. Термостат с выносным
датчиком AC 616 I

Однако температура наружного воздуха претерпевает постоянные изменения, что влияет на тепловой режим помещений. Для того чтобы соответствующим образом изменить температуру в каком-либо отдельном помещении, потребителю необходимо с помощью ручного регулировочного клапана, установленного на обратном коллекторе теплого пола, откорректировать количество проходящего теплоносителя. При такой схеме получается, что при каждом существенном изменении внешней температуры потребитель вынужден «бегать» к узлу для корректировки настроек. Получается, что отопление есть, а комфорта нет.

Вариант 2. Термостатический клапан с чувствительным элементом (термостатической головкой) и сервоприводы на петлях, работающие по команде комнатных термостатов (рис. 5).

Избавиться от ручного регулирования работы контуров теплого пола можно с помощью комнатных термостатов, расположенных в отапливаемых помещениях. Каждый термостат управляет электротермическим сервоприводом, установленным на соответствующем термостатическом клапане обратного коллектора теплого пола.



Рис. 5. Управление теплым полом с помощью термостатического
клапана с чувствительным элементом и комнатных термостатов


Рис. 6. Импульсные сервоприводы VT.TE3040 (слева) и VT.TE3042 (справа)

В предложенной схеме используются импульсные нормально закрытые сервоприводы VT.TE3040 или VT.TE3042 (рис. 6). Нормально закрытый привод – это привод, который находится в закрытом положении при отсутствии электропитания, а при подаче напряжения переходит в положение «Открыто». Отличие приводов заключается только в дизайне, при одинаковых эксплуатационных характеристиках.

В качестве комнатных термостатов могут использоваться следующие приборы:



Рис. 7. Комнатный термостат VT.AC601

1) Термостат VT.AC601 (рис. 7), работающий от встроенного датчика температуры окружающего воздуха. При снижении температуры воздуха в помещении термостат подает питание на привод, который открывает клапан.



Рис. 8. Комнатный термостат VT.AC602

2) Термостат VT.AC602 (рис. 8), оснащенный выносным датчиком температуры пола и выключателем, полностью прекращающим работу термостата. Этот прибор может работать в трех режимах: а) по датчику температуры воздуха (диапазон настройки 5–40 °С); б) по датчику температуры пола; в) по двум датчикам одновременно. В качестве основного датчика выступает датчик температуры воздуха, а датчик температуры пола работает в качестве ограничителя с заводской настройкой 30 °С. Термостат имеет также возможность подключения через внешний таймер, который управляет включением и отключением термостата по заданной временной программе.



Рис. 9. Комнатный хронотермостат VT.AC 709

3) Хронотермостат VT.AC709 (рис. 9) работает по алгоритму, аналогичному алгоритму работы термостата VT.AC602. В отличие от двух предыдущих термостатов, он обладает функцией недельного программирования, что позволяет пользователю задавать различные температурные режимы в определенное время суток и в определенные дни недели.


Рассматриваемые в статье комнатные термостаты VT.AC601, 602, 709 работают только от сети 220 В и управляют в системах отопления только нормально закрытыми сервоприводами.

Автоматизация с помощью комнатных термостатов и электротермических сервоприводов избавляет потребителя от ручного управления системой, но весь контур теплого пола по-прежнему будет работать на полную тепловую мощность, с постоянной температурой теплоносителя, независящей от колебаний температуры наружного воздуха.

Вариант 3. Термостатический клапан с чувствительным элементом (термический сервопривод с аналоговым управлением), сервоприводы на петлях, работающие по команде комнатных термостатов и контроллер с функцией погодной компенсации, управляющий сервоприводом термостатического клапана смесительного узла (рис. 10).



Рис. 10. Управление теплым полом с помощью комнатных термостатов и погодозависимой автоматики.

Адаптация теплопроизводительности системы напольного отопления к наружной температуре воздуха возможна при использовании погодозависимой автоматики, такой, например, как контроллер VALTEC VT.K200 (рис. 11). Контроллер позволит обеспечить не только энергоэффективную работу напольного отопления, но и продлить рабочий ресурс системы в целом.



Рис. 11. Контроллер VT.К200

Контроллер VALTEC VT.K200 позволяет по заданному графику корректировать температуру теплоносителя в соответствии с температурой наружного воздуха. Температура теплоносителя в подающем коллекторе теплого пола регулируется с помощью аналогового сервопривода VT.TE3061, посредством управляющего сигнала от контроллера. Управляющий сигнал контроллера рассчитывается по пропорционально-интегрально- дифференциальному (ПИД) закону регулирования.

Величина управляющего сигнала определяется по формуле:


Пропорциональная составляющая (Р) прямо пропорциональна «невязке», которая определяется выражением:


где Тус – температура уставки; Т – текущее значение температуры.

При пропорциональном регулировании фактическое отклонение температуры вызывает пропорциональное изменение управляющего сигнала.

Однако при таком регулировании значение температуры никогда не стабилизируется на уставке, и процесс превращается в колебательный с постоянными перегревами и охлаждениями. Величина этих отклонений от уставки называется статической ошибкой. Для устранения данной ошибки контроллером учитывается интегральная составляющая (I), которая равна интегралу «невязок». Она позволяет контроллеру учитывать эту статическую ошибку.

Если система работает в стабильном режиме, то через некоторое время температура теплоносителя устанавливается на заданном значении. Однако время, за которое система достигает заданного уровня температуры, достаточно велико. Для сокращения времени выхода на уставку используется дифференциальная составляющая. Она пропорциональна темпу (скорости) изменения отклонения температуры от уставки.

ПИД-регулирование дает возможность контроллеру оперативно устанавливать в системе требуемый уровень температуры теплоносителя при малейших колебаниях температуры наружного воздуха.

Коэффициенты Kp, Ki и Kd определяются в процессе автонастройки, предусмотренной в приборе, но также могут быть заданы или скорректированы вручную в ходе эксплуатации.

Необходимая температура теплоносителя определяется контроллером по пользовательскому температурному графику. Данный график устанавливается на стадии наладки системы отопления и определяется заданными пользователем точками (от 2 до 10).

Крайняя левая точка графика (рис. 12, точка А или С) задает максимальную температуру теплоносителя в системе теплого пола, которой соответствует расчетная отрицательная температура наружного воздуха.

Максимальная температура теплоносителя теплого пола определяется проектом системы отопления.



Рис. 12. График регулирования

Крайняя правая точка (рис. 12, точка В или D) определяется по личностным теплоощущениям конкретного потребителя и далее корректируется на основании опыта эксплуатации.

На графике (рис. 12) приведен пример для двух разных температурных режимов, приведенных в таблице.

Температура,°СТочки температурного графика
Режим 1Режим 2
ABCD
Наружного воздуха-2610-326
Теплоносителя40203518



Рис. 13. Подключение насоса

Встроенная функция ограничения температуры в контуре теплого пола позволяет отказаться от использования внешнего предохранительного термостата. В этом случае питание насоса подается через контроллер (рис. 13).

Контроллер обладает функцией адаптивности, которая позволяет в процессе эксплуатации вырабатывать наиболее эффективный алгоритм работы, соответствующий конкретной системе, объекту и динамике изменения теплового режима.

Настройка контроллера проста и занимает у пользователя не более 10–15 минут.

Благодаря наличию встроенного цифрового интерфейса RS-485 контроллер может быть внедрен в сеть диспетчеризации и контроля данных.

Подробные пошаговые инструкции по настройкам смесительного узла VALTEC COMBI (COMBIMIX) и термостатов вы найдете на нашем сайте.

Информация о новом погодозависимом контроллере VALTEC VT.K200 будет опубликована несколько позже.

Как устроены и работают программируемые комнатные термостаты для теплых полов

Как устроены и работают программируемые комнатные термостаты для теплых полов

Термостаты (терморегуляторы) для «теплых полов» необходимы, прежде всего, в качестве средства обеспечения максимально оптимального и максимально точного управления системой подогрева «теплого пола». Наиболее комфортный подогрев пола жилища, оптимальное энергопотребление, и просто удобное автоматизированное управление микроклиматом помещения – вот основные задачи, которые решает комнатный термостат.

В процессе работы, термостат получает данные о температуре в комнате (или температуре пола) с термодатчика, и, в соответствии с полученными данными, осуществляет включение или выключение системы подогрева.

Существуют программируемые и непрограммируемые терморегуляторы. Непрограммируемый термостат обеспечивает поддержание температуры воздуха в помещении на строго заданном уровне, и не может самостоятельно менять значение установленной температуры. Такие термостаты, обычно, устанавливаются в ванной комнате или в туалете.

Это простейший способ управления как подогревом «теплого пола», так и системами обогрева в целом. Как программируемые, так и непрограммируемые комнатные термостаты устанавливаются на стену.

терморегулятор для теплого пола

Программируемый термостат, в отличие от непрограммируемого, способен обеспечить подогрев наиболее оптимальным для человека образом, ведь его можно запрограммировать на включение и выключение, задав удобные для вас параметры. Например, подогрев пола может происходить в строго определенные утренние часы, и в заданные вечерние часы.

В указанные выходные дни подогрев может быть большим или меньшим, причем температура также может быть установлена на нужное значение в нужное время дня. Она может отличаться в разные промежутки времени, и поддерживаться на большем или меньшем уровне в заданный длительный промежуток времени, или же система может находиться в полностью отключенном состоянии, пока в подогреве нет особой нужды.

Как правило, программируемые термостаты имеют цифровой дисплей, обеспечивающий удобство настройки программы, и несколько кнопок, либо систему сенсорного управления прибором, обеспечивающую удобство пользования. Стандартные программы могут модифицироваться пользователем так, как ему захочется.

цифровой дисплей программируемого термостата

Можно установить программу подогрева пола к приходу хозяев домой или к приезду на выходные, если есть такая необходимость. Подогрев может быть отключен на ночь или в случае отсутствия хозяев дома. Если используется система двухтарифного учета электроэнергии, то можно настроить программируемый термостат на включение в часы более выгодного тарифа, и на отключение по его завершении.

Комнатный термостат снабжен термодатчиком, который измеряет температуру воздуха в помещении. Термодатчик может быть как встроенным в комнатный термостат, если прибор устанавливается непосредственно в том помещении, температуру в котором требуется регулировать с помощью системы обогрева, либо такой датчик может быть отдельно установлен (это актуально именно для «теплых полов»).

Задняя панель для термостата

Как правило, датчик «теплого пола» идет в комплекте с комнатным термостатом. В случаях, когда в помещении имеет место повышенная влажность, сквозняк, или иные, могущие нарушить работу прибора, факторы, термодатчик и термостат устанавливаются в разных местах, а иногда и в разных помещениях, чтобы термостат мог исправно работать в безопасных для него условиях.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

О теплых полах теперь можно не только мечтать. В настоящее время их монтаж не требует больших трудозатрат и денежных средств. Теплые полы решили множество проблем, связанных с отоплением помещения. Особенно они радуют семьи, у которых есть маленькие дети и внуки, а так же тех, кто любит ходить босиком по голому полу. Ещё лучше, если уровень температуры в доме или квартире можно регулировать.

термостат для водяного теплого пола

Понизить температуру обогрева в отопительной системе в зимний период требуется во многих ситуациях: днём, когда солнце активно проникает сквозь окна, ночью, чтобы не было жарко спать. В дневные часы, пока домочадцы на работе и в школе, можно сэкономить, и не топить сильно. В морозные вечера, наоборот, нужно поднимать уровень температуры теплоносителей в системе отопления, чтобы помещение прогрелось. Помогают сделать это легко и быстро, даже без участия человека, терморегуляторы для водяного отопления.

Как происходит регулировка обогрева теплого пола

Если дом или квартира не большие, регион проживания — южный, теплые полы можно оставлять основным источником отопления. В других случаях его делают как приятное дополнение, которое сделает жизнь более комфортной. Например, в детской комнате, в ванной или на кухне, в рабочей зоне. Всё дело в том, что делать пол очень горячим по понятной причине нельзя. Если за окном минус 40 градусов, отопительная система должна быть более мощной.

Очень удобно иметь полы, уровень нагрева которых контролируется. Есть множество устройств для регулировки температуры теплого пола. Их работа основана на едином принципе.

Отопительные контуры контролируются индивидуально, через обустройство специальных коллекторов, которые собирают вместе входы и выходы системы отопления:

Термодатчик для водяного теплого пола сигнализирует терморегулятору о том, что температура в помещении (или на поверхности пола) повысилась. В цепочку включается сервопривод, управляющий вентилями. Получив соответствующий сигнал от термостата, он впускает в систему новую партию горячей воды. Или, наоборот, перекроет её движение, если терморегулятор даст сигнал, что в комнате стало жарко. Помогает регулировать поток теплоносителя термоклапан для водяного теплого пола. Подобный термостатический клапан для теплого пола позволяет эффективно регулировать температуру подачи теплоносителя. Для подкачки воды обязательно устанавливается насос.

термоклапан для теплого пола водяного

Итак, для контроля показателей температуры теплых полов нужны:

  • коллектор, куда сводятся все контуры;
  • терморегулятор;
  • термодатчик;
  • сервопривод, управляющий вентилями;
  • насос для подкачки воды.

Всё это вместе даёт возможность сделать систему отопления автоматизированной. Это не простое удобство, а экономия энергоресурсов. Терморегуляторы можно выставить так, что в отсутствие людей обогрев помещения будет снижен. Автоматы позволяют сэкономить от 30 до 40 процентов объёма энергоносителей. Причём на условиях проживания людей это не отразится, наоборот, сделает более комфортным пребывание в квартире или доме.

Для того, чтоб повысить безопасность эксплуатации приборов, предусмотрена установка предохранительных клапанов и защитной арматуры от скачков напряжения в электрической сети и перегрева электрооборудования.

Что могут контролировать термостаты

Современные терморегуляторы для водяного теплого пола могут контролировать следующие показатели:

  • температуру воздуха в помещении;
  • уровень прогрева пола;
  • совмещать контроль температуры воздуха и поверхности пола.

Чтобы проконтролировать температуру воздуха в комнате, датчики встраивают в корпус термостата. Настраивают его специально для учёта уровня показателей в контролируемом помещении. Такой контроль эффективен только внутри зданий, которые имеют хорошую теплоизоляцию, а потери тепла сведены к минимуму. Если это условие не выдержано, датчик контроля температуры в помещении ставить не рентабельно.

как регулировать температуру водяного теплого пола

Если надо проконтролировать прогрев поверхности напольного покрытия, датчик температуры водяного теплого пола устанавливают как можно ближе к отопительному контуру. Такая система эффективна, когда теплый пол выполняет функцию дополнительного обогрева помещения. Температурный режим воздуха устанавливают основные источники тепла.

Термостат для водяного теплого пола с комбинированной системой контроля применяется редко, в отдельных современных отопительных контурах. Он может одновременно контролировать уровень прогрева пола и воздуха, или, по выбору, что-то одно.

Типы терморегуляторов по конструкции и способу монтажа

Когда встаёт вопрос о том, как регулировать температуру водяного теплого пола, в многообразии различных видов термостатов нужно правильно сориентироваться. Несмотря на то, что они выполняют одну и ту же функцию, дополнительные возможности разные, и, соответственно, цена.

Устройства, которые выпускают производители, можно по сложности конструкции распределить на пять групп:

  1. механические;
  2. дистанционные сенсорные;
  3. обычные электронные;
  4. программируемые терморегуляторы;
  5. радиоуправляемые.

Надёжность моделей зависит не от конструкции, а от добросовестности производителя и условий эксплуатации.

По способу монтажа терморегуляторы бывают:

  • обычными настенными, которые крепятся в каждой комнате и подходят для небольших квартир;
  • щитовыми, позволяющими из одной точки контролировать процесс в большом здании.

Каждый из этих способов позволяет удобно эксплуатировать систему регулировки температурного режима.

Механический тип

термостат для теплого пола водяного механический

Единственный минус — это необходимость постоянного контроля температуры, изменение показателей возможно только вручную. Никакой электроники, которая сможет распределить уровень температурного режима во времени, в них нет.

Следует знать, что встречаются некачественные экземпляры, не совсем точно отображающие температуру. Это, в принципе, не так страшно. Рекомендуется сразу после пуска устройства сверить его показания с комнатным термометром. Затем контроль осуществлять с учётом разницы.

Сенсорные термоклапаны с пультом управления

Регулировка температуры водяных теплых полов может осуществляться с помощью сенсорных моделей, которыми управляют дистанционно, с помощью пульта.

Устройства имеют современную легко управляемую сенсорную панель. На неё выводится вся текущая информация о температурном режиме, в том числе, и предупреждение о наличии какого-то сбоя в системе.

регулировка температуры теплого пола

Привлекательность таких конструкций не только в их «дистанционном» обслуживании, но и в том, что они могут регулировать сразу несколько контуров. Именно для таких сложных систем применяют чаще всего сенсорные модели, управляемые с помощью пульта. Термостат от надёжного производителя прослужит долго.

Обычные электронные термостаты для водяного теплого пола

Некоторые потребители предпочитают установить в своём доме обычные электронные терморегуляторы. Они практически не отличаются от сенсорных с дистанционным управлением. На пластиковой панели расположены электронное табло и кнопки. С их помощью задаётся необходимый температурный режим, который может меняться за сутки несколько раз.

термодатчик для теплого пола водяного

Разобраться самостоятельно в настройках такого устройства несложно. Конструкция на порядок выше, чем у термостата для теплого водяного пола механического типа.

«Умные» программируемые терморегуляторы

Устройства, которые сами могут менять уровень температуры в помещении в отсутствие людей, гораздо более сложные, но экономия от их использования огромная. Затраты на их покупку и установку окупятся в первый же зимний сезон. Речь идёт о программируемых терморегуляторах. Они могут обслуживать одновременно несколько контуров. Есть возможность подключения к системе «умного дома».

механический терморегулятор для водяного теплого пола

Программируемый терморегулятор решает множество проблем с отоплением, обеспечивает комфортное пребывание в помещении. Позволяет настроить определённые дни, часы и недели на заданную температуру. Поэтому даже в отсутствие хозяев он сам переведёт отопительную систему в экономный режим. Вся информация о его работе отображается на дисплее.

Устанавливать их может только специально обученный мастер. Аппаратура эта дорогостоящая, требует бережного к себе отношения, но вполне оправдывает себя.

Беспроводные радиоуправляемые термостаты

Еще более дорогостоящие, чем электронные программируемые, радио термостаты устанавливают редко. Используют в домах, где принято решение не использовать электрические кабели.

Команды сервоприводам подаются с помощью радиосигналов. Происходит это следующим образом. Сигнал от датчиков для водяного теплого пола поступает на радио термостат. Он перенаправляет их радио контролёру. Цепочка радиосигналов приводит к механизму подачи горячей воды. Цена такой аппаратуры высокая из-за того, что приёмники и передатчики установлены на каждом этапе передачи радиосигналов.

Ремонт такой системы, если она выйдет из строя, дорогостоящий.

Как определиться с выбором термостата для регулировки

Первое, на что обращают внимание, когда речь заходит об комфортном пребывании квартире или доме, это температура воздуха в помещении. Каким ни был интерьер, а способ отопления, и все связанные с этим последствия оказываются более важными. Если помещение равномерно прогрето, нет сырых полов, углов и закоулков с холодными сквозняками, в помещении находиться приятно. Терморегулятор для теплого пола с выносным датчиком позволяет добиться комфортного уровня температуры в каждом помещении отдельно. Однако механический термостат для таких целей покупать не целесообразно. У него нет возможности контролировать температурный режим одновременно в нескольких помещениях.

Перед покупкой терморегулятора нужно подумать, какие проблемы по контролю за температурным режимом решит это устройство. Если есть необходимость отрегулировать тепло в отсутствие хозяев, с этой задачей прекрасно справится программируемый термостат.

Когда члены семьи не могут определиться с общим температурным режимом в доме, поможет многоканальный электронный термостат, который с помощью датчиков, установленных в разных комнатах, будет регулировать уровень тепла.

Самый недорогой и простой в использовании механический терморегулятор поможет поддерживать нужный уровень температуры в небольшой квартире.

При выборе терморегулятора нужно обязательно знать его мощность. Она должна соответствовать мощности системы отопления теплого пола.

Разные виды комнатных термостатов для водяного теплого пола предназначены для отопительных систем с определёнными техническими характеристиками и теплосберегающими показателями зданий, климатом данного региона. Учитываются пожелания потребителя. Так, например, у разных моделей и производителей отличаются интерфейсы, с помощью которых удобно следить за работой прибора.

Советы по установке терморегуляторов

Перед тем, как выполнять монтаж, нужно познакомиться с инструкцией и схемой подключения, чтобы установка датчика теплого пола была выполнена правильно. Она изображена на обратной стороне корпуса. Если порядок подключения будет нарушен, аппарат выйдет из строя. Поэтому на этом этапе очень важно правильное подключение, от которого зависит, насколько эффективно будет работать вся саморегулирующая система. Конечно, немаловажно и то, насколько грамотно был сделан монтаж контуров теплого пола.

комнатный термостат для водяного теплого пола

Следует учесть, что у сервопривода двигатель с двусторонним вращением. Он вращается по часовой стрелке или в обратную сторону в зависимости от сигнала, который подаёт ему термостат. При этом клапан увеличивает или делает меньше просвет в трубе, по которой идёт теплоноситель.

Термостаты нужно располагать поближе к электрическим розеткам, на высоте от пола от 0,5 до 1 метра. Если в семье маленький ребёнок, то прибор нужно крепить повыше. Особенно это касается программируемых электронных моделей, которые легко вывести из строя неумелым обращением.

Оборудование работает от сети напряжением 220 В (кроме радиоуправляемых).

Подсоединение к электросети всех приборов нужно выполнять в соответствии с правилами устройства электроустановок.

Как работает терморегулятор для водяного теплого пола – виды, правила установки

Читайте также: