Коэффициент теплоотдачи от кирпича к воздуху

Обновлено: 17.05.2024

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

Часть II, раздел А

Строительная теплотехника. Нормы проектирования

Дата введения 1972-04-01

Внесены Научно-исследовательским институтом строительной физики Госстроя СССР

Утверждены Государственным комитетом Совета министров СССР по делам строительства 27 октября 1971 года

Глава СНиП II-А.7-71 "Строительная теплотехника. Нормы проектирования" разработана Научно-исследовательским институтом строительной физики Госстроя СССР при участии институтов ЦНИИПромзданий Госстроя СССР, ЦНИИЭПЖилища Госгражданстроя, НИИ Мосстрой Главмосстроя Мосгорисполкома, МИСИ им. Куйбышева Министерства высшего и среднего специального образования СССР, ЦНИИЭПСельстрой Минсельстроя СССР, Гипронисельпром, Гипронисельхоз Минсельхоза СССР с учетом материалов Промстройпроекта Госстроя СССР и других научно-исследовательских и проектных институтов.

С введением в действие главы СНиП II-А.7-71 утрачивают силу с 1 апреля 1972 г. главы СНиП II-A.7-62 "Строительная теплотехника. Нормы проектирования" и II-В.6-62 "Ограждающие конструкции. Нормы проектирования".

Редакционная коллегия - инж. А.М.Кошкин (Госстрой СССР), кандидаты техн. наук С.И.Пермяков (НИИ строительной физики Госстроя СССР), И.С.Шаповалов (ЦНИИЭПЖилища Госгражданстроя), д-р техн. наук К.Ф.Фокин (НИИ Мосстроя Мосгорисполкома), инж. П.С.Суханов (ЦНИИПромзданий Госстроя СССР), д-р экон. наук Л.Д.Богуславский (МИСИ им. Куйбышева).


1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящая глава содержит теплотехнические нормы и требования, которые распространяются на проектирование ограждающих конструкций (наружных и внутренних стен, перекрытий, покрытий, перегородок, полов, заполнений проемов: окон, фонарей, дверей, ворот) вновь строящихся и реконструируемых зданий и сооружений различного назначения.

Примечания: 1. При проектировании зданий и сооружений следует также соблюдать требования, предъявляемые к ограждающим конструкциям соответствующими главами СНиП и нормативными документами, утвержденными или согласованными с Госстроем СССР, в части необходимой прочности, жесткости, устойчивости, долговечности, биостойкости, коррозионной стойкости и других показателей.

2. Принятые в настоящей главе условные обозначения теплотехнических величин и их размерности приведены в приложении 1.

1.2. Настоящие теплотехнические нормы и требования распространяются на все ограждающие конструкции и стыки сборных элементов, на расположенные по периметру проемов участки конструкций, углы стен, теплопроводные включения, в том числе в местах примыкания к наружным стенам балконов, транспортных галерей, цокольных, междуэтажных и чердачных перекрытий и покрытий и т.д.

1.3. Замкнутые воздушные прослойки, устраиваемые в толще наружных стен зданий и сооружений, должны иметь высоту не более высоты этажа и не более 5 м.

В наружных стенах зданий и сооружений с мокрым и влажным режимом помещений допускается устройство воздушных прослоек только в случаях вентиляции этих прослоек наружным (при необходимости подогреваемым) воздухом; высота воздушных прослоек в этом случае не ограничивается.

Высота воздушных прослоек в окнах с переплетами определяется требованиями ГОСТов на изготовление переплетов.

1.4. Влажностный режим помещений зданий и сооружений в зависимости от относительной влажности внутреннего воздуха следует считать:

нормальным при 5060%;

влажным при 6175%;

1.5. При проектировании наружных стен необходимо предусматривать меры по защите их от увлажнения:

а) атмосферной влагой (косыми дождями), в первую очередь проникающей через стыки конструкций;

б) влагой, конденсирующейся на внутренней поверхности стен и в их толще;

в) влагой производственных и хозяйственно-бытовых процессов;

г) грунтовой влагой;

д) конденсатом, образующимся на поверхностях заполнений световых проемов или светопрозрачных ограждений.

Меры по ограничению возможного увлажнения, указанного в подпунктах "б", "в", "г", "д", следует предусматривать также и при проектировании внутренних стен и перегородок.

1.6. Беспустотные полы на грунте, устраиваемые в отапливаемых помещениях (с нормируемым перепадом между температурами внутреннего воздуха и поверхности пола), следует утеплять в зонах примыкания пола к наружным стенам. Утепление, устраиваемое непосредственно по грунту, следует предусматривать из неорганических влагостойких материалов.

1.7. Для защиты от увлажнения теплоизоляционного слоя в покрытиях следует предусматривать пароизоляцию (ниже теплоизоляционного слоя) или вентилируемые наружным воздухом прослойки и каналы.

Примечания: 1. В вентилируемых покрытиях зданий и сооружений необходимая высота воздушной прослойки или диаметр каналов должны определяться в соответствии с указаниями Пособия по теплотехническому расчету ограждающих конструкций, но независимо от расчета они должны приниматься не менее 5 см, а расстояние между осями каналов 15-25 см.

2. Устройство невентилируемых воздушных прослоек в покрытиях над отапливаемыми помещениями с влажным и мокрым режимом не допускается.

3. В покрытиях не следует предусматривать пароизоляцию в тех случаях, когда влажность теплоизоляционного материала превышает по условиям эксплуатации влажность, указанную в табл.1 приложения 2, а предусматривать другие мероприятия.

1.8. Для зданий и сооружений, указанных в п.3.1 настоящей главы, возводимых в районах со среднемесячной температурой наружного воздуха за июль 20 °С и выше, следует при необходимости предусматривать меры по солнцезащите, например вентилируемые наружным воздухом воздушные прослойки и каналы в наружных стенах и покрытиях, защитные экраны, козырьки и жалюзи, охлаждаемые водой покрытия и др.

Рекомендуется предусматривать покрытие рулонных кровель мелким гравием светлых тонов толщиной не менее 10 мм.


2. СОПРОТИВЛЕНИЕ ТЕПЛОПЕРЕДАЧЕ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ

2.1. Сопротивление теплопередаче ограждающих конструкций в м·ч·°С/ккал должно быть не менее сопротивления теплопередаче , требуемого из санитарно-гигиенических условий, и , определяемого экономическим расчетом в соответствии с указаниями раздела 6 настоящей главы.

Примечание. Для индустриальных элементов ограждающих конструкций, изготовляемых по действующим каталогам, а также для сплошных каменных стен из штучных материалов (кирпича, камней и т.п.) допускается принимать на 5% меньше .

2.2. Требуемое сопротивление теплопередаче ограждающих конструкций следует определять по формуле (1) с учетом требований п.1.2 настоящей главы:


м·ч·°С/ккал, (1)

где - коэффициент, зависящий от положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху, принимаемый по табл.1;

- расчетная температура внутреннего воздуха в °С, принимаемая по нормам проектирования зданий и сооружений соответствующего назначения;

- расчетная зимняя температура наружного воздуха в °С, принимаемая согласно указаниям п.2.4 настоящей главы;

- нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции в °С, принимаемый по табл.2;

- коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, принимаемый согласно указаниям п.2.13 настоящей главы.

Значения коэффициента

1. Наружные стены, покрытия, перекрытия над проездами, а также перекрытия над холодными (проветриваемыми) подпольями зданий и сооружений, возводимых в районах Северной строительно-климатической зоны

2. Чердачные перекрытия со стальной, черепичной или асбестоцементной кровлей по разреженной обрешетке и покрытия с вентилируемыми прослойками

3. Чердачные перекрытия с кровлей из рулонных материалов

4. Стены и перекрытия (за исключением указанных в поз.8 и 9 настоящей таблицы), отделяющие отапливаемые помещения от сообщающихся с наружным воздухом неотапливаемых помещений (например, тамбуры)

5. Стены и перекрытия, отделяющие отапливаемые помещения от неотапливаемых, не сообщающихся с наружным воздухом

6. Перекрытия над подпольями, расположенными ниже уровня земли, при непрерывной конструкции цоколя с 1 м·ч·°С/ккал

7. То же, с 1 м·ч·°С/ккал и перекрытия над холодными подпольями, расположенными выше уровня земли

8. Перекрытия над неотапливаемыми подвалами, расположенными ниже уровня земли или имеющими наружные стены, выступающие над уровнем земли до 1 м, при наличии окон в наружных стенах подвалов

9. То же, при отсутствии окон

Нормируемые величины температурного перепада

для наружных стен

для покрытий и чердачных перекрытий

1. Жилые помещения, а также помещения общественных зданий (больницы, детские ясли-сады)

2. Помещения поликлиник и школ

3. Помещения общественных зданий (за исключением указанных в поз.1 и 2), административных зданий, а также вспомогательные здания и помещения промышленных предприятий, за исключением помещений с влажным и мокрым режимами

4. Отапливаемые помещения производственных зданий с расчетной относительной влажностью внутреннего воздуха менее 50%

5. То же, но с расчетной относительной влажностью внутреннего воздуха от 50 до 60%

6. Помещения производственных зданий с избыточными тепловыделениями и расчетной относительной влажностью внутреннего воздуха не более 45%

7. Помещения производственных зданий (промышленных, сельскохозяйственных и других предприятий) с расчетной влажностью внутреннего воздуха выше 60%:

а) в которых не допускается конденсация влаги на внутренних поверхностях стен и потолков



б) в которых не допускается конденсация влаги на внутренних поверхностях потолков


Примечания: 1. Температурный перепад между расчетной температурой воздуха и температурой поверхности пола следует принимать равным:

2 °С - для полов жилых зданий, больниц, детских яслей-садов;

2,5 °С - для плов общественных зданий, за исключением указанных выше, а также производственных зданий с постоянными рабочими местами, если на них не предусмотрены специальные мероприятия против охлаждения ног работающих. На участках, где отсутствуют постоянные рабочие места, не нормируется.


2. Расчетную разность между температурой воздуха помещения и температурой внутренней поверхности ограждающих конструкций в местах теплопроводных включений (диафрагм, толстых сквозных швов раствора кладок, прокладных рядов, стыков панелей, колонн и ригелей железобетонного каркаса и пр.), а также чердачных перекрытий помещений, указанных в п.7 "а" и "б", в графе 3 табл.2, допускается принимать равной .

3. Температурный перепад , а также не нормируются, и технические решения ограждающих конструкций принимаются по конструктивным соображениям, если это допустимо по условиям технологического процесса и когда:

а) тепловыделения значительно превышают потери тепла (более чем на 50%), либо когда избытки явного тепла превышают 20 ккал/м·ч, а влаговыделения незначительны;

6) внутренняя поверхность стен и покрытий подвергается интенсивному воздействию лучистого тепла или омывается сухим горячим воздухом;

в) площадь пола помещений на одного работающего более 100 м.

4. В табл.2 - температура точки росы внутреннего воздуха в °С.

Примечания: 1. Величину сопротивления теплопередаче наружных стен жилых зданий, определенную по формуле (1), при однослойных панельных стенах следует увеличивать на 10%, при многослойных панельных стенах на 20% При изготовлении панелей со знаком качества указанные надбавки не предусматривать.

2. Для наружных ограждающих конструкций с характеристикой тепловой инерции 2,5 жилых, общественных (больниц, поликлиник, детских яслей-садов) и производственных зданий, в которых по условиям технологии необходимо поддерживать постоянными температуру и относительную влажность воздуха, величину , определенную по формуле (1), следует увеличивать на 30%. При изготовлении конструкций со знаком качества указанную надбавку не предусматривать.

ГОСТ Р 54851-2011

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОНСТРУКЦИИ СТРОИТЕЛЬНЫЕ ОГРАЖДАЮЩИЕ НЕОДНОРОДНЫЕ

Расчет приведенного сопротивления теплопередаче

Dissimilar building envelopes. Calculation of reduced total thermal resistance

Дата введения 2012-05-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН Учреждением "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

4 Настоящий стандарт разработан с учетом основных нормативных положений международного стандарта ИСО 14683:2007* "Тепловые мостики при строительстве зданий - Линейная теплопередача - Упрощенные методы и стандартные значения" (ISO 14683:2007 "Thermal bridges in building construction - Linear thermal transmittance - Simplified methods and default values, NEQ")

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Настоящий стандарт устанавливает методы определения теплозащитных характеристик ограждающих конструкций зданий и сооружений в соответствии с требованиями Федерального закона N 384-ФЗ от 30 декабря 2009 г. "Технический регламент о безопасности зданий и сооружений", согласно которому здания и сооружения, с одной стороны, должны исключать в процессе эксплуатации нерациональный расход энергетических ресурсов, а с другой - не создавать условия для недопустимого ухудшения параметров среды обитания людей и условий осуществления различных технологических процессов.

Настоящий стандарт разработан с целью подтверждения соответствия теплотехнических характеристик наружных ограждений зданий и сооружений нормативным значениям и требованиям контроля этих показателей согласно [1] с учетом требований ГОСТ Р 51380 и ГОСТ Р 51387. Настоящий стандарт позволяет оценить уровень теплозащиты ограждающих конструкций при приемке зданий и последующей эксплуатации, наметить мероприятия по повышению уровня теплозащиты зданий в случае отклонения энергопотребления от действующих нормативных требований.

В рамках реализации Федерального закона N 261-ФЗ от 23 ноября 2009 г. "Об энергосбережении и повышении энергетической эффективности" настоящий стандарт является одним из базовых стандартов, обеспечивающих теплотехническими параметрами энергетический паспорт и энергоаудит эксплуатируемых зданий.

1 Область применения

Настоящий стандарт устанавливает методы расчета приведенного сопротивления теплопередаче неоднородных ограждающих конструкций помещений жилых, общественных, административных, бытовых, сельскохозяйственных, производственных зданий и сооружений, а также совокупности ограждающих конструкций, отделяющих внутренний объем здания от наружной среды.

В зависимости от типа ограждающей конструкции и теплотехнических неоднородностей, входящих в структуру ограждения, настоящий стандарт предлагает методы теплотехнического расчета обобщенной теплозащитной характеристики теплотехнически неоднородного ограждения, разделяющего пространства с различными температурно-влажностными средами (в пределах одного помещения, группы соседних помещений, этажа, всего фасада здания, ограждений, контактирующих снаружи с грунтом, и т.д.). Настоящий стандарт также учитывает в теплотехнических расчетах наружных ограждений такие виды теплотехнических неоднородностей, как примыкания элементов ограждения здания (наружные и внутренние углы, примыкания стен к покрытиям и перекрытиям первого этажа над холодным подвалом или уложенным по грунту, примыкание наружных ограждений к внутренним), и отдельных элементов наружных ограждений (стыки между соседними панелями, откосы проемов, связи между облицовочными слоями ограждений).

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 51263-99 Полистиролбетон. Технические условия

ГОСТ Р 51380-99 Энергосбережение. Методы подтверждения соответствия показателей энергетической эффективности энергопотребляющей продукции их нормативным значениям

ГОСТ Р 51387-99 Энергосбережение. Нормативно-методическое обеспечение. Основные положения

ГОСТ 11024-84 Панели стеновые наружные бетонные и железобетонные для жилых и общественных зданий. Общие технические условия

ГОСТ 19010-82 Блоки стеновые бетонные и железобетонные для зданий. Общие технические условия

ГОСТ 21562-76 Панели металлические с утеплителем из пенопласта. Общие технические условия

ГОСТ 23486-79 Панели металлические трехслойные стеновые с утеплителем из пенополиуретана. Технические условия

ГОСТ 24594-81 Панели и блоки стеновые из кирпича и керамических камней. Общие технические условия

ГОСТ 25485-89 Бетоны ячеистые. Технические условия

ГОСТ 25820-2000 Бетоны легкие. Технические условия

ГОСТ 26254-84 Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций

ГОСТ 26602.1-99 Блоки оконные и дверные. Методы определения сопротивления теплопередаче

ГОСТ 30494-96 Здания жилые и общественные. Параметры микроклимата в помещениях

ГОСТ 31310-2005 Панели стеновые трехслойные железобетонные с эффективным утеплителем. Общие технические условия

ГОСТ 31359-2007 Бетоны ячеистые автоклавного твердения. Технические условия

ГОСТ 31360-2007 Изделия стеновые неармированные из ячеистого бетона автоклавного твердения. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 теплопередача: Перенос теплоты от одной окружающей среды через ограждающую конструкцию к другой окружающей среде.

3.2 наружная ограждающая конструкция здания: Конструктивный элемент здания, защищающий внутреннее пространство, в котором поддерживаются требуемые параметры микроклимата, от воздействий наружной среды.

3.3 линейная теплотехническая неоднородность: Линейная зона примыкания двух ограждающих конструкций, влияющего на изменение теплового потока, проходящего через наружное ограждение (стык между соседними панелями, угол, образованный из двух наружных ограждений или наружного ограждения с внутренним, откос проема, соединительное ребро внутри ограждения и др.).

3.4 точечная теплотехническая неоднородность: Локальный соединительный элемент многослойного наружного ограждения, обеспечивающий его конструктивную целостность и повышающий теплопотери в зоне его прохождения (гибкие связи, дюбели, шпонки и другие точечные соединения, проходящие через теплоизоляционные слои ограждения),

3.5 условное сопротивление теплопередаче ограждающей конструкции , м·°С/Вт: Величина, характеризующая уровень сопротивления прохождению теплоты через однородную часть наружного ограждения при разности температур воздушных сред, расположенных по обе его стороны.

3.6 приведенное сопротивление теплопередаче ограждения , м·°С/Вт: Средневзвешенное по площади сопротивление теплопередаче совокупности видов ограждающих фрагментов и их элементов, образующих теплотехнически неоднородную конструкцию (панель, окно, витраж, светпропускающий фонарь, наружную дверь, ворота), часть здания (стену, фасад, покрытие, перекрытие над холодным подвалом или подпольем, ограждение, контактирующее с грунтом, ограждение, разделяющее помещения с различными температурами внутреннего воздуха) или наружное ограждение здания в целом.

3.7 коэффициент теплотехнической однородности : Безразмерный показатель, оценивающий снижение уровня теплозащиты ограждения вследствие наличия в нем различного вида теплотехнических неоднородностей (соединительных элементов облицовок ограждения, пронзающих теплоизоляционные слои, стыков между элементами ограждающих конструкций с примыканием к ним внутренних ограждений, откосов, угловых соединений, в том числе примыканий стен к покрытиям, перекрытиям над холодными пространствами, мест закрепления в стенах балконных плит и т.п.) и численно выражаемый отношением приведенного сопротивления теплопередаче ограждения к сопротивлению теплопередаче его зоны, удаленной от теплопроводных включений.

4 Методы расчета приведенного сопротивления теплопередаче наружных ограждающих конструкций

4.1 Общие положения

4.1.1 Приведенное сопротивление теплопередаче наружной неоднородной ограждающей конструкции здания , м·°С/Вт, представляет собой основную теплозащитную характеристику наружного ограждения, в основу расчета которого положена усредненная по площади плотность теплового потока , Вт/м, проходящего через ограждение в расчетных условиях эксплуатации

Численные значения теплового потока, проходящего через неоднородное ограждение, определяют на основе расчета одно-, двух- и трехмерных температурных полей. Участки многослойного ограждения, имеющие однородные теплоизоляционные, конструкционные и прочие слои, расположенные перпендикулярно к направлению теплового потока, возникающего при эксплуатации здания, и удаленные от всякого рода теплотехнических неоднородностей и теплопроводных включений, обеспечивают равномерную по площади теплопередачу и характеризуются условным (по глади) сопротивлением теплопередаче.

При проектировании наружных ограждающих конструкций здания в силу конструктивных особенностей оболочки здания и видов наружных ограждений возникают различного рода теплотехнические неоднородности: они в силу конструктивных особенностей примыкания наружных и внутренних ограждений имеют преимущественно линейный характер (наружные и внутренние углы наружных стен, примыкания наружных стен к внутренним стенам и перекрытиям, примыкания наружных стен к покрытиям и перекрытиям первого этажа над холодным подвалом или уложенным по грунту, стыки между соседними панелями, откосы проемов). Теплопотери через эти виды теплотехнических неоднородностей определяют расчетом на ЭВМ двухмерных стационарных температурных полей фрагментов наружных ограждений при расчетных значениях температур разделяемых воздушных сред и условиях теплообмена на поверхностях расчетного фрагмента.

В многослойных ограждающих конструкциях для обеспечения конструктивной целостности и устойчивости в эксплуатационных условиях вводят различные типы связей между облицовочными слоями (соединительные ребра, в т.ч. перфорированные, гибкие стержневые связи, шпонки). К этой категории неоднородностей относятся угловые примыкания откосов проемов, примыкания угла наружных стен к покрытию или перекрытию первого этажа. Теплопотери через эти виды теплопроводных включений или примыканий определяют расчетом на ЭВМ двухмерных (в цилиндрических координатах) или трехмерных стационарных температурных полей фрагментов при расчетных значениях температур и условиях теплообмена.

4.1.2 Таким образом, теплотехнический расчет неоднородных наружных ограждающих конструкций, содержащих углы, проемы с заполнениями (оконными и дверными блоками, воротами), соединительные элементы между наружными облицовочными слоями (ребра, шпонки, стержневые связи), сквозные и несквозные теплопроводные включения, выполняют на основе расчета температурных полей. Приведенное сопротивление теплопередаче , м·°С/Вт, неоднородной ограждающей конструкции или ее участка (фрагмента) вычисляют по формуле

где - площадь неоднородной ограждающей конструкции (стены, окна, двери, ворот) или ее фрагмента, м, по размерам с внутренней стороны, включая откосы оконных и дверных проемов (для стен);

- суммарный тепловой поток через конструкцию или ее фрагмент площадью , Вт, определяемый на основе расчета температурного поля на ЭВМ либо экспериментально по ГОСТ 26254 или ГОСТ 26602.1 с внутренней стороны;

- коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, принимаемый в соответствии с таблицей 6 [1] с учетом примечания к этой таблице;

- расчетная температура внутреннего воздуха, °С, принимаемая по ГОСТ 30494;

- расчетная температура наружного воздуха, °С, принимаемая по средней температуре наиболее холодной пятидневки с обеспеченностью 0,92, см. [1].

4.1.3 На основе расчета на ЭВМ температурных полей ограждающей конструкции определяют также температуры на их поверхностях . По полученным значениям устанавливают соответствие требуемым температурным характеристикам наружных ограждений:

- расчетному перепаду температур между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, определяемому по формуле (4) [1]; при этом расчетный перепад температур не должен превышать нормируемых значений , установленных в таблице 5 [1];

Назначение здания — административное.
Расчетная температурой наружного воздуха в холодный период года, text = -40 °С;
Расчетная средняя температура внутреннего воздуха здания, tint = +20 °С;
Средняя температура наружного воздуха отопительного периода, tht = -8 °С;
Продолжительность отопительного периода, zht = 241 сут.;
Нормальный влажностный режим помещения и условия эксплуатации ограждающих конструкций — А (сухой режим помещения в нормальной зоне влажности).
Коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, n = 1;
Коэффициент теплоотдачи наружной поверхности ограждающей конструкции, αext = 23 Вт/(м²•°С);
Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, αint = 8.7 Вт/(м²•°С);
Состав наружной стены:

Определение требуемого сопротивления теплопередаче

Определим величину градусо-суток Dd в течение отопительного периода по формуле 1 [СП 23-101-2004]:

где tint — расчетная средняя температура внутреннего воздуха здания [табл.1, СП 23-101-2004];
tht — средняя температура наружного воздуха отопительного периода [табл.1, СП 23-101-2004];
zht — продолжительность отопительного периода [табл.1, СП 23-101-2004].

Определим требуемое значение сопротивления теплопередачи Rreq по табл. 3 [СП 50.13330.2012]

где Dd — градусо-сутки отопительного периода;
а=0,0003 [табл.3, СП 50.13330.2012]
b=1,2 [табл.3, СП 50.13330.2012]

Rreq = 0.0003*6748+1.2=3.2244 м 2 *°С/Вт,

Определение приведённого сопротивления теплопередаче стены

Согласно п.Е.2 СП 50.13330.2012 сопротивление теплопередачи многослойных ограждающих конструкций вычисляется по формуле:

teplo_s_f01.jpg

где αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 *°С), принимаемый по табл. 4 СП 50.13330.2012;
αн — коэффициент теплоотдачи наружной поверхности ограждающей конструкций для условий холодного периода, Вт/(м 2 *°С), принимаемый по таблице 6 СП 50.13330.2012;

Rs — термическое сопротивление слоя однородной части фрагмента (м 2 *°С)/Вт, определяемое по формуле:

teplo_s_f02.jpg

δs — толщина слоя, м;
λs — расчетный коэффициент теплопроводности материала слоя, Вт/(м*°С), принимаемый согласно приложения Т СП 50.13330.2012.
ys уэ — коэффициент условий эксплуатации материала слоя, доли ед. При отсутствии данных принимается равным 1.

Расчетное значение сопротивления теплопередаче, R0:

teplo_s_f03.jpg

R0 > Rreq — Условие выполняется

Толщина конструкции, ∑t =675 мм;

Определение температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

Значение выразим из формулы (5.4) СП 50.13330.2012

teplo_s_f04.jpg

teplo_s_f05.jpg

Δt н > Δt, 4.5 °C > 1.469 °C — условие выполняется.

Моделирование однородной стены в ЛИРА САПР. Решение стационарной задачи

Схема ограждающей конструкции:

teplo_s_01.jpg

Создаём задачу в 15-м признаке схемы. Рассмотрим участок стены, длиной 1 м

Шаг 1 геометрия

teplo_s_02.jpg


teplo_s_03.jpg

При создании КЭ-модели для расчёта задачи теплопроводности необязательно выполнять сгущение сетки КЭ для достижения более точного результата.

Шаг 2 Создание элементов конвекции

Моделируем стержни по наружной и внутренней граням стены. Стержням следует присвоить тип КЭ №1555. Они являются своего рода граничными условиями и, в то же время, воспринимают температуру воздуха.

teplo_s_04.jpg

Шаг 3 характеристики материалов

В окне задания типов жёсткости следует создать жёсткость: пластины Теплопроводность (пластины). В окне характеристик жёсткости вводятся параметры Н — толщина пластины, К — коэффициент теплопроводноти, С — коэффициент теплопоглощения, R0 — удельный вес.

Характеристики слоёв стены:
Кирпич облицовочный пустотелый Н=100 см, К=0.64 Дж/(м*с*°С);
Теплоизоляция Н=100 см, К=0.039 Дж/(м*с*°С);
Кирпич полнотелый Н=100 см, К=0.81 Дж/(м*с*°С);
Штукатурка ц.п. Н=100 см, К=0.76 Дж/(м*с*°С);

Для элементов конвекции, следует создать типы жёсткости Конвекция (двухузловые). Для таких элементов задаются коэффициенты конвекции внутреннего и внешнего слоя.

Коэффициент для внутренней поверхности ограждения — таблица 4, СП 50.13330.2012
Коэффициент для наружной поверхности ограждения — таблица 6, СП 50.13330.2012

teplo_s_05.jpg

Шаг 4 Внешняя нагрузка

Через внешнюю нагрузку задаётся температура воздуха для элементов конвекции. Для этого, в разделе нагрузки, нужно открыть Заданная t.

teplo_s_06.jpg

teplo_s_07.jpg


teplo_s_08.jpg

Температура на внутренней поверхности ограждающей конструкции составляет 18.531 °С (результат замера температуры в узле).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

teplo_s_f06.jpg

Теплотехнический расчёт наружной стены здания с учётом неоднородности

Исходные данные

Для расчёта принимается конструкция стены, рассмотренная в предыдущем примере. Неоднородностью будет выступать кладочная сетка, служащая для крепления облицовки к несущему слою кладки. Параметры сетки: d=3 мм, шаг стержней 50х50 мм.

teplo_s_09.jpg

Определение приведённого сопротивления теплопередаче с учётом неоднородностей

Приведённое сопротивление теплопередаче фрагмента теплозащитной оболочки здания R пр 0, (м 2 *°C)/Вт, следует определять по формуле:

teplo_s_f07.jpg

где R усл 0 — осреднённое по площади условное сопротивление теплопередаче фрагмента теплозащитной оболочки здания либо выделенной ограждающей конструкции, (м 2 *°C)/Вт;
lj — протяжённость линейной неоднородности j-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м/м 2 ;
ΨI — удельные потери теплоты через линейную неоднородность j-го вида, Вт/(м*°С);
nk — количество точечных неоднородностей k-го вида, приходящихся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, шт./м 2 ;
χk — удельные потери теплоты через точечную неоднородность k-го вида, Вт/°С;
ai — площадь плоского элемента конструкции i-го вида, приходящаяся на 1 м 2 фрагмента теплозащитной оболочки здания, или выделенной ограждающей конструкции, м 2 /м 2 ;

teplo_s_f08.jpg

где Ai — площадь i-й части фрагмента, м 2 ;
Ui — коэффициент теплопередачи i-й части фрагмента теплозащитной оболочки здания (удельные потери теплоты через плоский элемент i-го вида), Вт/(м 2 *°С);

teplo_s_f09.jpg

Определение удельных потерь теплоты кладочной сетки

Кладочная сетка, через которую осуществляется связь между облицовкой и несущим слоем, является линейной неоднородностью. Удельные потери теплоты через линейную неоднородность, определяются по СП 230.1325800.2015, приложение Г.7 Теплозащитные элементы, образуемые различными видами связей в трёхслойных железобетонных панелях.

Удельное сечение металла на 1 м.п. в рассматриваемом примере составит S*(1000/50)=3.14159*d 2 /4*(1000/50)=1.41372 см 2 /м

Удельные потери теплоты будут определяться по интерполяции между значениями, найденными по таблицам Г.42 и Г.43 СП 230.1325800.2015

Таблица Г.42 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 0,53 см 2 /м

Таблица Г.43 — Удельные потери теплоты Ψ, Вт/(м*°С). Сетка с удельным сечением металла на 1 п.м 2,1 см 2 /м

Обозначения в таблицах:
— толщина слоя утеплителя dут, мм;
— теплопроводность основания λ0, Вт/(м*°С), для кирпичной кладки из полнотелого керамического кирпича принимается λ0 = 0.56;
— удельное сечение металла на 1 м.п. сетки, см 2 /м.

Потери теплоты по таблице Г.42:

teplo_s_12.jpg

Потери теплоты по таблице Г.43:

teplo_s_13.jpg

Итоговое значение потерь теплоты:

teplo_s_14.jpg

Суммарная протяжённость линейных неоднородностей Σlj = 2 м.

Подставив полученные значения в формулу (Е.1), получим:

teplo_s_f10.jpg

Моделирование неоднородной стены в ЛИРА САПР. Решение стационарной задачи

Для построения модели неоднородной стены, принимается модель, созданная на предыдущем этапе. Теплопроводные включения моделируются как стержневые элементы теплопроводности, которые пересекают три слоя стены: кладка, теплоизоляция, облицовка. Стержни расположены с шагом 40 см по высоте. Теплопроводность арматурной стали 58 м 2 *°С/Вт.

teplo_s_15.jpg

teplo_s_16.jpg


teplo_s_17.jpg

Температура на внутренней поверхности ограждающей конструкции составляет 18.087 °С. (среднее значение температуры на внутренней поверхности стены).

Определение сопротивления теплопередачи конструкции по результатам расчёта ЛИРА САПР

Сопротивление теплопередачи определяется по формуле (5.4) СП 50.13330.2012:

Сфера применения материала определяется его эксплуатационными характеристиками. Комплекс рассматриваемых свойств должны соответствовать требованиям, предъявляемых строительному кирпичу при сооружении внешних стен, перекрытий, фундамента. Возведение конструкций подразумевает выбор изделий различного назначения:

  • Силикатный – рядовой, лицевой, пустотелый, полнотелый.
  • Керамический – жаростойкий и все разновидности предыдущего вида.
  • Клинкерный – для облицовки фасадов.

Технические параметры кирпича

Показатели определяют энергопотребление дома, затраты на обогрев помещений. Проектирование сооружений, расчеты ограждающих конструкций учитывают эти параметры.

Коэффициент теплопроводности

Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.

Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:

Чем больше плотность, тем выше теплопроводность – не совсем верное утверждение. Структура содержит закрытые поры и полости (пустотелый), наполненные воздухом с коэффициентом ≈ 0,026. Благодаря этому, изделия со щелевыми отверстиями лучше поддерживают тепловой режим внутри сооружений. В инженерных расчетах необходимо учитывать величину теплопроводности кладочной смеси, значение показателя выбирают от 0.47 и выше, в зависимости от состава.

Вид λ, Вт/м°C
Красный полнотелый 0,56 ~ 0,81
-//- пустотелый 0,35 ~ 0,87
Силикатный кирпич полнотелый 0,7 ~ 0,87
-//- пустотелый 0,52 ~ 0,81

Сравнение кирпича разного типа

Теплопроводность красного изделия ниже, чем у силикатного.

Физические процессы нагрева и удержания тепла можно охарактеризовать величинами:

  • Коэффициент теплоотдачи – теплообмен на границе поверхности твердого тела и воздушной среды. Это мощность теплового потока, приходящаяся на плоскость 1 м², обратно пропорциональная разнице температур тела и теплоносителя (воздух). Чем выше теплопроводность, тем больше теплоотдача.
  • Полное тепловое сопротивление – способность противостоять передаче тепла. Значение обратно пропорционально коэффициенту теплопередачи. Исходя из расчетной формулы R = L/λ, легко рассчитать оптимальную толщину кладки. λ – постоянный параметр, R – тепловое сопротивление указано в таблице 4 СП 131.13330.2012 для климатических зон России.

Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:

  • Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
  • Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.

Силикатные кирпичи

Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:

  • Применение теплоизоляции.
  • Нанесение штукатурки.
  • Использование пустотного кирпича или камня (исключено для фундамента здания).
  • Кладочный раствор с оптимальными теплотехническими параметрами.

Теплопроводность блоков

Таблица с характеристиками различных видов кладок. Использованы данные СП 50.13330.2012:

Обыкновенный г линяный кирпич на различном кладочном растворе

Пустотный красный различной плотности (кг/м³) на ЦПС

Морозостойкость кирпичной кладки

Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.

Морозостойкость блоков

Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.

Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.

Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:

  • Применение паро- и гидроизоляции.
  • Обработка кладки гидрофобными составами.
  • Контроль, своевременное исправление дефектов.
  • Надежная гидроизоляция фундамента.

От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.

Оптимизация защитных функций внешней оболочки здания – одна из актуальных задач строительства, решение которой должно приводить к сокращению потерь тепловой энергии и уменьшению затрат на эксплуатацию здания. С целью определения эксплуатационной эффективности наружных стеновых конструкций в климатической камере проводились теплотехнические испытания кладок из крупноформатных пустотелых керамических блоков, полнотелого обычного кирпича, кладок из щелевых и полнотелых керамзитобетонных блоков. Предлагаем результаты данных испытаний и рекомендации, сформированные на их основе.

Теплотехнические испытания кладок из различных строительных материалов

Задача оптимизации защитных функций наружных стеновых конструкций многогранна, поскольку необходимо повышение как их энергетической, так и эксплуатационной эффективности. Повышение уровня тепловой защиты наружных ограждающих конструкций реализуется путем:

  • применения эффективных теплоизоляционных материалов;
  • минимизации мостиков холода;
  • минимизации накопления влаги;
  • повышения герметичности здания.

Поскольку необходимо решать задачу сокращения как тепловых потерь, так и затрат на проведение последующих капитальных ремонтов зданий, необходимо знание о долговечности используемых материалов, физико-механические свойства которых в эксплуатационных условиях могут значительно изменяться. Кроме того, зачастую широко рекламируемые новые материалы не соответствуют заявленному качеству, не в полной мере удовлетворяют спектру климатических параметров России.

В климатической камере были проведены теплотехнические испытания кладок из крупноформатных пустотелых керамических и керамзитобетонных блоков. Для сравнительного анализа одновременно испытывались кладки из крупноформатных пустотелых керамических блоков и полнотелого обычного кирпича; кладки из щелевых и полнотелых керамзитобетонных блоков. На следующем этапе испытаний эти кладки последовательно утеплялись плитами из каменной минеральной ваты, пенополистирола, пеностекла.

Подготовка к теплотехническим испытаниям

В климатической камере ОАО «НИИМосстрой» смонтированы четыре фрагмента наружных ограждающих конструкций размером 1 500×1 500 мм и толщиной кладок 380 мм каждая (рис. 1):

  • кладка из пустотелых крупноформатных керамических блоков;
  • кладка из полнотелого обыкновенного глиняного кирпича;
  • кладка из щелевых керамзитобетонных блоков;
  • кладка из полнотелых керамзитобетонных блоков.

После изготовления фрагментов кладок их наружная и внутренняя поверхности затирались штукатурным раствором толщиной не более 5 мм и плотностью 1 200 кг/м 3 . Для проведения сравнительного анализа процедуры возведения кладок, измерений всех теплотехнических характеристик строго следовали рекомендациям соответствующих нормативных документов: ГОСТ 530, ГОСТ Р 54853, ГОСТ Р 54852 1 .
На следующем этапе указанные выше кладки последовательно утеплялись плитами из каменной минеральной ваты толщиной 90 мм, плитами из пенополистирола толщиной 100 мм, плитами из пеностекла толщиной 100 мм (рис. 1) и проводились их теплотехнические испытания.

Теплотехнические испытания

При проведении теплотехнических испытаний (согласно ГОСТ 530 и ГОСТ Р 54853) в качестве основных средств измерений использовались измерители плотности тепловых потоков и температуры ИТП-МГ4.03 «ПОТОК» с семью модулями по десять каналов каждый, многофункциональный прибор Testo-435, тепловизор Therma CAM P65 и другие вспомогательные измерительные приборы и оборудование. Все используемое в испытаниях оборудование и средства измерения аттестованы и прошли поверку в установленном порядке.

При проведении испытаний температура и относительная влажность воздуха в отсеках климатической камеры поддерживалась автоматически с точностью ±1 °С и ±5 % соответственно.

Схема размещения датчиков температуры и тепловых потоков составлялась на основе предварительно проведенного термографирования поверхности кладок (согласно ГОСТ Р 54852). Температурное поле снималось с целью выявления теплопроводных включений и термически однородных зон, их конфигурации и размеров. Для определения теплотехнических характеристик ограждающей конструкции датчики температуры и тепловых потоков устанавливались как в центре термически однородных зон, так и в местах с теплопроводными включениями, в зонах поверхности горизонтального и вертикального швов кладки.

Приведенное термическое сопротивление теплопередаче кладки определялось как средневзвешенное значение R пр К по формуле (1) (см. Формулы), а приведенное сопротивление теплопередаче кладки R пр о по формуле (3).

Фрагменты кладок испытывались в два этапа: на первом этапе кладки выдерживали и подсушивали в течение двух недель до влажности не более 6 %; на втором этапе кладки дополнительно высушивали до влажности менее 1 %.

Влажность изделий в кладке определялась методом взятия проб и приборами неразрушающего контроля (прибор GANN UNI-2 с датчиками МВ 35 и В60) в соответствии ГОСТ 21718 2 , а средняя плотность материалов кладок – с ГОСТ 7025 3 (табл. 1).

Измерения теплотехнических характеристик кладок

Результаты измерений теплотехнических характеристик кладок на втором этапе испытаний приведены в табл. 2. Средние значения температуры воздуха в теплом tсрв и холодном tсрн отсеках климатической камеры измерялись на расстоянии 0,1 м от поверхностей кладок, равны соответственно 19,7 и –28,1 0 С. Среднее значения коэффициента теплоотдачи с внутренней стороны кладок αсрв равно 8 Вт/(м 2 ·К), с внешней стороны αсрн – 17,5 Вт/(м 2 ·К).

По результатам полученного в испытаниях приведенного термического сопротивления теплопередаче кладки R пр К по формуле (5) определяется величина эквивалентного коэффициента теплопроводности кладки λэкв.

Далее по данным, полученным на двух этапах теплотехнических испытаний, определяются (согласно ГОСТ 530):

  • значение эквивалентного коэффициента теплопроводности кладки на один процент влажности Δλэкв по формуле (6);
  • коэффициент теплопроводности кладки в сухом состоянии λо по формуле (7) (результаты в табл. 3, где для сравнения приведены значения коэффициентов теплопроводности кладок и из других источников).

Результаты и анализ теплотехнических испытаний

Результаты теплотехнических испытаний кладок из обыкновенного глиняного кирпича достаточно хорошо согласуются с данными, приведенными в ГОСТ 530 и СП 50.13330 4 . Однако для ряда кладочных материалов характерно существенное расхождение значений теплотехнических характеристик, полученных в результате испытаний с аналогичными значениями, предоставленными производителями материалов.

Например, для кладки из пустотелых крупноформатных керамических блоков плотностью 800 кг/м 3 получено значение эквивалентного коэффициента теплопроводности в сухом состоянии 0,31 Вт/(м·K), а в сертификатах производителей приводится значение 0,15 Вт/(м·K); для кладки из полнотелых керамзитобетонных блоков плотностью 1 400 кг/м 3 получено значение 0,91 Вт/(м·K), в сертификатах – 0,36 Вт/(м·K).

Можно сделать вывод, что сегодня на рынке строительных материалов в основном представлены сертификаты, выданные по заказу либо самих производителей, либо ангажированных ими компаний, и практически отсутствуют реальные данные, полученные на базе независимых испытаний.

При проектировании наружных ограждающих конструкций рекомендуется разделять функциональные элементы конструкций на конструкционные (несущие) и теплозащитные. Наметившаяся тенденция совмещения этих двух функций в одном конструкционном элементе (два в одном), например в керамзитобетонных блоках, по-видимому, будущего не имеет. Более перспективными представляются конструкции с прочной несущей частью (например, кирпич или железобетон) и с эффективным слоем наружной теплоизоляции.

Как видно (табл. 4), значения величин приведенных термических сопротивлений теплопередаче R пр К исследованных ограждающих конструкций в сухом состоянии при утеплении кладок плитами из минеральной ваты толщиной 90 мм, пенополистирола и пеностекла толщиной 100 мм близки по величине. Температурные поля кладок, утепленных слоем высокоэффективного теплоизолятора, характеризуются достаточной теплотехнической однородностью – на термограммах не наблюдается тепловых потерь, обусловленных кладочными швами.

Приведенные термические сопротивления теплопередаче и коэффициенты условий работы

Вычисленные по экспериментально полученным данным R пр К средние значения эквивалентного коэффициента теплопроводности для слоя каменной минеральной ваты равны 0,045 Вт/(м·K), плит из пенополистирола – 0,05 Вт/(м·K), плит из пеностекла – 0,06 Вт/(м·K). Более высокое значение эквивалентного коэффициента теплопроводности для пенополистирольных плит 0,05 Вт/(м·K), чем для плит из каменной минеральной ваты 0,045 Вт/(м·K), обусловлено влиянием зазоров между пенополистирольными плитами, их худшим прижатием к поверхности кладки.

При проектировании и строительстве наружных ограждающих конструкций важную роль играют технические мероприятия по устранению мостиков холода, поэтому при монтаже плит важно избегать зазоров между плитами более 2 мм, еще лучше укладывать их с перехлестом 50–100 мм.

Несмотря на то, что эквивалентный коэффициент теплопроводности плит из пеностекла ниже, чем для плит из минеральной ваты, этот тип утеплителей благодаря их свойству не накапливать влагу и большей долговечности находит все более широкое применение в строительстве.

Влияние инфильтрации воздуха на теплотехнические характеристики фрагментов ограждающих конструкций

Инфильтрация воздуха играет существенную роль в формировании теплозащитных качеств наружных ограждающих конструкций. К примеру, кладка из крупноформатных блоков, вертикальные швы которой выложены по технологии «паз – гребень», характеризуется высокой теплотехнической неоднородностью вдоль швов. Из термограмм такой кладки (рис. 2), снятых со сторон теплого и холодного отсеков климатической камеры, видно, что вдоль вертикальных швов кладки, которая выложена по технологии «паз – гребень» без использования раствора, наблюдаются значительные тепловые потери: температурный перепад между гладью кладки и швами составляет полтора градуса.

Определение воздухопроницаемости исследуемой ограждающей конструкции (рис. 3) проводилось в соответствии с ГОСТ 31167. 5

Климатическая камера ОАО «НИИМосстрой» – герметичное помещение с высокой степенью теплоизоляции, оснащенное климатическим оборудованием для создания внутри отсеков (теплого и холодного) различных температурных режимов. Теплый и холодный отсеки климатической камеры разделены исследуемой ограждающей конструкцией, состоящей из различных типов кладок. При измерении воздухопроницаемости:

  • двух объединенных отсеков климатической камеры до монтажа исследуемых кладок получено среднее значение величины кратности воздухообмена, равное n50 = 3,5 ч –1 ;
  • после монтажа исследуемых кладок и их сушки получены средние значения величины кратности воздухообмена для теплого отсека климатической камеры n50 = 16,5 ч –1 , для холодного отсека – n50 = 17,5 ч –1 . Разность полученных величин кратности воздухообмена Δn50 = 16,5 – 3,5 = 13 ч –1 и Δn50 = 17,5 – 3,5 = 14 ч –1 может быть отнесена к воздухопроницаемости испытываемых фрагментов кладок. Эти значения более чем в три раза превышают нормативные значения этой величины 4 ч –1 .

Полученные результаты в такой постановке измерений можно считать предварительными, они требуют дальнейших, более детальных исследований, в частности для каждого типа кладок в отдельности.

Проведена серия испытаний по изучению влияния ветрового воздействия на теплотехнические характеристики ограждающих конструкций, в которых использовался стенд, оснащенный четырьмя вентиляторами ВР 300-45-2.5/3 (рис. 4). Так, в результате выполненных измерений при ветровом воздействии со средней скоростью 7,5 м/с на поверхности кладок получено, что приведенное термическое сопротивление:

  • для кладки из щелевых керамзитобетонных блоков снизилось на 10 % – от 0,44 м 2 ·К/Вт (табл. 2) до 0,40 м 2 ·К/Вт;
  • для кладки из полнотелых керамзитобетонных блоков на 17 % – от 0,42 до 0,36 м 2 ·К/Вт.

Среднее значение коэффициента теплоотдачи на поверхности с холодной стороны поверхности кладок αн равно 27,8 Вт/(м 2 ·К).

Отметим, что существенную роль в наблюдающемся в московском жилищном строительстве превышении фактического энергопотребления зданий над проектными значениями играет инфильтрация наружного воздуха через наружные ограждения [1]. Величина удельного расхода тепловой энергии на отопление здания может быть снижена посредством повышения герметичности ограждающих конструкций, стыков, кладочных швов, использования эффективных теплоизоляционных материалов и рационального расположения их в ограждающих конструкциях.

Кроме того, эксплуатационная надежность систем теплоизоляции напрямую зависит от количества мостиков холода теплоизоляционной оболочки, которые являются очагами интенсивного старения слоя утеплителя и преждевременного разрушения системы. При проектировании теплозащиты зданий следует применять конструкции со сплошным контуром утепления и с минимумом теплопроводных включений и стыковых соединений.

Коэффициенты условий работы наружных ограждающих конструкций

Наиболее существенную роль в формировании теплозащитных качеств наружной ограждающей конструкции играют их эксплуатационная влажность, инфильтрация воздуха и изменение теплозащитных свойств конструкции, вызванное деградацией теплоизоляционных материалов.

В табл. 4 приведены результаты испытаний исследуемых ограждающих конструкций во влажном состоянии при условиях эксплуатации Б: R пр К.влаж и отношение величин R пр К.влаж / R пр К, которое в дальнейшем назовем коэффициентом условий работы mвлаж, учитывающим снижение теплозащитных свойств конструкции за счет изменения влажности конструкции.

При проектировании и строительстве наружных ограждающих конструкций зданий особое внимание следует уделять их влажностному режиму. Накопление влаги в слое утеплителя значительно снижает теплотехнические качества наружных ограждающих конструкций зданий, приводит к преждевременному старению и износу. Взаимное расположение отдельных слоев ограждающих конструкций должно способствовать высыханию конструкций и исключать возможность накопления влаги в ограждении в процессе эксплуатации [2, 3].

Аналогично определяем, используя результаты испытаний для величин приведенных термических сопротивлений теплопередаче с учетом инфильтрации воздуха R пр К.инф и с учетом изменения свойств теплоизоляционных материалов в процессе эксплуатации R пр К.долг, коэффициенты условий работы, учитывающие снижение теплозащитных свойств конструкции соответственно:

  • за счет инфильтрации воздуха mинф, равное отношению R пр К.инф / R пр К;
  • за счет деградации теплозащитных свойств конструкции mдолг, равное RпрК.долг / R пр К.

Для сравнения указаны (табл. 4) величины приведенных термических сопротивлений теплопередаче R пр К.СР, полученные по данным производителей материалов.

Для учета данных трех аспектов, влияющих на теплозащитные свойства теплоизоляционных материалов, предлагаем ввести понятие обобщенного коэффициента условий работы наружной ограждающей конструкции mр. Данная величина равна наименьшему значению из коэффициентов условий работы, учитывающих снижение теплозащитных свойств конструкции за счет изменения влажности конструкции, инфильтрации воздуха и деградации теплозащитных свойств конструкции, см. формулу (8). Рекомендуемые значения обобщенного коэффициента условий работы для применения при проектировании наружных ограждающих конструкций приведены в табл. 4.

Резюме

На основании проведенных экспериментальных исследований сделаны следующие выводы.

  1. Для ряда кладочных материалов характерно существенное расхождение значений теплотехнических характеристик, полученных в результате испытаний, с аналогичными значениями, предоставляемыми производителями.
  2. Существенную роль в тепловых потерях зданий играет инфильтрация наружного воздуха через наружные ограждения. Прежде всего это связано с качеством монтажа и герметичностью ограждающих конструкций, стыков и кладочных швов.
  3. При проектировании наружных ограждающих конструкций рекомендуется разделять функциональные элементы конструкций на конструкционные (несущие) и теплозащитные. Наиболее перспективными представляются конструкции с прочной несущей частью и с эффективным слоем наружной теплоизоляции.
  4. Поскольку наиболее существенную роль в формировании теплозащитных качеств наружной ограждающей конструкции играют их эксплуатационная влажность, инфильтрация воздуха и изменение теплозащитных свойств конструкции, вызванное деградацией теплоизоляционных материалов, предлагается ввести понятие обобщенного коэффициента условий работы наружной ограждающей конструкции mр = min(mвлаж, mинф, mдолг).

ФОРМУЛЫ

Литература

  1. Васильев Г. П., Личман В. А., Песков Н. В. Методика инструментального определения энергопотребления вводимых в эксплуатацию зданий // Жилищное строительство. 2014. № 12. С. 32–36.
  2. Vasilyev G. P., Lichman V. A., Peskov N. V., Brodach M. M., Tabunshchikov Y. A., Kolesova M. V. Simulation of heat and moisture transfer in a multiplex structure // Energy and Buildings. 2015. Vol. 86.
  3. Васильев Г. П., Личман В. А., Песков Н. В. Моделирование процесса сушки в ограждающих конструкциях зданий // Жилищное строительство. 2013. № 7.

1 ГОСТ 530–2012 «Кирпич и камень керамические. Общие технические условия», ГОСТ Р 54853–2011 «Здания и сооружения. Метод определения сопротивления теплопередаче ограждающих конструкций с помощью тепломера», ГОСТ Р 54852–2011 «Здания и сооружения. Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций».

2 ГОСТ 21718–84 «Материалы строительные. Диэлькометрический метод измерения влажности».

3 ГОСТ 7025–91 «Кирпич и камни керамические и силикатные. Методы определения водопоглощения, плотности и контроля морозостойкости».

4 СП 50.13330.2012 «Тепловая защита зданий. Актуализированная редакция СНиП 23-02–2003».

5 ГОСТ 31167–2009 «Здания и сооружения. Методы определения воздухопроницаемости ограждающих конструкций в натурных условиях».

Читайте также: