Количество точек статического зондирования при свайном фундаменте

Обновлено: 19.04.2024

При подтверждении однородности разреза по результатам ранее выполненных изысканий или геофизических исследований допускается до 1/3 горных выработок заменять точками статического зондирования, а также в пределах площадки изысканий смещать точки опробования в места доступные для проходки, но не более половины рекомендованного расстояния между точками.

6.3.7 Глубины выработок на площадках зданий и сооружений должны быть на 2 м ниже активной зоны взаимодействия зданий и сооружений с грунтовым массивом. Толщину активной зоны рассчитывают по СП 22.13330.

6.3.8 При отсутствии данных об активной зоне глубину горных выработок следует устанавливать в зависимости от типов фундаментов и нагрузок на них (этажности):

5) на участках распространения специфических грунтов не менее 30% горных выработок необходимо проходить на полную их мощность или до глубины, где наличие таких грунтов не будет оказывать влияния на устойчивость проектируемых зданий и сооружений;

6) при изысканиях на участках развития геологических и инженерно-геологических процессов выработки следует проходить на 3-5 м ниже зоны их активного развития и учитывать дополнительные требования соответствующих пунктов настоящего свода правил;

7) для массивов скальных грунтов глубина горных выработок устанавливается программой инженерных изысканий исходя из особенностей инженерно-геологических условий и характера проектируемых объектов.

6.3.9 Полевые испытания грунтов выполняют в соответствии с ГОСТ 30672. Выбор метода полевых испытаний зависит от состава, строения и состояния изучаемых грунтов, целей исследований, категории сложности инженерно-геологических условий, проектных нагрузок, глубины заложения, условий эксплуатации оснований зданий и сооружений, типов проектируемых фундаментов и методов их расчета. Общие рекомендации по выбору методов и соответствующие стандарты приведены в приложении Ж.

6.3.10 Полевые испытания необходимо сочетать с другими способами определения состава, состояния и свойств грунтов (лабораторными, геофизическими) для интерпретации данных, выявления взаимосвязей между характеристиками грунта, определяемыми различными методами, и оценки их достоверности.

6.3.11 Прочностные характеристики дисперсных грунтов определяют, как правило, методом статического и динамического зондирования в соответствии с ГОСТ 19912. Для ориентировочной оценки разжижения песков применяют динамическое зондирование (см. таблицу И.8).

Несущая способность свай определяется статическими испытаниями свай, динамическими испытаниями свай, испытаниями грунтов эталонной сваей, испытаниями грунтов статическим зондированием.

6.3.12 Для определения характеристик грунтов при расчете устойчивости склонов или прочностных свойств массива, сложенных крупнообломочными или неоднородными грунтами, используют срез целиков грунта методом поступательного (одноплоскостного) среза. Количество определений показателей прочности для каждого инженерно-геологического элемента следует устанавливать не менее трех (или двух, если они отклоняются от среднего не более чем на 25%).

6.3.13 Прочностные характеристики органоминеральных и глинистых грунтов текучепластичной и текучей консистенции определяют методом вращательного среза в соответствии с ГОСТ 20276.

6.3.14 Основными методами получения деформационных показателей в массиве грунта являются испытания штампом, прессиометрия, а также в сочетании с нимистатическое зондирование.

6.3.15 Для зданий и сооружений повышенного уровня ответственности испытания грунтов статическими нагрузками штампами площадью 2500 и 5000 следует осуществлять в шурфах (дудках) на проектируемой глубине (отметке) заложения фундаментов, а в пределах активной зоны взаимодействия зданий и сооружений с основанием - штампами площадью 600 или винтовой лопастью в скважинах. При глубине исследований, ограничивающей использование штампа, следует выполнять испытания прессиометром и/или трехосным сжатием.

6.3.16 Для зданий и сооружений нормального (при нагрузках на фундаменты менее 0,25 МПа) и пониженного уровней ответственности прочностные и деформационные свойства допускается определять методом статического и динамического зондирования по приложению И, а также лабораторными методами (см. ГОСТ 12248), для объектов нормального и повышенного уровня ответственности при нагрузках на фундамент более 0,25 МПа деформационные показатели следует подтверждать штамповыми или прессиометрическими испытаниями.

6.3.17 Количество испытаний грунтов штампом для каждого характерного инженерно-геологического элемента следует устанавливать не менее трех (или двух, если определяемые показатели отклоняются от среднего не более чем на 25%), а испытаний прессиометром - не менее шести. По результатам полевых испытаний уточняют значения модуля деформации грунтов, определенных лабораторными методами, согласно требованиям СП 22.13330.

6.3.18 Гидрогеологические исследования следует выполнять в комплексе с другими видами инженерно-геологических работ. При планировании и выполнении гидрогеологических исследований следует учитывать требования СП 22.13330 в части состава необходимой гидрогеологической информации.

Для линейных объектов гидрогеологические исследования выполняют на участках индивидуального проектирования.

При решающем влиянии на выбор проектных решений гидрогеологических условий следует выполнять опытно-фильтрационные работы. В других случаях фильтрационные параметры допускается принимать по справочным данным и результатам лабораторных исследований.

В процессе проведения откачек выполняют гидрохимическое опробование скважин. Число отбираемых проб в ходе откачек определяется задачами исследований и продолжительностью откачки. В простых инженерно-геологических и гидрохимических условиях следует отбирать не менее трех проб воды на стандартный химический анализ. Число отбираемых проб в сложных гидрохимических условиях определяется в программе выполнения инженерно-геологических изысканий с их корректировкой в процессе выполнения полевых работ.

6.3.19 В зоне воздействия на строительные конструкции отбирают не менее трех проб на определение агрессивности водной среды по отношению к бетону или коррозионной агрессивности к металлам, если последние используются в подземных коммуникациях и фундаментах. Лабораторные исследования химического состава подземных и поверхностных вод, а также водных вытяжек из грунтов выполняют в соответствии с [10] для определения их агрессивности по отношению к материалам подземных конструкций, находящихся в зоне взаимодействия с подземными водами, а также для оценки влияния подземных вод на развитие геологических и инженерно-геологических процессов (карст, химическая суффозия и др.) и выявления ареала загрязнения подземных вод и источников загрязнения.

Пробы для лабораторных определений воды отбирают при проходке горных выработок, а также при маршрутных наблюдениях. Общие правила отбора, хранения и транспортирования проб воды приведены в ГОСТ 17.1.5.05, ГОСТ Р 51593, ГОСТ 24902, [10].

6.3.20 Стационарные наблюдения за динамикой геологической среды выполняют при наличии активных геодинамических процессов, определяющих принятие проектных решений. Для сооружений повышенного уровня ответственности в районах проявления опасных инженерно-геологических процессов, на начальных этапах инженерных изысканий закладывают сеть для долговременных стационарных наблюдений.

6.3.21 Прогноз возможных изменений инженерно-геологических и гидрогеологических условий следует выполнять для подготовки проектной документации.

6.3.22 Инженерно-геологические изыскания для проектирования линейных объектов должны учитывать требования нормативных документов по видам проектируемых сооружений.

6.3.23 Задание на инженерно-геологические изыскания линейных объектов дополнительно к 4.12 должно содержать:

Определили несущую способность забивной висячей сваи расчетным методом по СП и получили 55 т. Запроектировали фундамент под нее.
Теперь пришли результаты статического зондирования! 2 точки. (мне кажется маловато, по снип вроде минимум 6, ну ладно ни в этом суть).
Определяю несущую способность по результатам зондирования (см. вложение) и получаю 110 т. ГИП говорит не может быть такого, ты ошибся. но я считал четко по руководству к снип по сваям. Помогите пжлст, мне уже тоже кажется что где то у меня косяк. Заранее спасибо

У вас нет косяка. Табличные значения для СНиП очень занижены, дабы избежать ошибки. Но все равно окончатильное значение можно принять после испытания самих свай.

а какое значение принять на данном этапе, ведь расчет по результатам зондирования является приоритетным. а по снип дает двукратный запас, это расход.

вопрос к тому, стоит ли взять сваи меньше, опираясь на результаты зондирования? грунты хреновенькие..и даже удивило, что зондирование дало такой результат. уровень грунтовых вод 3 м от поверхности земли.

не смотрите на этот расчет, он подогнан для экспертизы, попросил ГИП) расчет правильный в заголовке! Здесь только геология.

Ни ви коем случае.
Несущая способность (а тем паче определенная по результатам кратковременных пытаний) при той геологии (если ей стоит верить) основана на трении грунта о стенки сваи.
Обычно нет одиночных свай, они либо в группе, либо в ленте. при этом их несущая способность изменяется, менее по боковой - более по острию. А у вас в острие - дерьмо ( Offtop: Сейчас Ал-й опять напишет. .


В вашем случае (т.е. при тех грунтах, что дает ваша геология), я бы озаботился об неравномернсти осадок, и вообще об осадке, прежде чем заниматься вопросами несущей способности сваи ( а в понимании свай) по грунту.

Не считал.. но по ощущениям 66т это похоже на несущую способность. Грунты не очень из-за текучести. Но они проявляют себе плохо только при водонасыщении. В сухом состоянии они могут давать несущую способность довольно большУю, что и показали результаты стат зондирования. Я бы остановился на ручном расчете.
Не досмотрел про воду на 3м от поверхности. Тогда статзондирование странное.

Не считал.. но по ощущениям 66т это похоже на несущую способность. Грунты не очень из-за текучести. Но они проявляют себе плохо только при водонасыщении. В сухом состоянии они могут давать несущую способность довольно большУю, что и показали результаты стат зондирования. Я бы остановился на ручном расчете.

Ни ви коем случае.
Несущая способность (а тем паче определенная по результатам кратковременных пытаний) при той геологии (если ей стоит верить) основана на трении грунта о стенки сваи.
Обычно нет одиночных свай, они либо в группе, либо в ленте. при этом их несущая способность изменяется, менее по боковой - более по острию. А у вас в острие - дерьмо (Offtop: Сейчас Ал-й опять напишет.


В вашем случае (т.е. при тех грунтах, что дает ваша геология), я бы озаботился об неравномернсти осадок, и вообще об осадке, прежде чем заниматься вопросами несущей способности сваи ( а в понимании свай) по грунту.

данный свайный фундамент просчитан полностью, в том числе и по осадкам все там нормально. забыл сказать, нагрузка от металлокаркаса 3 этажа это не так страшно как мне кажется. вы слишком нагнетаете мне кажется. сперва вопросы несущей способности. здесь я с вами не соглашусь. а потом конечно осадки..

мне вообще кажется что здесь оптимален был столбчатый фмз)) или я не прав?

если под острием фигня как нас тогда это заботит, если вы говорите основная по боковой и она почти не меняется..логику не понял..то что они в группе это наоборот + в несущую способность. разъясните..я вас не понял совсем. я все еще размышляю о расчете нового варианта свайного фундамента..

В СНиПе 2.02.03 написано:
5.2. Для определения несущей способности свай по результатам полевых исследований для каждого здания или сооружения должно быть проведено не менее:
.
динамических испытаний свай 6
.
А если здание небольшое и свайное поле состоит всего из 20 свай, всё равно необходимо испытывать 6 свай?

Если для проведения инженерных геологических изысканий то да, если для пробных (контрольных) свай в процессе строительства, то минимальное 5 шт.

Вопрос про пробные (контрольные) сваи в процессе строительства. В каком документе нормируется количество испытываемых контрольных свай?

Примечание - Количество испытываемых свай при строительстве должно составлять:
- при испытании свай динамической нагрузкой - до 1 % от общего количества свай на данном объекте, но не менее 6 шт.;
- при испытании свай статической вдавливающей нагрузкой - до 0,5 % от общего количества свай на данном объекте, но не менее 2 шт.;
- при испытании свай статической выдергивающей или горизонтальной нагрузкой - не менее 2 шт.

Кстати в СП 24.13330.2011 я так понял есть приложение Б, в таблице Б1:
Испытание грунтов эталонной сваей Не менее шести испытаний на каждой заданной глубине

Кстати в СП 24.13330.2011 я так понял есть приложение Б, в таблице Б1:
Испытание грунтов эталонной сваей Не менее шести испытаний на каждой заданной глубине

Таблица носит рекомендательный характер.
Так же нет чёткого определения что такое эталонная свая (если кто знает определение просьба поделиться).

В соответствии со СНиП 2.02.03-85 п. 5.2 не менее 6 шт. на всё здание, т.е. можно сделать вывод что даже при разных длинах свай (например 5, 6, 7, 8м) достаточно 6 испытаний?

Так же нет чёткого определения что такое эталонная свая (если кто знает определение просьба поделиться)

В действующем в Украине ДСТУ Б В.2.1-1-95 (ГОСТ 5686-94) есть определение эталонной сваи (раздел 3), а также - конструкция (чертеж) эталонной сваи в Приложении В.

----- добавлено через ~4 мин. -----

В соответствии со СНиП 2.02.03-85 п. 5.2 не менее 6 шт. на всё здание, т.е. можно сделать вывод что даже при разных длинах свай (например 5, 6, 7, 8м) достаточно 6 испытаний?

Не более 1% от общего числа свай, но не менее 6 шт. - вышеупомянутый ГОСТ, Приложение А, в примечаниях к п.3.

Подскажите пожалуйста нужно ли испытывать буронабивную сваю динамической нагрузкой, если испытания проводятся натурными сваями

Подскажите пожалуйста нужно ли испытывать буронабивную сваю динамической нагрузкой, если испытания проводятся натурными сваями

В соответствии с ГОСТ 5686 п. 8.1 и 8.5.1 описаны статические испытания. Про динамику буронабивных свай ничего в ГОСТ 5686 нет.

А разве буронабивные бьют? Они же даже в бабку копра не влезут? Голову им что ли квадратную формовать?

А разве буронабивные бьют? Они же даже в бабку копра не влезут? Голову им что ли квадратную формовать?

kruz спасибо, такого изврата я еще не видел! Так и хочется спросить - И это все для зданий нормального и пониженного уровня ответственности? Мне кажется статика выйдет дешевле.
А серьезно - за инфу спасибо, буду знать.

Так и хочется спросить - И это все для зданий нормального и пониженного уровня ответственности? Мне кажется статика выйдет дешевле.

По Москве бегают несколько фирм и стучат для II и для I.
Цена. вот когда посчитаете деньги на анкерные сваи и балки под нагрузку даже 800 тонн, сразу впадете в задумчивость. А когда 1000-1500 тонн.
Ну а если 3500-5000 тонн, то тут уж без statnamic не обойтись

Испытание свай - это подготовительный период?

__________________
-Сэр, мы окружены.
-Это великолепно. Теперь мы можем атаковать в любом направлении.

Подскажите в госте 5686-2012 говорится о проведении испытаний ( статика динамика горизонтальные и выдергивающие нагрузки )
указаны проценты и минимальное количество свай.
причем не говорится что каждый вид испытаний должен проводиться для каждого типа свай.
следовательно имея на объекте 1000 свай, из которых часть забиваемые, другая часть составные и еще до кучи буронабивные, я должен испытать всего 10 свай 1% или вообще 6 на динамику 2 на статику ну и 3 дернуть или двинуть.

И еще вопрос- госте говорится о объекте строительства. что можно подразумевать под объектом. допустим возводится завод. там есть этажерки, оборудование, здание и т.д.
под каждый вид сооружения используется свой вид свай. из за площади объекта и геология разная.
можно ли рассматривать завод как объект строительства? если нет, то как классифицировать объект на большом объекте строительства с различными видами сооружений.
Помогите советом.

Подскажите в госте 5686-2012 говорится о проведении испытаний ( статика динамика горизонтальные и выдергивающие нагрузки )
указаны проценты и минимальное количество свай.
причем не говорится что каждый вид испытаний должен проводиться для каждого типа свай.
следовательно имея на объекте 1000 свай, из которых часть забиваемые, другая часть составные и еще до кучи буронабивные, я должен испытать всего 10 свай 1% или вообще 6 на динамику 2 на статику ну и 3 дернуть или двинуть.

ГОСТ 5686-2012
Приложение А (обязательное)
А.3 1 Число испытуемых свай при строительстве должно составлять:

- при испытании свай динамической нагрузкой - до 1% общего числа свай на данном объекте, но не менее 6 шт.;

- при испытании свай статической вдавливающей нагрузкой - до 0,5% общего числа свай на данном объекте, но не менее 2 шт., за исключением специально обоснованных случаев;

- при испытании свай статической выдергивающей или горизонтальной нагрузкой - не менее 2%, но не менее 3 шт.
Везде указывается, что не менее скольки-то штук.

СП 50-102-2003 Приложение В (рекомендуемое)
В.3 Определение объемов изысканий для свайных фундаментов в зависимости от уровня ответственности объектов и категорий сложности грунтовых условий рекомендуется проводить с использованием приведенной ниже таблицы В.1.
В таблице есть данные в соответствии с уровнем ответственности здания, категорией сложности грунтовых условий и видом изысканий.

СНиП 2.02.03-85
5.4. В случае, если число свай, испытанных в одинаковых грунтовых условиях, составляет менее шести, нормативное значение предельного сопротивления сваи в формуле (16) следует принимать равным наименьшему предельному сопротивлению, полученному из результатов испытаний.
В случае, если число свай, испытанных в одинаковых условиях, составляет шесть и более, нормативное значение предельного сопротивления сваи следует определять на основании результатов статистической обработки частных значений предельных сопротивлений свай, полученных по данным испытаний, руководствуясь требованиями ГОСТ 20522-75* применительно к методике, приведенной в нем для определения временного сопротивления. При этом для определения частных значений предельных сопротивлений следует руководствоваться требованиями п.5.5 при вдавливающих, п.5.6 - при выдергивающих и горизонтальных нагрузках и п.5.7 - при динамических испытаниях.

И еще вопрос- госте говорится о объекте строительства. что можно подразумевать под объектом. допустим возводится завод. там есть этажерки, оборудование, здание и т.д.
под каждый вид сооружения используется свой вид свай. из за площади объекта и геология разная.
можно ли рассматривать завод как объект строительства? если нет, то как классифицировать объект на большом объекте строительства с различными видами сооружений.
Помогите советом.

Руководствуясь п.5.4 СНиП2.02.03-85 и не обращая внимание на ГОСТ 5686-2012 под этажерки, оборудование и т.д. можно применить один вид свай, испытать менее 6шт.(например 2 шт.) и принять наименьшее значение по всему зданию (ГОСТ носит рекомендательный характер, если он не прописан в Задании на проектирование, а СНиП обязательный).

1 Количество горных выработок установлено для слабо обнаженной местности. При наличии обнажений количество горных выработок допускается уменьшать на 20-40% в зависимости от степени обнаженности местности.

2 Инженерно-геологическая съемка в масштабе 1:500 выполняется с сложных инженерно-геологических условиях (п. 4.1) при обосновании в программе изысканий.

7.8. Глубину выработок следует устанавливать, исходя из предполагаемой сферы взаимодействия намечаемых объектов строительства с геологической средой с учетом вида (характера) проектируемых зданий и сооружений и требований пп. 8.5-8.7.

7.9. На участках распространения специфических грунтов до 30% горных выработок необходимо проходить полную их мощность или до глубины, где наличие таких грунтов не будет оказывать влияния на устойчивость проектируемых зданий и сооружений.

При изысканиях на участках развития геологических и инженерно-геологических процессов выработки следует проходить на 3-5 м ниже зоны их активного развития. При выполнении изысканий в указанных условиях необходимо учитывать дополнительные требования к производству изыскательских работ согласно соответствующим частям настоящего Свода правил (п. 4.1).

7.10. Ширину притрассовой полосы линейных сооружений, среднее расстояние между горными выработками и их глубину при инженерно-геологической съемке следует принимать в соответствии с табл. 7.2.

1 На участках распространения специфических грунтов, развития опасных геологических процессов и индивидуального проектирования следует предусматривать отдельные поперечники из трех-пяти выработок, а также уменьшать расстояние между выработками и увеличивать их глубину.

2 При проектировании воздушных линий электропередачи или других сооружений на свайных фундаментах глубину выработок следует принимать с учетом п. 8.13.

3 При положении в одном коридоре нескольких трасс линейных сооружений количество и глубину выработок следует устанавливать в программе изысканий, исходя из максимальных глубин и минимальных расстояний между выработками для соответствующих видов линейных сооружений.

7.11. Для выявления общих закономерностей геологического строения и гидрогеологических условий, а также инженерно-геологических особенностей исследуемой территории следует предусматривать проходку опорных горных выработок до маркирующего горизонта (в частности, регионального водоупора).

Количество опорных выработок следует устанавливать в процессе маршрутных наблюдений, но не менее одной в пределах каждого основного геоморфологического элемента исследуемой территории.

7.12. Геофизические исследования следует выполнять для выявления и прослеживания неоднородности строения массива грунтов в пределах исследуемой территории, определения направления и скорости движения подземных вод, оценки характеристик физико-механических свойств грунтов в массиве и решения других задач в соответствии с п. 5.7 с проведением параметрических измерений на опорных (ключевых) участках.

Полевые исследования грунтов следует выполнять комплексно на опорных или иных характерных участках исследуемой территории.

При полевых исследованиях следует применять статическое и динамическое зондирование для расчленения толщи грунтов в массиве на отдельные слои, оценки пространственной изменчивости свойств грунтов, количественной оценки их прочностных и деформационных характеристик (приложение И), а также для оконтуривания слабых грунтов, уточнения рельефа поверхности скальных пород, определения степени уплотнения и упрочнения насыпных и намывных грунтов и их изменения во времени, определения динамической устойчивости водонасыщенных грунтов и для других целей.

Точки зондирования следует, как правило, размещать в створах горных выработок в количестве не менее шести для каждого инженерно-геологического элемента.

Определение прочностных и деформационных характеристик грунтов полевыми методами - испытаниями штампом, прессиометрами, срезом целиков, вращательным срезом следует выполнять при проектировании зданий и сооружений I уровня ответственности (ГОСТ 27751-88), а также зданий и сооружений II уровня ответственности, чувствительных к неравномерным осадкам, и в тех случаях, когда в сфере взаимодействия сооружений с геологической средой залегают неоднородные, тонкослоистые, текучие глинистые, водонасыщенные песчаные, искусственные, крупнообломочные и т.п. грунты, из которых затруднен отбор монолитов.

Количество испытаний грунтов штампом и срезом целиков для каждого характерного инженерно-геологического элемента следует устанавливать не менее трех, испытаний прессиометром и вращательным срезом - не менее шести.

В случае проектирования свайных фундаментов (с длиной забивных свай до 15 м) следует выполнять статическое зондирование и, как правило, испытания грунтов эталонной сваей в количестве не менее трех для каждого характерного участка.

При проектировании на объекте зданий и сооружений повышенного уровня ответственности на свайных фундаментах - уникальных или со значительными нагрузками на фундаменты, при предполагаемой длине свай более 15 м и в других случаях (наличие слабых грунтов большой мощности и т.п.) следует проводить статические испытания натурных свай. Количество и условия испытаний натурных свай следует обосновывать в программе изысканий в соответствии с техническим заданием заказчика.

Для определения гранулометрического состава крупнообломочных грунтов и гравелистых песков следует осуществлять в поле грохочение и рассев проб по фракциям определения влажности и плотности в массиве - способами обмера и взвешивания (в частности, мерной лунки, мерного куба и др.).

Следует также выполнять петрографическую разборку по фракциям гравия и гальки (после рассева в полевых условиях крупнообломочных грунтов) и определять процентное содержание различных петрографических разновидностей.

7.14. Гидрогеологические исследования следует выполнять в целях определения гидрогеологических условий, включая оценку водопроницаемости и фильтрационной неоднородности грунтов, глубину залегания, сезонные и многолетние колебания уровня подземных вод, мощность водоносных пород, направление потока подземных вод, их химический состав, агрессивность к бетону и коррозионную активность к металлам в предполагаемой сфере взаимодействия проектируемых объектов с геологической средой.

Методы полевых определений гидрогеологических параметров следует принимать в соответствии с приложением К.

На опорных участках следует проводить, как правило, пробные и опытные одиночные откачки (при соответствующем обосновании в программе изысканий - опытные кустовые откачки).

В сложных гидрогеологических условиях рекомендуется выполнять все виды откачек, включая опытно-эксплуатационные. При этом одиночные откачки следует считать дополнением к более точному методу кустового опробования.

Для ориентировочной оценки водопроницаемости и фильтрационной неоднородности водонасыщенных грунтов (в особенности, слабопроницаемых) рекомендуется применять экспресс-методы (откачки воды тартанием в процессе скважин) в количестве не менее шести для каждого водоносного горизонта.

Виды и продолжительность откачек воды из скважин и число понижений уровня воды следует принимать в соответствии с приложением Л.

Количество опытов по определению фильтрационных свойств грунтов (пробные и опытные одиночные откачки, наливы в шурфы) должно составлять не менее трех для каждого водоносного горизонта или основной литологической разности грунтов в зоне аэрации.

Каждый водоносный горизонт в пределах сферы взаимодействия должен быть охарактеризован не менее чем тремя стандартными анализами проб воды, единовременно отобранных в каждый период (сезон) года.

Каждый вид агрессивности и коррозионной активности воды-среды в зоне воздействия на строительные конструкции и кабели должен быть подтвержден не менее чем тремя анализами.

7.15. Стационарные наблюдения за изменениями отдельных факторов инженерно-геологических условий исследуемой территории следует продолжать (если они были начаты на предшествующих этапах изысканий) или при необходимости (установленной в процессе инженерно-геологических изысканий) организовывать вновь.

7.16. Лабораторные исследования образцов грунтов и подземных вод следует осуществлять в соответствии с требованиями п. 5.11.

Виды лабораторных исследований и количество образцов грунтов следует устанавливать соответствующими расчетами в программе изысканий для каждого характерного слоя (инженерно-геологического элемента) в зависимости от требуемой точности определения их свойств, степени неоднородности грунтов и уровня ответственности проектируемого объекта (с учетом результатов ранее выполненных изысканий в данном районе).

При отсутствии требуемых для расчетов данных следует обеспечивать по каждому выделенному инженерно-геологическому элементу получение частных значений в количестве не менее 10 характеристик состава и состояния грунтов или не менее 6 характеристик механических (прочностных и деформационных) свойств грунтов, с учетом п. 2.16 СНиП 2.02.01-83*.

По образцам грунтов, отбираемых из опорных скважин, следует проводить определения характеристик грунтов по полному комплексу, включая прочностные и деформационные.

Из каждого водоносного горизонта следует отбирать не менее трех проб воды (в каждый сезон года) для оценки их химического состава по результатам стандартного анализа, а при необходимости (п. 5.9) - полного или специального анализа.

7.18. Для разработки рабочего проекта на строительство технически несложных объектов производственного и жилищно-гражданского назначения, по которым имеются материалы инженерно-геологических изысканий для предпроектной документации с необходимой детальностью, изыскательские работы следует выполнять по правилам раздела 8.

7.19. Прогноз возможных изменений инженерно-геологических и гидрогеологических условий в соответствии с техническим заданием заказчика при изысканиях для разработки проектной документации следует осуществлять, как правило, в форме количественного прогноза с установлением числовых значений прогнозируемых характеристик состава и свойств грунтов, закономерностей возникновения и интенсивности (скорости) развития геологических и инженерно-геологических процессов в пространстве и во времени.


УТВЕРЖДАЮ
Зам. директора института
Г.Д. Хасхачих
28 декабря 1990 г.

РЕКОМЕНДАЦИИ
ПО ОПРЕДЕЛЕНИЮ НЕСУЩЕЙ СПОСОБНОСТИ
СВАЙ-ОБОЛОЧЕК И БУРОВЫХ СВАЙ
ПО РЕЗУЛЬТАТАМ СТАТИЧЕСКОГО ЗОНДИРОВАНИЯ
ГРУНТОВ

Москва 1990

1. ОБЩИЕ ПОЛОЖЕНИЯ

2. ОСОБЕННОСТИ ПОЭТАПНОГО СТАТИЧЕСКОГО ЗОНДИРОВАНИЯ ОСНОВАНИЯ С ПОВЕРХНОСТИ ГРУНТА

3. ОСОБЕННОСТИ ПОЭТАПНОГО ЗОНДИРОВАНИЯ ГРУНТОВ С ПРИМЕНЕНИЕМ ОПУСКНЫХ УСТАНОВОК СТАТИЧЕСКОГО ЗОНДИРОВАНИЯ

4. ОПРЕДЕЛЕНИЕ НЕСУЩЕЙ СПОСОБНОСТИ СВАЙ-ОБОЛОЧЕК И БУРОВЫХ СВАЙ

Приложение 1 Справочное СХЕМА ОПУСКНОЙ ГИДРАВЛИЧЕСКОЙ ЗОНДИРУЩЕЙ УСТАНОВКИ ЦНИИС

Приложение 2 Справочное КОНТРОЛЬ ТЕХНОЛОГИИ ПРОИЗВОДСТВА БУРОВЫХ РАБОТ ПО ДАННЫМ СТАТИЧЕСКОГО ЗОНДИРОВАНИЯ

Приложение 3 Справочное СОПРЯЖЕНИЕ ГРАФИКОВ ПОЭТАПНОГО СТАТИЧЕСКОГО ЗОНДИРОВАНИЯ И КОРРЕКТИРОВКА "ПИКОВЫХ" ЗНАЧЕНИЙ q

Приложение 4 Рекомендуемое ОПРЕДЕЛЕНИЕ ЭКВИВАЛЕНТНОГО УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ГРУНТА qp ПОД КОНУСОМ ЗОНДА

Приложение 5 Справочное ПРИМЕР РАСЧЕТА НЕСУЩЕЙ СПОСОБНОСТИ БУРОВОЙ СВАИ НА ОСЕВУЮ ВДАВЛИВАЮЩУЮ НАГРУЗКУ ПО РЕЗУЛЬТАТАМ СТАТИЧЕСКОГО ЗОНДИРОВАНИЯ ГРУНТА

Положения, разработанные в Рекомендациях, направлены на повышение надежности и экономичности фундаментов из свай-оболочек и буровых свай большого диаметра за счет более точного определения их несущей способности на основе использования данных полевых испытаний грунтов статическим зондированием. В Рекомендациях отражены особенности проведения полевых испытаний грунтов статическим зондированием на больших глубинах и в пределах акваторий и приведена методика расчета несущей способности свай-оболочек и буровых свай по результатам статического зондирования грунта, дополняющая СНиП 2.02.03-85 "Свайные фундаменты", где соответствующие нормативы по этим видам свайных элементов отсутствуют.

Основные положения настоящих Рекомендаций апробированы на нескольких объектах.

При разработке Рекомендаций использованы результаты экспериментальных исследований, включающих совместные испытания оснований свайных фундаментов статическим зондированием и натурные испытания свай, выполненные ЦНИИСом, ВНИИОСПом им. Н.М. Герсеванова, ГПИ "Фундаментпроект", лабораторией автомобильных дорог и мостов Министерства автомобильных дорог Франции, Шведским геотехническим институтом, Делфтской лабораторией механики грунтов (Нидерланды).

Рекомендации составлены инж. А.А. Мухиным с участием кандидатов техн. наук Н.М. Глотова, Е.А. Тюленева, А.П. Рыженко.

Замечания и предложения направлять по адресу: 129329, Москва, ул. Кольская, д.1, Всесоюзный научно-исследовательский институт транспортного строительства.

Зав. отделением мостов И.Д. Рассказов

1.1. Рекомендации распространяются на проведение полевых испытаний статическим зондированием гравийных, песчаных и пылевато-глинистых грунтов в основании свай-оболочек и буровых свай 1 с целью определения их несущей способности.

1 Далее по тексту термины "свая-оболочка" и "буровая свая" будут использованы только при необходимости выделить особенности работы того или иного свайного элемента, в остальных случаях для краткости будет употребляться единый термин «свая».

1.2. Для определения несущей способности свай в соответствии с настоящими Рекомендациями допускается использовать результаты статического зондирования, полученные только при испытаниях грунта стандартными зондами, удовлетворяющими требованиям ГОСТ 20069-81 "Грунты. Метод полевого испытания статическим зондированием".

1.3. Статическое зондирование рекомендуется применять в сочетании с другими видами инженерно-геологических исследований.

1.4. Метод статического зондирования не допускается применять для определения несущей способности свай, расположенных в вечномерзлых, набухающих, просадочных и гравийно-галечниковых грунтах, содержащих частицы размером крупнее 10 мм более 25 % по массе.

1.5. При глубине зондирования более 20 м, в пределах акватории или в других случаях, когда непрерывное зондирование с поверхности грунта затруднено или невозможно, рекомендуется использовать поэтапное зондирование с поверхности грунта или с забоя (дна) технологических скважин (во время строительства фундаментов) специальными опускными установками статического зондирования (справочное приложение 1).

1.7. Необходимое количество точек зондирования для определения несущей способности свай назначают исходя из размеров фундамента, количества в нем свай, характера напластования грунтов в пределах строительной площадки, требований, предъявляемых к надежности сооружения, и других факторов, и принимают не менее трах. В случае значительных расхождений в результатах испытаний их количество следует увеличить.

1.8. Точки зондирования должны находиться не далее 5 м от контура свайного ростверка.

1.9. Глубину зондирования грунта ниже предполагаемой глубины заложения свай при испытаниях с поверхности грунта на стадии инженерно-геологических изысканий или ниже забоя при испытании опускной установкой в полости технологических скважин (свай-оболочек) на стадии строительства следует принимать не менее трех и четырех диаметров сваи соответственно для мостов, запроектированных по разрезной и неразрезной схемам, но не менее 5 м.

1.10. По методу полевых испытаний грунтов статическим зондированием определяют удельное сопротивление грунта:

под конусом зонда q , МПа;

по боковой поверхности зонда (муфте трения) f, кПа, которые регистрируются в журнале статического зондирования или на диаграммных лентах записывающей аппаратуры. Результаты зондирования следует оформлять в виде графиков, которые рекомендуется совмещать с геологическими колонками расположенных рядом горных выработок.

1.11. Значения q и f следует фиксировать каждые 10 см погружения зонда в грунт. При построении совмещенного графика зависимостей q и f от глубины погружения зонда необходимо учитывать, что каждому значению сопротивления грунта под конусом зонда соответствует по глубине значение сопротивления грунта по его боковой поверхности, зафиксированное после дополнительного погружения зонда на некоторую глубину, определяемую конструкцией зонда (при этом середина муфты трения совмещается с уровнем, на котором было измерено сопротивление грунта под конусом зонда).

1.12. Типы испытываемых грунтов рекомендуется определять в зависимости от соотношения в соответствии с табл. 1.

Читайте также: