Коэффициент пуассона ячеистого бетона

Обновлено: 18.04.2024

Пособие распространяется на проектирование элементов бетонных и железобетонных конструкций из различных видов ячеистых бетонов автоклавного и неавтоклавного твердения, применяемых в конструкциях гражданских, промышленных и сельскохозяйственных зданий.

Поскольку конструкции из ячеистых бетонов выполняются только в виде стеновых панелей, плит покрытий и перекрытий, то многие виды расчетов, предусмотренные СНиП 2.03.01-84, в Пособии не приводятся, в частности, расчеты кольцевых сечений на растяжение и кручение, выносливость, ширину раскрытия и закрытия косых трещин, влияние поперечной силы на прогиб, а также расчеты косвенного армирования.

В скобках указаны номера пунктов, таблиц и формул СНиП 2.03.01-84.

В Пособии использованы материалы разработок НИИСК и ДонпромстройНИИпроекта Госстроя СССР, ВНИИстрома, НИПИсиликатобетона Минстройматериалов СССР, НИИстроительства Госстроя ЭССР, ЛенЗНИИЭПа Госгражданстроя, а также ряда других научно-исследовательских и проектных организаций, высших учебных заведений, предприятий, изготовляющих изделия из ячеистых бетонов, строительных и монтажных организаций, осуществляющих строительство зданий с применением конструкций из ячеистых бетонов, а также использован опыт эксплуатации таких зданий. Пособие разработано НИИЖБ (кандидаты техн. наук К.М.Романовская, В.В.Макаричев) и ЦНИИСК им. Кучеренко (канд. техн. наук Н.И.Левин).

Замечания и предложения просьба направлять в НИИЖБ и ЦНИИСК им. Кучеренко Госстроя СССР по адресу: 109389, Москва, 2-я Институтская, д. 6.

1.1. Настоящее Пособие составлено к СНиП 2.03.01-84 и может быть использовано при проектировании элементов конструкций зданий и сооружений для гражданского, промышленного и сельскохозяйственного строительства из различных автоклавных и неавтоклавных ячеистых бетонов, работающих при систематическом воздействии температур не выше 50 о С и не ниже минус 70 °С, а именно:

а) бетонных однослойных, работающих на изгиб и внецентренное сжатие;

б) железобетонных однослойных с обычным армированием, работающих на изгиб и внецентренное сжатие;

в) железобетонных двухслойных с обычным армированием и предварительно напряженных, работающих на изгиб.

Автоклавные и неавтоклавные ячеистые бетоны, предусмотренные настоящим Пособием, должны соответствовать требованиям ГОСТ 25485-82.

Виды применяемых ячеистых бетонов приведены в прил. 1.

Проектирование ячеисто бетонных конструкций для сейсмических районов допускается при условии выполнения требований СНиП II - 7 - 81.

1.2. При проектировании элементов конструкций из ячеистых бетонов следует руководствоваться общими требованиями СТ СЭВ 384-76, СНиП II -6-74, СНиП II-3-79, СНиП 2.01.01-82, СНиП 2.03.01-84, а также требованиями настоящего Пособия.

1.3. Проектирование бетонных и железобетонных конструкций для работы в условиях агрессивной среды следует вести с учетом дополнительных требований, предъявляемых СНиП 2.03.11-85.

1.4. В целях обеспечения долговечности конструкций из ячеистых бетонов следует предусмотреть защиту их от увлажнения грунтовыми водами и интенсивного увлажнения атмосферными осадками, для чего рекомендуется применять защитно-декоративные отделки наружных поверхностей стен окрасочными составами, поризованными растворами с дроблеными каменными материалами в соответствии с СН 277-80.

1.5. Однослойные конструкции из ячеистых бетонов следует предусматривать для зданий с относительной влажностью воздуха внутри помещений до 60 %, а при наличии пароизоляции на внутренней поверхности стен - для зданий с влажностью воздуха внутри помещений до 75 %.

Допускается при соответствующем технико-экономическом обосновании вместо устройства пароизоляции увеличение толщины элементов стен исходя из условия исключения выпадания конденсата на их внутренней поверхности. Двухслойные конструкции с внутренним слоем из тяжелого бетона допускаются к применению без специальных мер защиты при влажности воздуха внутри помещений до 75 %.

1.6. Расчетная зимняя температура наружного воздуха и влажность окружающей среды определяются в соответствии с п. 1.8 СНиП 2.03.01-84.

1.7. Теплотехнический расчет элементов конструкций из ячеистых бетонов следует производить в соответствии со СНиП II-3-79.

Теплофизические характеристики ячеистых бетонов для наружных ограждающих конструкций в случае их отсутствия в СНиП II-3-79 рекомендуется принимать на основании опытных данных.

1.8. В рабочих чертежах, технических условиях на элементы конструкций из ячеистого бетона следует указывать вид ячеистого бетона и его характеристики: класс бетона по прочности на осевое сжатие, марку надежности, прочность бетона при отпуске изделий с завода, а для элементов наружных ограждающих конструкций также марку по морозостойкости.

Кроме того, должны быть указаны вид, класс и марка стали для арматуры и закладных деталей.

1.9. При проектировании конструкций из ячеистых бетонов следует учитывать требования, предъявляемые СН 277-80 к способу их формования (литьевому, по вибротехнологии, по резательной технологии), и другие требования этой Инструкции.

1.10. Автоклавные ячеистые бетоны рекомендуется применять в зданиях и сооружениях I , II и III классов по степени ответственности.

Неавтоклавные ячеистые бетоны рекомендуется применять в зданиях и сооружениях II и III классов по степени ответственности.

Примечание. Классы по степени ответственности следует принимать по «Правилам учета степени ответственности зданий и сооружений при проектировании конструкций», утвержденным постановлением Госстроя СССР № 41 от 19 марта 1981 г.

1.11. При проектировании следует предусмотреть защиту арматуры и закладных деталей от коррозии в соответствии с СН 277-80 .

1.12. Автоклавные и неавтоклавные ячеистые бетоны могут применяться в следующих элементах конструкций:

а) одно- и двухслойных панелях наружных и однослойных панелях внутренних стен;

б) одно- и двухслойных плитах покрытий;

в) неармированных и армированных стеновых крупных блоках;

г) неармированных стеновых мелких блоках.

Примечания 1. Проектирование конструкций стен из мелких блоков осуществляется в соответствии со СНиП II -22-81, а прочностные характеристики ячеистых бетонов принимаются согласно настоящему Пособию.

2. Армированные крупнозернистые элементы из неавтоклавных ячеистых бетонов могут применяться при отсутствии в них недопустимых усадочных трещин.

3. Применение ячеистых бетонов в конструкциях внутренних стен и междуэтажных перекрытий допускается только при соответствующем технико-экономическом обосновании.

1.13. Стеновые панели из автоклавных ячеистых бетонов разрешается применять в зданиях независимо от их этажности при условии обеспечения расчетом необходимой прочности и деформативности.

Усилия, на которые рассчитываются ячеисто бетонные стеновые панели и крупные блоки, а также стены из мелких блоков, определяются расчетом в зависимости от способа соединения наружных и внутренних стен или несущих каркасов (колонн, ригелей и плит перекрытий).

При жестком соединении наружных и внутренних стен с помощью сварки закладных деталей или замоноличивания арматурных выпусков стены рассчитываются как совместно работающие, т.е. как несущие. В этом случае нагрузки, приходящиеся на наружные стеновые панели или блоки из ячеистых бетонов, определяются из общего расчета зданий как совместной системы продольных, поперечных и горизонтальных дисков с учетом соотношения упругопластических свойств ячеистого бетона и материала внутренних конструкций зданий.

При соединении наружных ячеисто бетонных стен с внутренними несущими конструкциями зданий (колоннами или стенами) с помощью горизонтальных гибких стержней и при наличии зазора между стенами и внутренними конструкциями элементы стен (панели или блоки) рассчитываются как самонесущие.

Для бескаркасных зданий, имеющих жесткое соединение (монолитную связь) между стенами из неавтоклавных ячеистых бетонов, предельной высотой следует считать три этажа.

1.14. Двухслойные плиты перекрытий или покрытий рекомендуется проектировать из слоя тяжелого бетона, плотного силикатного бетона класса по прочности не менее В 10 при армировании без предварительного напряжения и не менее В 17,5 с предварительным напряжением.

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

1.15. Основные расчетные требования к проектированию бетонных и железобетонных однослойных конструкций из ячеистых бетонов принимаются в соответствии с п.п. 1.10-1.13 и 1.19-1.22 СНиП 2.03.01-84, двухслойных предварительно напряженных с учетом п.п. 1.17; 1.18 и 1.23-130 СНиП 2.03.01-84.

1.16 (1.16). К трещиностойкости конструкций из ячеистых бетонов предъявляются требования только 2- и 3-й категорий, т.е. допускается ограниченное по ширине кратковременное и длительное раскрытие трещин. Ко 2-й категории относятся предварительно напряженные двухслойные конструкции с арматурой классов A - V , A-VI и проволокой классов B-II и Bp - II диаметром 3,5 мм и более. Предельно допустимая ширина раскрытия трещин для данных конструкций принимается кратковременная acrc 1 = 0,2 мм.

Однородные конструкции и конструкции с другими видами арматуры относятся к 3-й категории трещиностойкости. Предельно допустимая ширина раскрытия трещин для данных конструкций принимается: кратковременная acrc 1 =0,4 мм, длительная acrc 2 = 0,3 .

При расчете ширины раскрытия трещин коэффициент надежности по нагрузке (постоянной, длительной и кратковременной) g f принимается равным 1.

Указанные категории требований к трещиностойкости железобетонных конструкций относятся к трещинам, нормальным к продольной оси элемента.

Во избежание раскрытия продольных трещин следует принимать конструктивные меры (устанавливать соответствующую поперечную арматуру), а для предварительно напряженных элементов, кроме того, ограничивать значения сжимающих напряжений в бетоне в стадии предварительного обжатия (см. п. 1.29 СНиП 2.03.01-84).

Примечание . В конструкциях, в которых арматура покрывается антикоррозионным составом, допускается ширина раскрытия трещин acrc 2 до 0,5 мм.

1.17. Прогибы элементов железобетонных конструкций из ячеистых бетонов не должны превышать предельно допустимых значений, указанных в п. 1.20 СНиП 2.03.01-84.

Для элементов покрытий сельскохозяйственных зданий производственного назначения, если прогибы не ограничиваются технологическими или конструктивными требованиями, предельно допустимые прогибы принимаются равными при пролетах: до 6 м - 1/150 пролета, от 6 до 10 м - 4 см.

1.18. (1.21). При расчете по прочности бетонных и железобетонных элементов на действие сжимающей продольной силы должен приниматься во внимание случайный эксцентриситет ea , обусловленный не учтенными в расчете факторами. Эксцентриситет ea в любом случае принимается: не менее 1/600 длины элемента или расстояния между его сечениями, закрепленными от смещения, и 1/30 высоты сечения; не менее 2 см для несущих стен и 1 см для самонесущих стен.

Для элементов статически неопределимых конструкций значение эксцентриситета продольной силы относительно центра тяжести приведенного сечения ea принимается равным эксцентриситету, полученному из статического расчета конструкции, но не менее ea . . В элементах статически определимых конструкций эксцентриситет ео находится как сумма эксцентриситетов - определяемого из статического расчета конструкции и случайного.

Расчет сжатых бетонных элементов прямоугольного сечения (в том числе армированных симметричной конструктивной арматурой) при величине эксцентриситета, определенного в соответствии с указанием настоящего пункта, 0 ea £ 0,225 h и расчетной длине элемента l0 £ 20h допускается производить в соответствии с прил. 2 .

1.19. Расстояние между температурно-усадочными швами устанавливается в соответствии с п. 1.22 СНиП 2.03.01-84.

1.20. При статических и теплотехнических расчетах элементов ячеисто бетонных конструкций следует учитывать среднюю установившуюся влажность ячеистого бетона, принимаемую по табл. 1.

Расчетная средняя установившаяся влажность ячеистых бетонов, % (по массе)

Данный грунты являются полускальными, в связи с этим коэффициент Пуассона для них в инженерной геологии как характеристика грунта не рассматривается.

Проектирование зданий и частей зданий

А у доломита, известняка, мергелей какие коэффициенты Пуассона?

от 0,2 (скала, бетон) до 0,27 (крупнообломочные), так мне думается.

Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. Расчетно-теоретический.
В двух книгах. Кн. 2.
Под ред. А.А. Уманского.
Изд. 2-е, перераб. и доп. М., Стройиздат, 1973, 416 с.
страница 307

__________________
«Точно знают, только когда мало знают. Вместе со знанием растет сомнение». Иоганн Вольфганг Гете

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

Коэффициент Пуассона характеризует упругие свойства материала. При приложении к телу растягивающего усилия оно начинает удлиняться (то есть длина увеличивается), а поперечное сечение уменьшается. Коэффициент Пуассона показывает, во сколько раз изменяется поперечное сечение деформируемого тела при его растяжении или сжатии. Для абсолютно хрупкого материала коэффициент Пуассона равен 0, для абсолютно упругого — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он примерно равен 0,5. (Измеряется в относительных единицах: мм/мм, м/м).

У скалы есть упругие свойства.

СНиП II-94-80
Инженерно-геологические и гидрогеологические изыскания

1.8. Инженерные изыскания для проектирования и строительства выработок следует выполнять в соответствии с требованиями главы СНиП по инженерным изысканиям для строительства, а также с учетом особенностей подземного строительства, предусмотренных настоящими нормами.
.
1.9. Исходные инженерно-геологические материалы для проектирования выработок должны включать следующие данные:
результаты испытаний механических свойств пород массива;
.
1.10. Исходные данные для проектирования выработок получаются путем:
использования имеющихся фондовых данных о результатах проведенной геологической разведки (предварительной, детальной, доразведки) и маркшейдерско-геодезических съемок;
проведения геологических, гидрогеологических и других работ инженерно-геологических изысканий, включая бурение инженерно-геологических скважин непосредственно в местах предполагаемого расположения проектируемых выработок.
.
Для всех изученных слоев, пластов, прослоев и прочих морфологических элементов должны быть выполнены механические испытания керновых проб и установлены средние значения сопротивления пород одноосному сжатию, а также плотности, естественной влажности, коэффициента сцепления, угла внутреннего трения, модуля упругости, коэффициента Пуассона.

Также диапазоны указаны в
ВСН 49-86 (Минэнерго СССР) Проектирование временной крепи гидротехнических туннелей
Приказ Минэнерго СССР от 17.06.1986 N 131а

Наименование грунтов
Коэффициент Пуассона
Категория крепости пород по СНиП IV-2-82 сб.29

Тут возник вопрос тут ссталкнулся с расчетчиками которые предлажили по необъяснимым причинам для бетона для (плит)
коэффициент Пуассона принимать не 0.2 ,как по снип, а 0.17
Самое интересное что такой коэффициент принят по умолчанию и в ROBOT office .
Кто нибудь знает на каком основании для расчетных программ его надо занижать?

проектирование гидротехнических сооружений

С таким же вопросом столкнулся учась в институте: почему-то преподаватели твердили, объясняя как юзать Z-Soil, коэф-нт Пуассона для бетона брать 0.15! :? Почему - никто не объяснял. Но с другой стороны, когда подогнать расчёт к нужным результатам пытались - подставляли этот коэф-нт и 0.2 и 0.3 но это очень мало влияло на наши расчёты (мы подземку считали, а там 90% результата - это характеристики грунтов)

Если кто знает почему так - поделитесь опытом

Эта величина для бетона (железобетона) "плавающая", т.к. зависит от развития процессов микро- и макротрещинообразования, армирования и лежит в пределах 0,1..0,5. Для среднего случая получается как раз где-то 0,15-0,2. Это не сильно принципиально.

проектирование гидротехнических сооружений

Дмитрий, гуру, я поражён услышанным - коэф-нт Пуассона у бетона до 0,5. Бетон на основе заполнителей из резины чтоли. twisted:

проектирование гидротехнических сооружений

Да я даже не про СНиП говорю, а про 0.5! - на сколько я помню (а память меня редко подводит) ню близкое к 0,5 - у материалов типа каучука или резины - на сколько сожмёшь - на столько он и расширится (т.е. не сжимаемый материал!). :twisted: Клёвый бетончик однако. Все колонны бочёнками стояли бы тогда.

расчеты МКЭ и CFD. ктн

в принципе, при развитой пластике металла пуассон принимают равным 0.5
для бетона после разрушения при нестесненных смещениях тоже можно наверное написать 0.5.
то есть он мб разным в одной конструкции в зависимости от степени местного трещинообразования

1. Пособие к СНиП: 2.12 (2.16). Начальный коэффициент поперечной деформации бетона v (коэффициент Пуассона) при¬нимается равным 0,2 для всех видов бетона, а мо¬дуль сдвига бетона G — равным 0,4 соответствую¬щих значений Eb, указанных в табл. 11.
Здесь прошу обратить внимание на словоНачальный .
2. Если речь идет о коэффициенте упругопластических деформаций бетона, т.е. отношение упругих к полным деформациям, то по данным опытов для бетона этот коэффициент изменяется от 1 (при упругой работе) до 0,15 . . . т.е. при увеличении напряжений и длительности приложения нагрузки он уменьшается .
3. Этот же коэффициент при растяжении дает среднее значение 0,5 .
Вывод: смотря какая стадия работы бетона вас интересует этот коэффициент бедет иметь различное значение
0,17 - видимо запас, учитывающий возможность трещинообразования или пластических шарниров или еще чего-нибудь там, включая тараканов в голове разработчиков

проектирование гидротехнических сооружений

Начальный коэффициент поперечной деформации бетона v (коэффициент Пуассона) принимается равным 0,2
при увеличении напряжений и длительности приложения нагрузки он уменьшается

И каким таким волшебным образом он уменьшится от 0.2 до 1 . :?

Я так понимаю пункт 1 твоего изречения ты дёрнул из СНиП, а вот в происхождении пункта 2 я позволю себе усомниться. Дай ссылочку - посмотреть хотца! - ИМХО такое значение теоретически возможно получить при минимальных значениях напряжений ДЛЯ КОЭФФИЦИЕНТА УПРУГО-ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЙ (а мы говорим о коэф-те Пуасона - см. учебник внимательнее), т.е. когда все деформации носят упругий характер, а бетон так работать в нормальных условиях не заставишь.

for СергейД:
как ты там написал.

для бетона после разрушения при нестесненных смещениях тоже можно наверное написать 0.5.

Сам-то понял чего отмочил? Ты предлагаешь расчитывать конструкцию как уже упавшую?! Т.е. тебе надо посчитать плиту перекрытия, а ты принимаешь расчётный случай под названием "плита проломилась и упала" и в расчёте коэф-нт Пуассона ляпаешь 0.5?! :shock: Можно я попрошу модератора перекинуть этот пост в тему "БРЕД СИВОЙ КОБЫЛЫ?!" :twisted:

Я так понимаю пункт 1 твоего изречения ты дёрнул из СНиП
а вот в происхождении пункта 2 я позволю себе усомниться. Дай ссылочку - посмотреть хотца!

Байков В.Н., Сигалов Э.Е.
Железобетонные конструкции: Общий курс: Учеб. для вузов. - 5-е изд., перераб. и доп.-М.:Стройиздат, 1991. стр. 33

проектирование гидротехнических сооружений

ИМХО в книжице неясность, а ты её неверно интерпретируешь.

Специально сейчас в 2-х расчётных программах посмотрел - там просто невозможно задать коэф-нт пуассона больше 0,499999999 - наверно это не спроста? :wink:

Пусть Гуру ж/б нас рассудят и наставят на путь истинный

Коэф. пуассона = 0,5 - материал абсолютно несжимаем, т.е. происходит изменение формы без изменения объема к стремится к бесконечности, а Е=3G
коэф пуссона = 0 деформация происходит только по оси z (поперечная деформация равна нулю, и следовательно Е=к=2G

Да.
Интереснийший вопрос я поднял.
А у нас между прочим целая мастерская, которая дома строит, с коэффициентом 0.17 считают, без объяснения причин.
Этот коэффициент им порекомендовал один из преподов из МГСУ
, опять без объяснения причин.

Очень тяжело менять, ничего не меняя, но мы будем! (М. Жванецкий)
Вопрос как правильно учесть работу железобетона, ничего не учитывая, только одним значением коэффициента поперечной деформации.
У Карпенко в книге "Общие модели механики железобетона" есть зависимость этого коэффициента от уровня напряжений (точнее коэффициентов, т.к. железобетон предлагается рассматривать ортотропным материалом, а не изотропным как это обычно делается).
Но как практически применять его теорию не понимаю. (По крайней мере можно использовать его зависимость коэффициента поперечной деформации бетона от уровня напряжений).
Интересно, а что в Еврокоде по этому вопросу?
СНиП (СП) допускает принимать 0,2. Но это для бетона, а не для железобетона. А тут вопрос о железобетоне, как я понял.

я поражён услышанным - коэф-нт Пуассона у бетона до 0,5. Бетон на основе заполнителей из резины чтоли.
ню близкое к 0,5 - у материалов типа каучука или резины - на сколько сожмёшь - на столько он и расширится (т.е. не сжимаемый материал!). Клёвый бетончик однако. Все колонны бочёнками стояли бы тогда.

Нет, резина здесь совершенно ни при чем!
Но, в предельной стадии, при фактическом отсутствии целостности и сплошности бетона вследствии развития трещин такая ситуация вполне возможна.
В нормальных условиях (не в стадии разрушения или близкой к нему) эта величина будет где-то около рекомендуемой нормами.

В нормальных условиях (не в стадии разрушения или близкой к нему) эта величина будет где-то около рекомендуемой нормами.

Вопрос действительно интересный. Нормы ничего не рекомендуют для коэффициента Пуассона железобетона. Только для бетона. А в железобетоне трещины это нормальное расчетное состояние.
Может быть у Бондаренко есть какое-то обоснование какой коэффициент принимать для расчета железобетона в программах (Бондаренко В.М. "Инженерные методы нелинейной теории железобетона"). Есть ли у кого нибудь эта книжка?

Предлагаю следующий вариант:
Из литературы ясно, что коэффициент лежит для сжимаемого бетона в пределах от 0,15 до 1 (кстати если смотреть Василия Ивановича Мурашева за 1962г. - наставника Байкова и Сигалова то там от 0,2 до 1), для растянутого всреднем 0,5.
Кстати Лира где-то дает по умолчанию - 0,2.
Итак почему же - 0,17?
Из литературы ясно что коэффициент меняется с изменением НДС бетона, т.е. чем больше напряжения, тем он меньше!
Вывод 1: по хорошему получается своеобразный учет нелинейности однако!
Вывод 2: если ты ученый и считаешь какую-то научную задачу то надо определять коэффициент на каждой стадии, в зависимости от стадии НДС или процесса работы бетона и т.д. и т.п.!
Вывод 3: если элемент твоего исследования работает исключительно на растяжение => принимаешь 0,5!
Вывод 4: если ты проектировщик, расчетчик и т.п. то согласно СНиП следует принимать 0,2!
Вывод 5: если ты в противоречии Вывода 4 примешь 0,17, то это пойдет в запас.
Вывод 6: почему же не более 0,2? Наверное можно проанализировать, взяв любой учебник по ЖБК, и рассмотрев пример работы ЖБ балки. Помните там несколько стадий работы балки: I, Ia, II, III. Так вот стадия III положена в основу расчета по разрушающим нагрузкам! Полагаю что именно 0,17-0,2 соответствует этой стадии работы балки а точнее напряженному состаянию в бетоне сжатой зоне над трещиной.
А выяснить это вероятно можно было только опытным путем! Причем как мне кажется все еще зависит от класса бетона!
Поправьте если где-то ошибся. возможно у кого-то есть другие соображения .

Ну вот, посмотрел, наконец, у Карпенко:
"Экспериментальные исследования показывают, что с увеличением напряжений сжатия коэффициент поперечной деформации mub возрастает от некоторого начального значения mub0=0.15-0.2 до значений, приближающихся, а иногда и превышающих, 0.5 в вершине диаграммы.
Увеличение уровня напряжений растяжения приводит, по некоторым данным (Берг О.Я. Физические основы теории прочности бетона и железобетона), к уменьшению коэффициента поперечной деформации".
Также он приводит зависимости для измениния этого коэффициента.

Также из этого можно сделать некоторые выводы:
1. Начальная величина коэффициента Пуассона бетона (железобетона) может быть принята 0.15-0.2. Эта же величина может использоваться в расчетах без учета неупругого деформирования ж/б или с учетом оного (см. нормы: СНиП, СП).
2. С ростом напряжений сжатия коэффициент Пуассона возрастает (относительно начальных значений) вплоть до 0.5 или даже больше.
3. С ростом напряжений растяжения коэффициент Пуассона уменьшается (относительно начальных значений).

проектирование гидротехнических сооружений

Коэф. пуассона = 0,5 - материал абсолютно несжимаем, т.е. происходит изменение формы без изменения объема к стремится к бесконечности, а Е=3G
коэф пуссона = 0 деформация происходит только по оси z (поперечная деформация равна нулю, и следовательно Е=к=2G

- это написано в учебнике сопромата. НЕЗАВИСИМО от материала. НЕ МОЖЕТ коэффициент Пуассона быть больше 0.5. Вы путаете два коэффициента, обозначаемых одной и той-же буквой ню. :evil: Читайте пожалуйста внимательнее название темы и слова в книжках.

Тут возник вопрос тут ссталкнулся с расчетчиками которые предлажили по необъяснимым причинам для бетона для (плит)
коэффициент Пуассона принимать не 0.2 ,как по снип, а 0.17
Самое интересное что такой коэффициент принят по умолчанию и в ROBOT office .
Кто нибудь знает на каком основании для расчетных программ его надо занижать?

проектирование гидротехнических сооружений

С таким же вопросом столкнулся учась в институте: почему-то преподаватели твердили, объясняя как юзать Z-Soil, коэф-нт Пуассона для бетона брать 0.15! :? Почему - никто не объяснял. Но с другой стороны, когда подогнать расчёт к нужным результатам пытались - подставляли этот коэф-нт и 0.2 и 0.3 но это очень мало влияло на наши расчёты (мы подземку считали, а там 90% результата - это характеристики грунтов)

Если кто знает почему так - поделитесь опытом

Эта величина для бетона (железобетона) "плавающая", т.к. зависит от развития процессов микро- и макротрещинообразования, армирования и лежит в пределах 0,1..0,5. Для среднего случая получается как раз где-то 0,15-0,2. Это не сильно принципиально.

проектирование гидротехнических сооружений

Дмитрий, гуру, я поражён услышанным - коэф-нт Пуассона у бетона до 0,5. Бетон на основе заполнителей из резины чтоли. twisted:

проектирование гидротехнических сооружений

Да я даже не про СНиП говорю, а про 0.5! - на сколько я помню (а память меня редко подводит) ню близкое к 0,5 - у материалов типа каучука или резины - на сколько сожмёшь - на столько он и расширится (т.е. не сжимаемый материал!). :twisted: Клёвый бетончик однако. Все колонны бочёнками стояли бы тогда.

расчеты МКЭ и CFD. ктн

в принципе, при развитой пластике металла пуассон принимают равным 0.5
для бетона после разрушения при нестесненных смещениях тоже можно наверное написать 0.5.
то есть он мб разным в одной конструкции в зависимости от степени местного трещинообразования

1. Пособие к СНиП: 2.12 (2.16). Начальный коэффициент поперечной деформации бетона v (коэффициент Пуассона) при¬нимается равным 0,2 для всех видов бетона, а мо¬дуль сдвига бетона G — равным 0,4 соответствую¬щих значений Eb, указанных в табл. 11.
Здесь прошу обратить внимание на словоНачальный .
2. Если речь идет о коэффициенте упругопластических деформаций бетона, т.е. отношение упругих к полным деформациям, то по данным опытов для бетона этот коэффициент изменяется от 1 (при упругой работе) до 0,15 . . . т.е. при увеличении напряжений и длительности приложения нагрузки он уменьшается .
3. Этот же коэффициент при растяжении дает среднее значение 0,5 .
Вывод: смотря какая стадия работы бетона вас интересует этот коэффициент бедет иметь различное значение
0,17 - видимо запас, учитывающий возможность трещинообразования или пластических шарниров или еще чего-нибудь там, включая тараканов в голове разработчиков

проектирование гидротехнических сооружений

Начальный коэффициент поперечной деформации бетона v (коэффициент Пуассона) принимается равным 0,2
при увеличении напряжений и длительности приложения нагрузки он уменьшается

И каким таким волшебным образом он уменьшится от 0.2 до 1 . :?

Я так понимаю пункт 1 твоего изречения ты дёрнул из СНиП, а вот в происхождении пункта 2 я позволю себе усомниться. Дай ссылочку - посмотреть хотца! - ИМХО такое значение теоретически возможно получить при минимальных значениях напряжений ДЛЯ КОЭФФИЦИЕНТА УПРУГО-ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЙ (а мы говорим о коэф-те Пуасона - см. учебник внимательнее), т.е. когда все деформации носят упругий характер, а бетон так работать в нормальных условиях не заставишь.

for СергейД:
как ты там написал.

для бетона после разрушения при нестесненных смещениях тоже можно наверное написать 0.5.

Сам-то понял чего отмочил? Ты предлагаешь расчитывать конструкцию как уже упавшую?! Т.е. тебе надо посчитать плиту перекрытия, а ты принимаешь расчётный случай под названием "плита проломилась и упала" и в расчёте коэф-нт Пуассона ляпаешь 0.5?! :shock: Можно я попрошу модератора перекинуть этот пост в тему "БРЕД СИВОЙ КОБЫЛЫ?!" :twisted:

Я так понимаю пункт 1 твоего изречения ты дёрнул из СНиП
а вот в происхождении пункта 2 я позволю себе усомниться. Дай ссылочку - посмотреть хотца!

Байков В.Н., Сигалов Э.Е.
Железобетонные конструкции: Общий курс: Учеб. для вузов. - 5-е изд., перераб. и доп.-М.:Стройиздат, 1991. стр. 33

проектирование гидротехнических сооружений

ИМХО в книжице неясность, а ты её неверно интерпретируешь.

Специально сейчас в 2-х расчётных программах посмотрел - там просто невозможно задать коэф-нт пуассона больше 0,499999999 - наверно это не спроста? :wink:

Пусть Гуру ж/б нас рассудят и наставят на путь истинный

Коэф. пуассона = 0,5 - материал абсолютно несжимаем, т.е. происходит изменение формы без изменения объема к стремится к бесконечности, а Е=3G
коэф пуссона = 0 деформация происходит только по оси z (поперечная деформация равна нулю, и следовательно Е=к=2G

Да.
Интереснийший вопрос я поднял.
А у нас между прочим целая мастерская, которая дома строит, с коэффициентом 0.17 считают, без объяснения причин.
Этот коэффициент им порекомендовал один из преподов из МГСУ
, опять без объяснения причин.

Очень тяжело менять, ничего не меняя, но мы будем! (М. Жванецкий)
Вопрос как правильно учесть работу железобетона, ничего не учитывая, только одним значением коэффициента поперечной деформации.
У Карпенко в книге "Общие модели механики железобетона" есть зависимость этого коэффициента от уровня напряжений (точнее коэффициентов, т.к. железобетон предлагается рассматривать ортотропным материалом, а не изотропным как это обычно делается).
Но как практически применять его теорию не понимаю. (По крайней мере можно использовать его зависимость коэффициента поперечной деформации бетона от уровня напряжений).
Интересно, а что в Еврокоде по этому вопросу?
СНиП (СП) допускает принимать 0,2. Но это для бетона, а не для железобетона. А тут вопрос о железобетоне, как я понял.

я поражён услышанным - коэф-нт Пуассона у бетона до 0,5. Бетон на основе заполнителей из резины чтоли.
ню близкое к 0,5 - у материалов типа каучука или резины - на сколько сожмёшь - на столько он и расширится (т.е. не сжимаемый материал!). Клёвый бетончик однако. Все колонны бочёнками стояли бы тогда.

Нет, резина здесь совершенно ни при чем!
Но, в предельной стадии, при фактическом отсутствии целостности и сплошности бетона вследствии развития трещин такая ситуация вполне возможна.
В нормальных условиях (не в стадии разрушения или близкой к нему) эта величина будет где-то около рекомендуемой нормами.

В нормальных условиях (не в стадии разрушения или близкой к нему) эта величина будет где-то около рекомендуемой нормами.

Вопрос действительно интересный. Нормы ничего не рекомендуют для коэффициента Пуассона железобетона. Только для бетона. А в железобетоне трещины это нормальное расчетное состояние.
Может быть у Бондаренко есть какое-то обоснование какой коэффициент принимать для расчета железобетона в программах (Бондаренко В.М. "Инженерные методы нелинейной теории железобетона"). Есть ли у кого нибудь эта книжка?

Предлагаю следующий вариант:
Из литературы ясно, что коэффициент лежит для сжимаемого бетона в пределах от 0,15 до 1 (кстати если смотреть Василия Ивановича Мурашева за 1962г. - наставника Байкова и Сигалова то там от 0,2 до 1), для растянутого всреднем 0,5.
Кстати Лира где-то дает по умолчанию - 0,2.
Итак почему же - 0,17?
Из литературы ясно что коэффициент меняется с изменением НДС бетона, т.е. чем больше напряжения, тем он меньше!
Вывод 1: по хорошему получается своеобразный учет нелинейности однако!
Вывод 2: если ты ученый и считаешь какую-то научную задачу то надо определять коэффициент на каждой стадии, в зависимости от стадии НДС или процесса работы бетона и т.д. и т.п.!
Вывод 3: если элемент твоего исследования работает исключительно на растяжение => принимаешь 0,5!
Вывод 4: если ты проектировщик, расчетчик и т.п. то согласно СНиП следует принимать 0,2!
Вывод 5: если ты в противоречии Вывода 4 примешь 0,17, то это пойдет в запас.
Вывод 6: почему же не более 0,2? Наверное можно проанализировать, взяв любой учебник по ЖБК, и рассмотрев пример работы ЖБ балки. Помните там несколько стадий работы балки: I, Ia, II, III. Так вот стадия III положена в основу расчета по разрушающим нагрузкам! Полагаю что именно 0,17-0,2 соответствует этой стадии работы балки а точнее напряженному состаянию в бетоне сжатой зоне над трещиной.
А выяснить это вероятно можно было только опытным путем! Причем как мне кажется все еще зависит от класса бетона!
Поправьте если где-то ошибся. возможно у кого-то есть другие соображения .

Ну вот, посмотрел, наконец, у Карпенко:
"Экспериментальные исследования показывают, что с увеличением напряжений сжатия коэффициент поперечной деформации mub возрастает от некоторого начального значения mub0=0.15-0.2 до значений, приближающихся, а иногда и превышающих, 0.5 в вершине диаграммы.
Увеличение уровня напряжений растяжения приводит, по некоторым данным (Берг О.Я. Физические основы теории прочности бетона и железобетона), к уменьшению коэффициента поперечной деформации".
Также он приводит зависимости для измениния этого коэффициента.

Также из этого можно сделать некоторые выводы:
1. Начальная величина коэффициента Пуассона бетона (железобетона) может быть принята 0.15-0.2. Эта же величина может использоваться в расчетах без учета неупругого деформирования ж/б или с учетом оного (см. нормы: СНиП, СП).
2. С ростом напряжений сжатия коэффициент Пуассона возрастает (относительно начальных значений) вплоть до 0.5 или даже больше.
3. С ростом напряжений растяжения коэффициент Пуассона уменьшается (относительно начальных значений).

проектирование гидротехнических сооружений

Коэф. пуассона = 0,5 - материал абсолютно несжимаем, т.е. происходит изменение формы без изменения объема к стремится к бесконечности, а Е=3G
коэф пуссона = 0 деформация происходит только по оси z (поперечная деформация равна нулю, и следовательно Е=к=2G

- это написано в учебнике сопромата. НЕЗАВИСИМО от материала. НЕ МОЖЕТ коэффициент Пуассона быть больше 0.5. Вы путаете два коэффициента, обозначаемых одной и той-же буквой ню. :evil: Читайте пожалуйста внимательнее название темы и слова в книжках.

Прочность автоклавного и неавтоклавного газобетонов характеризуют классами по прочности на сжатие, определяемыми по ГОСТ 10180, ГОСТ Р53231.

Для газобетонов установлены ГОСТ 31359 следующие классы: В0,35; В0,5; В0,75; В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20.

Плотность газобетона нормируется марками по плотности D (Д), определяемыми по ГОСТ 27005. По показателями средней плотности назначают следующие марки газобетонов: D 200; D 250, D 300, D 350, D 400, D 450, D 500, D 600, D 700, D 800, D 900, D 1000, D 1100, D 1200.

Стабильность показателей газобетонов по плотности и прочности на сжатие характеризуется коэффициентами вариации, которые определяются в соответствии с требованиями СН 277, ГОСТ 27005 и ГОСТ Р53231. Средние значения коэффициентов вариации газобетонов не должны превышать: по плотности 5%; по прочности на сжатие – 15%.

Для учета российского зимнего фактора назначают и контролируют следующие марки газобетона по морозостойкости в циклах замораживания-оттаивания после водонасыщения: F 15; F 25; F 35; F 50; F 75; F 100, определяемые по ГОСТ 25485 или ГОСТ 31359.

Назначение марки газобетона по морозостойкости проводят в зависимости от режима эксплуатации конструкции и климатического района.

Показатели классов по прочности на сжатие и марок по морозостойкости в зависимости от марок по плотности приведены в таблице 3.2.

Нормативные сопротивления газобетонов сжатию, растяжению и срезу приведены в таблице 3.3, расчетные сопротивления – в таблице 3.4.

Значения начального модуля упругости Е b при сжатии и растяжении для газобетонов с влажностью 10±2% (по массе) принимаются по таблице 3.5.

При соответствующем экспериментально обосновании допускается учитывать влияние не только класса газобетона про прочности и его марки по плотности, но и состава и вида вяжущего, а также условий изготовления и твердения газобетона, при этом допускается принимать другие значения Е b .

Коэффициент линейной температурной деформации газобетонов а bt при изменениях температуры от минус 90 о С до плюс 50 о С установлен равным а bt =8,0*10 -5о С -1 .

При наличии данных о минералогическом составе цемента и заполнителей, рецептуре смеси, влажности газобетона и т.д. разрешается принимать другие значения а bt , обоснованные экспериментально.

Начальный коэффициент поперечной деформации газобетонов (коэффициент Пуассона) V принимается равным 0,2, а модуль сдвига газобетонов G – равным 0,4 соответствующих значений Е b , указанных в таблице 3.5.

Усадка при высыхании газобетонов, определяемая по ГОСТ 25484 (приложение 2), не должна превышать 0,5 мм/м.

Коэффициенты теплопроводности и паропроницаемости газобетонов приведены в таблице 3.6.

Отпускная влажность изделий и конструкций не должна превышать (% по массе):

· 25 – для газобетонов, изготовленных на основе песка;

· 30 – для газобетонов, изготовленных на основе сланцевой золы;

· 35 - для газобетонов, изготовленных на основе кислой золы-уноса теплоэлектростанций.

Показатели таблицы 4.7 для конструкций конкретного производства и режима эксплуатации могут быть уточнены в экспериментальном порядке на основе натурных испытаний с 90%-ной обеспеченностью (приложение В).

Таблица 3.2 – Показатели классов по прочности и марок по морозостойкости для разных марок ячеистых бетонов по плотности.

Читайте также: