Коэффициент линейного температурного удлинения бетона гост

Обновлено: 28.04.2024

Коэффициенты линейного расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К-1).

В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.

Из указанных строительных материалов наиболее низким коэффициентом теплового линейного расширения обладает клинкерный кирпич (его КТЛР равен 3,5·10-6 1/град), а также древесина, штукатурки, стеновой кирпич и базальт. Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь. Например, коэффициент линейного расширения алюминия равен 24·10-6 1/град, что в 2 раза больше, чем у стали.

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.

Чтобы вычислить увеличение линейных размеров материала за счет теплового расширения, необходимо умножить значение температурного коэффициента линейного расширения на линейный размер материала и на разность температур в градусах Цельсия или Кельвина. Например, стеновой кирпич (КТЛР= 0,000006 град-1) длиной 240 мм при нагревании на 100 градусов удлинится на 0,144 мм.


По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Источник: В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Усадка и набухание бетона.

Изменение размера бетонных конструкций из-за изменения влажности бетона это усадка и набухание. Происходит даже при неизменной температуре.

Усадка бетона имеет довольно сложную природу, но факт в том, что при твердении бетона на воздухе - при высыхании он будет иметь усадку порядка 0,3 мм на каждый метр линейного размера. Чем больше была доля цемента в растворе, тем выше усадка. При большой толщине бетона он высохнет снаружи, а внутри - еще нет, что приводит к появлению внутренних напряжений и дефектам.

Обратный процесс - набухание сухого бетона под действием влаги характеризует та-же величина 0,3 мм/м. Чем больше была доля цемента в растворе, тем выше набухание.

Поэтому, даже для работы бетонной конструкции в условиях постоянной температуры необходимо преусматривать усадочные швы.

Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Изменение линейного размера бетона под действием температуры характеризуется линейным коэффициентом теплового (температурного) расширения. Характерной величиной коэффициента для бетона является 0,00001 (°С)-1, следовательно, при изменении температуры на 80 °С (-40/+40 °С) расширение достигает примерно 0,8 мм/м. Таким образом, в любой бетонной конструкции необходимы температурные швы.

Температурно усадочный шов в РФ уж никак не может быть менее 1,1 мм на метр линейного размера (0,3 мм - усадка, 0,8 - температурный), в СНИПах - величины выше и они, конечно, обязательны, когда обязательны. Имейте в виду, что температурные колебания более 80 °С почти наверняка вызовут растрескивание бетона с жестким наполнителем из-за разницы в тепловом раширении раствора и наполнителя.

Теплопроводность монолитного бетона в воздушно-сухом состоянии 1,35 Вт/(м*°С) = 1,5 ккал/(ч*м*°С). Высокая теплопроводность тяжелого бетона требует обязательного утепления наружных бетонных стен.

Теплопроводность пористых бетонов - от 0,35 до 0,7 Вт/(м*°С) = 0,3-0,6 ккал/(ч*м*°С), но при огромном снижении прочности.

Теплоемкость удельная тяжелого и пористых бетонов в сухом состоянии - порядка 1 кДж/(кг*°С) = 0,2 ккал/(кг °С)

Теплоемкость объемная тяжелого бетона - порядка 2,5 кДж/(м3*К) а пористых - зависит от плотности.

Теплоемкость удельная бетонной смеси (незастывшей) сотавляет порядка 1,5 кДж/(кг*°С) = 0,3 ккал/(кг °С), но помните - смесь легче тяжелого бетона и тяжелее пористого.

Теплоемкость бетона Коэффициент расширения бетона


При строительстве домов с использованием бетона, всегда производятся расчеты, так вот для этого обязательно нужно знать удельную теплоемкость бетона. Удельная теплоемкость или просто теплоемкость бетона, очень важна и без нее не обойтись, в строительстве, когда например рассчитывается теплопроводность конструкции, для того что определить расходы на ускорение твердения строения из бетона.

Теплоемкость бетона — это количество тепла, которое нужно передать бетону, для того что бы его температура изменилась, на одну единицу.

Связанные статьи: Преимущества пенобетона

Коэффициент расширения бетона

Меняющийся размер бетона, из за влияния температуры, обозначается коэффициентом расширения бетона. Размер этого коэффициента расширения бетона равен 0.00001 (ºС)-1, а это означает, что если температура изменится на 80 ºС, то расширение будет около 0.8 мм/м. Получается, что для любой бетонной постройки требуются температурные швы.

Температурно усадочные швы

Температурно усадочные швы, в России должны быть начиная от 1.1 мм на 1м, делая вывод из расчета 0.3 мм — это усадка + 0.8 — температурный коэффициент. В строительных нормах и правилах (СНИП), размеры больше, так же стоит учитывать и то, что изменения температур порядка 80 ºС и больше, вызывают трещины в бетоне, который имеет жесткий наполнитель внутри, потому что существует разница коэффициентов расширения раствора и внутреннего наполнителя.

  • Дома из пенобетонных блоков
  • Сколько цемента в кубе бетона

Теплоемкости бетонов

Теплопроводность монолитных бетонов при условии что он воздушно-сухой составляет порядка 1.35 Bт/(m*ºC) = 1.5 ккал/(ч*м*ºС). Высокие характеристики теплопроводности такого тяжелого бетона, заставляют обязательно использовать утепление наружных стен из монолитного бетона.

Теплопроводность пористого бетона и его разновидностей — составляет порядка 0.35 — 0.75 Bт/(m*ºC)= 0.3-0.6 ккал/(ч*m*ºC), учитывайте, что прочность таких бетонов значительно ниже.

Удельная теплоемкость тяжелых и пористых бетонов (сухих) — около 1кДж/(кг*ºС) = 0.2 ккал/(кг*ºC)

Объемная теплоемкость тяжелых бетонов — около 2.5 кДж/(м3*К), пористых же зависит и изменятся от их плотности.

Смотрите так же: Керамзитобетон состав и пропорции

Удельная теплоемкость бетонной смеси (жидкой)- около 1.5 кДж/(кг*ºC) = 0.3 kkal/(kg*ºC), не забывайте, что такая смесь легче, чем тяжелый бетон и тяжелее чем пористый.

  1. Значит, теплоемкость бетона чаще всего от 0.17 и до 0.22 ккал/кг. Как и теплоемкость у многих каменных материалов.
  2. Становится понятно, почему дерево теплое, а бетон холодный, все из за низкой теплоемкости бетона. Теплопроводность дерева 0.6-0.7, что почти в 3 раза больше.
  3. Коэффициент расширения бетона — показывает изменение бетона. Для бетона он равняется 10*10^-6. Почти как и у коэффициента расширения стали (в зависимости от марки они так же изменяются), в связи с чем железобетонные конструкции очень распространены.


Температурный коэффициент линейного расширения

Коэффициент линейного теплового расширения

Примечание: источниками справочных данных являются публикации в Интернете, поэтому они не могут считаться «официальными» и «абсолютно точными». Как правило, в Интернет справочниках не приводятся ссылки на научные работы, являющиеся основой опубликованных данных. Мы стараемся брать информацию из наиболее надежных научных сайтов. Однако если кого-то интересуют ссылки на эксперименты, советуем произвести самостоятельно углубленный поиск в Интернете. Будем признательны за любые комментарии к нашим справочным таблицам, а особенно за уточнения существующей информации или дополнение справочных данных.

Методы определения деформаций усадки и ползучести

Concretes. Methods of shrinkage and creep flow determination

Дата введения 2021-06-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Структурным подразделением АО "НИЦ "Строительство" Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ им.А.А.Гвоздева) при участии АО "ВНИИГ им.Б.Е.Веденеева"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 октября 2020 г. N 134-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

ЗАО "Национальный орган по стандартизации и метрологии" Республики Армения

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 декабря 2020 г. N 1347-ст межгосударственный стандарт ГОСТ 24544-2020 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2021 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт распространяется на все виды цементных, а также силикатных бетонов, применяемых во всех областях строительства, и устанавливает методы определения деформаций усадки и ползучести.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 310.2 Цементы. Методы определения тонкости помола

ГОСТ 310.4 Цементы. Методы определения предела прочности при изгибе и сжатии

ГОСТ 5382 Цементы и материалы цементного производства. Методы химического анализа

ГОСТ 5632 Нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки

ГОСТ 8269.0 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний

ГОСТ 8735 Песок для строительных работ. Методы испытаний

ГОСТ 9758 Заполнители пористые неорганические для строительных работ. Методы испытаний

ГОСТ 10180 Методы определения прочности по контрольным образцам

ГОСТ 10181 Смеси бетонные. Методы испытаний

ГОСТ 10354 Пленка полиэтиленовая. Технические условия

ГОСТ 12730.1 Бетоны. Методы определения плотности

ГОСТ 12730.2 Бетоны. Метод определения влажности

ГОСТ 23683 Парафины нефтяные твердые. Технические условия

ГОСТ 24452 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона

ГОСТ 31108 Цементы общестроительные. Технические условия

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:


3.1 линейная относительная деформация усадки : Относительное уменьшение линейных размеров ненагруженного образца во времени, вызванное гидратацией цемента (контракцией), уменьшением влажности цементного камня и его карбонизацией.


3.2 линейная относительная деформация усадки при нагреве : Относительное уменьшение линейных размеров ненагруженного образца, вызванное испарением из него влаги при нагреве.


3.3 линейная относительная деформация температурного расширения : Относительное увеличение размеров образца, вызванное температурным расширением при нагреве.


3.4 линейная относительная температурно-усадочная деформация : Относительное изменение линейных размеров образца, вызванное совместным действием температуры и усадки бетона.


3.5 линейная относительная деформация ползучести : Относительное изменение линейных размеров образца во времени, вызванное действием постоянной внешней нагрузки за вычетом деформаций усадки.

4 Методы определения деформаций усадки и ползучести при сжатии

В настоящем разделе и приложениях А, Б, В и Г приведены методы испытаний при стандартном температурном режиме для определения деформаций усадки и ползучести путем измерения их в направлении продольной и поперечной осей (при необходимости такой задачи) незагруженного образца и образца, загруженного постоянной по величине осевой сжимающей нагрузкой.

Методы определения деформаций температурной усадки и ползучести бетона при нагреве приведены в приложении Д.

Методика определения деформаций ползучести при изгибе (упрощенная методика испытания на ползучесть) и вычисление основных деформационных характеристик приведены в приложении Е.

4.1 Испытательные стенды, приборы, измерительное оборудование и материалы

4.1.1 Оборудование и приборы для проведения испытаний должны соответствовать требованиям настоящего стандарта, быть повереными* и аттестоваными* в установленном порядке.

* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

4.1.2 Для определения деформаций усадки применяют устройства, схемы которых показаны на рисунках 1 и 2. Устройство, схема которого приведена на рисунке 1, предназначено для измерения деформаций усадки образцов с поперечным сечением размерами 40х40 мм.

Образцы с размерами поперечного сечения более 40х40 мм испытывают с приклеенными по торцам металлическими пластинами согласно 4.3.2 (рисунок 2) без дополнительных испытательных стендов.

4.1.3 Для определения деформаций ползучести применяют пневмогидравлические, пружинно-гидравлические, рычажные или пружинные испытательные устройства. В установку допускается устанавливать одновременно до трех образцов вертикально друг на друга (в виде колонны), как показано на рисунке 3.



1 - стойка; 2 - кронштейн; 3 - конусообразный выступ; 4 - нижняя опора; 5 - индикатор; 6 - образец; 7 - репер; а - размер стороны поперечного сечения образца; H - высота образца; - база измерений.

Рисунок 1 - Схема устройства для определения деформаций усадки образцов с размерами поперечного сечения 40х40 мм



1 - индикатор часового типа; 2 - рамка для крепления индикаторов; 3 - качающаяся штанга; 4 - образец; 5 - металлические пластинки; - база измерения

Рисунок 2 - Схема устройства для определения деформаций усадки образцов с размерами поперечного сечения более 40х40 мм

4.1.4 При установке нескольких образцов в колонну соосность передачи нагрузки обеспечивается через металлические шарики, устанавливаемые в специальные центрированные выточки в стальных пластинах в соответствии с 4.1.7. Для предотвращения потери устойчивости колонны необходимо использовать дополнительные страховочные устройства от выстреливания шарика. Схема такого устройства приведена на рисунке 3 (справа). Страховочные устройства не должны препятствовать свободному деформированию образцов.



1 - динамометр; 2 - гидравлический домкрат; 3 - стоика (стержень с резьбой); 4 - стальной шар; 5 - стальная пластина, приклеиваемая к образцу; 6 - бетонные образцы; 7 - пружины; 8 - стальная опорная плита; 9 - гайки; 10 - стальные страховочные элементы; - база измерения

Рисунок 3 - Схема устройства установки для определения деформаций ползучести при испытании нескольких образцов в колонне

4.1.5 Принципиальная схема устройства пружинной установки на три образца приведена на рисунке 3 (слева). Схемы пневмогидравлических, пружинно-гидравлических установок и схема пружинной установки на один образец, а также порядок установки в них образцов принимают в соответствии с приложением А. Схема рычажного устройства для определения ползучести при нагреве приведена на рисунке Д.2 (приложение Д).

4.1.6 Для измерения деформаций следует использовать измерительные приборы и приспособления для их крепления, применяемые для определения призменной прочности, модуля упругости и коэффициента Пуассона по ГОСТ 24452 (на рисунке 2 показано оборудование для измерения продольных деформаций; при определении поперечных деформаций устанавливаются дополнительные рамки и индикаторы). Допускается использовать другое поверенное измерительное оборудование - стационарно смонтированное (тензодатчики) или съемное (точки для снятия показаний при использовании такого оборудования показаны на рисунке 3 слева), позволяющее определять деформации ползучести с необходимой точностью и достоверностью.

4.1.7 При определении деформаций ползучести сжимающее усилие на образец следует передавать через металлические прокладки толщиной 35-37 мм, размеры которых в плане должны быть не менее размеров поперечного сечения образца. Твердость прокладок и шероховатость их рабочих поверхностей должны удовлетворять требованиям ГОСТ 10180.

4.1.8 Для определения линейных размеров, массы образцов и плотности бетона следует применять средства измерений и оборудование по ГОСТ 10180 и ГОСТ 12730.1, а для определения влажности бетона - по ГОСТ 12730.2.

4.1.9 Насыщение образцов водой или нефтепродуктами следует производить с применением оборудования по ГОСТ 24452.

4.1.10 Для измерения температуры и определения влажности окружающей среды в процессе испытаний следует применять термометры (термографы) и психрометры (гигрографы).

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы определения деформаций
усадки и ползучести

Concretes. Methods of shrinkage and
creep flow determination

Дата введения 1982-01-01

УТВЕРЖДЕН Постановлением Государственного комитета СССР по делам строительства от 31 декабря 1980 г. N 237.

Настоящий стандарт распространяется на все виды цементных, а также силикатных бетонов, применяемых в промышленном, энергетическом, транспортном, водохозяйственном, жилищно-гражданском и сельскохозяйственном строительстве, в том числе на бетоны, подвергающиеся в процессе эксплуатации нагреву, насыщению водой или нефтепродуктами.

Стандарт устанавливает методы испытаний для определения деформации усадки путем измерения их в направлении продольной оси незагруженного образца и деформаций ползучести путем измерения их в направлении продольной оси образца, загруженного постоянной по величине осевой сжимающей нагрузкой.

Предусмотренные настоящим стандартом испытания проводят только на образцах, специально изготовленных из бетонной смеси. Образцы, выпиленные или вырубленные из элементов конструкций при испытании бетона на усадку и ползучесть не применяют.

В стандарте учтены рекомендации СЭВ по стандартизации PC 279-65 в части методов определения усадки и ползучести, а также рекомендации РИЛЕМ Р12 в части методов определения ползучести.

1. МЕТОДЫ ОТБОРА И ИЗГОТОВЛЕНИЯ ОБРАЗЦОВ

1.1. Определение деформаций усадки и ползучести должно проводиться на призматических образцах размерами 7х70х280, 100х100х400, 150х150х600, 200х200х800 мм не гидроизолированных от влагообмена с окружающей средой. В качестве базового образца следует принимать призму размерами 150х150х600 мм.

Для определения деформаций усадки ячеистого бетона допускается применять призмы размерами 40х40х160 мм.

1.2. Размеры образцов для определения деформаций усадки и ползучести выбирают в зависимости от наибольшей крупности заполнителя в пробе бетонной смеси в соответствии с требованиями ГОСТ 10180-78.

1.3. Образцы изготовляют отдельными сериями.

Деформации ползучести определяют одновременно с определением деформаций усадки, при этом перед испытаниями определяют прочность бетона на сжатие по ГОСТ 10180-78 и призменную прочность по ГОСТ 24452-80.

Каждая серия должна состоять из 9 образцов призм, из которых 3 образца предназначают для определения призменной прочности, 3 образца - для определения деформации усадки и 3 образца - для определения деформаций ползучести, а также 3 образцов-кубов с ребрами размерами, соответствующими размеру рабочего сечения призмы.

При определении только деформаций усадки серия должна состоять не менее чем из 3 образцов призм.

1.4. Изготовление и хранение образцов до распалубливания должно соответствовать требованиям ГОСТ 10180-78.

1.5. После распалубливания все образцы одной серии должны (включая образцы-кубы) храниться вплоть до начала испытаний в одинаковых, как правило, нормальных температурно-влажностных условиях согласно ГОСТ 10180-78.

При определении только усадки бетона образцы до начала испытаний должны храниться во влажных условиях, исключающих возможность испарения влаги из бетона.

1.6. Образцы из ячеистого бетона, изготовленные в соответствии с требованиями ГОСТ 10180-78, перед испытанием на усадку и ползучесть должны быть погружены в воду и храниться в ней в течение 3 сут в горизонтальном положении.

1.7. Число образцов в серии и условия их хранения при определении деформаций температурной усадки и ползучести при нагреве принимают в соответствии с обязательным приложением 1.

2. ОБОРУДОВАНИЕ, ПРИБОРЫ И МАТЕРИАЛЫ

2.1. Оборудование и приборы для проведения испытаний должны отвечать требованиям настоящего стандарта, быть поверены и аттестованы в установленном порядке в соответствии с ГОСТ 8.001-80 и МУ 8.7-77.

2.2. Для определения деформаций усадки применяют устройства, схемы которых показаны на черт.1 и 2. Устройство, схема которого приведена на черт.1, предназначено для измерения деформаций усадки образцов с поперечным сечением размерами 40х40 мм.

Схема устройства для определения деформаций усадки
образцов с размерами поперечного сечения 40х40 мм


2 - кронштейн; 3 - конусообразный выступ; 4 - нижняя опора:
5 - индикатор; 6 - образец; 7 - репер;
а - размер стороны поперечного сечения образца; Н - высота образца;
- база измерений.

Устройство, схема которого приведена на черт.2, предназначено для измерения деформаций усадки образцов с сечением размерами более 40х40 мм и состоит из уложенной на опоры 7 плоской сварной сетки 6, изготовленной из гладких арматурных стержней с ячейками размером не более 20 мм.

2.3. Для определения деформаций ползучести применяют пневмогидравлические, пружинно-гидравлические или пружинные испытательные устройства, а также рычажные, приведенные в обязательном приложении 1.

Пневмогидравлическое устройство, схема которого приведена на черт.3, включает следующие основные узлы: плоскую раму, гидродомкрат с манометром и два баллона с инертным газом, в которых создают избыточное и расчетное давление.

Схема устройства для определения деформаций усадки
образцов с размерами поперечного сечения более 40х40 мм


1 - индикатор часового типа; 2 - рамка для крепления индикаторов; 3 - качающаяся штанга;
4 - образец; 5 - металлические пластинки по торцам образца; 6 - плоская сварная сетка; 7 -опора.


Схема пневмогидравлического устройства
для определения деформаций ползучести


2 - верхняя опорная плита; 3 - траверса; 4 - баллон с инертным газом (с избыточным
давлением по отношению к расчетному); 5 - баллон с инертным газом при расчетном давлении;
6 - гидравлический домкрат с шарнирной опорной плитой; 7 - вентиль баллона; 8 - входной вентиль;
9 - манометр образцовый; 10 - образец.

Пружинно-гидравлическое испытательное устройство, схема которого приведена на черт.4, состоит из пространственной рамы, снабженной в верхней ее части гидравлическим мембранным домкратом 2, а в нижней части - пакетом тарельчатых пружин 7 и регулировочными винтами 6. Контроль передаваемого на образец усилия осуществляют с помощью образцового манометра 1 гидравлического домкрата 2.

Схема пружинно-гидравлического устройства
для определения деформаций ползучести


1 - образцовый манометр; 2 - гидравлический домкрат плунжерного типа сгибкой диафрагмой;
3 - поршень домкрата; 4 - стойки; 5 - опорная плита;
6 - регулирующие винты; 7 - тарельчатые пружины; 8 - образец.

Пружинное испытательное устройство, схема которого приведена на черт.5, состоит из стоек 1, верхней траверсы 2 и постамента 7, образующих жесткую замкнутую раму, внутри которой размещены испытываемый образец 9, спиральные пружины 8 и установлен переносной гидравлический домкрат 6. Средняя 3 и нижняя 4 подвижные траверсы служат для передачи усилия, установочный винт 10 фиксирует образец до начала его загружения. С помощью домкрата 6 создают сжатие предварительно протарированной спиральной пружины и заданное усилие в образце, после чего положение нижней траверсы фиксируют гайками 5, а домкрат 6 освобождают и переносят на следующую установку.

Требуемая величина усилия, передаваемого на образец, обеспечивается выбором количества пружин 8 и гидравлическою домкрата соответствующей мощности.

2.4. Методы определения деформаций температурной усадки и ползучести при нагреве приведены в обязательном приложении 1; оборудование для нагрева образцов принимают в соответствии с ГОСТ 24452-80.

Схема пружинного устройства для определения
деформаций ползучести


2 - верхняя траверса; 3 - средняя траверса; 4 - нижняя траверса;
5 - гайки; 6 - гидравлический домкрат; 7 - постамент; 8 - спиральная пружина;
9 - бетонный образец; 10 - установочный винт.

2.5. Для измерения деформаций следует использовать измерительные приборы и приспособления для их крепления, применяемые для определения призменной прочности, модуля упругости и коэффициента Пуассона по ГОСТ 24452-80.

2.6. При определении деформаций ползучести сжимающее усилие на образец следует передавать через металлические прокладки толщиной 35-37 мм, размеры которых в плане равны размеру поперечного сечения образца. Твердость прокладок и шероховатость их рабочих поверхностей должны удовлетворять требованиям ГОСТ 10180-78.

2.7. Для определения линейных размеров, массы образцов и плотности бетона следует применять средства измерений и оборудование по ГОСТ 10180-78 и ГОСТ 12730.1-78, а для определения влажности бетона - по ГОСТ 12730.2-78.

2.8. Для насыщения образцов водой или нефтепродуктами следует применять оборудование по ГОСТ 24452-80.

2.9. Для измерения температуры и определения влажности окружающей среды в процессе испытаний следует применять серийно выпускаемые термометры (термографы) и психрометры (гигрографы).

2.10. Для гидроизоляции образцов рекомендуется применять полиэтиленовую пленку с липким слоем по ГОСТ 10354-82 и парафин по ГОСТ 23683-79.

Допускается применение других гидроизоляционных материалов, надежно исключающих массообмен между образцом и окружающей средой.

3. ПОДГОТОВКА К ИСПЫТАНИЯМ

3.1. Подготовку образцов к испытаниям следует начинать с их внешнего осмотра и определения линейных размеров, допускаемые отклонения которых от номинальных размеров должны удовлетворять требованиям ГОСТ 10180-78.

3.2. Торцевые поверхности всех образцов, предназначенных для определения ползучести и усадки, должны быть закрыты металлическими пластинами толщиной 4-5 мм, наклеиваемыми с помощью быстрополимеризующихся клеев.

К торцевым поверхностям образцов размерами 40х40х160 мм, подвергаемых испытанию на усадку, приклеивают реперы в соответствии со схемой, показанной на черт.1.

Реперы изготавливают из инвара. Диаметр основания репера 7 должен быть не более 20 мм, а высота не более 15 мм.

Приклеиваемую поверхность репера обезжиривают органическим растворителем. Репер нагревают до температуры 50-60 °С и прижимают к образцу в центре торцевой грани, на которую предварительно наносят 2-3 капли клея.

Рекомендуется применять быстрополимеризующийся клей следующего состава (по массе):

эпоксидная смола по ГОСТ 10587-84 . 80 частей

полиэтиленполиамин . 3 части

(Измененная редакция, Изм. N 1).

3.3. На боковых поверхностях образцов размечают базу измерения продольных деформаций, устанавливают крепежные приспособления и измерительные приборы в соответствии с требованиями ГОСТ 24452-80.

3.4. Насыщение (пропитка) образцов водой или нефтепродуктами следует производить по ГОСТ 24452-80.

3.5. Для предотвращения испарения влаги или летучих фракций нефтепродуктов из образцов, пропитанных водой или нефтепродуктами согласно п.3.4, их боковую поверхность следует гидроизолировать внахлест двумя слоями полиэтиленовой пленки с липким слоем с последующим нанесением на нее расплавленного парафина слоем 2-3 мм. Гидроизоляцию торцевых поверхностей образцов производят согласно п.3.2.

3.6. Образцы для определения деформаций температурной усадки и деформаций ползучести при нагреве следует подготавливать в соответствии с требованиями ГОСТ 24452-80.

3.7. Не более чем за сутки до испытания образцов на ползучесть следует определить плотность бетона этих образцов по ГОСТ 12730.1-78, а также влажность бетона по ГОСТ 12730.2-78 на образцах, предварительно испытанных при определении призменной прочности.

3.8. Результаты измерений по пп.3.1 и 3.7 заносят в титульный лист журнала испытаний при определении деформаций усадки и ползучести по форме, приведенной в обязательном приложении 2.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЙ

4.1. Испытания для определения деформаций усадки и ползучести следует проводить в помещении или в климатической камере, в которых постоянно поддерживают температуру (20±2) °С и относительную влажность воздуха (60±5)%. Попадание прямых солнечных лучей на образцы не допускается.

4.2. Измерение деформаций только усадки следует начинать не позже чем через 4 ч после распалубливания образцов, а образцов из ячеистого бетона - после насыщения водой по п.1.6.

ГОСТ Р 58895-2020

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

БЕТОНЫ ХИМИЧЕСКИ СТОЙКИЕ

Chemically resistant concretes. Specifications

Дата введения 2021-01-01

Предисловие

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ им.А.А.Гвоздева) - структурным подразделением Акционерного общества "Научно-исследовательский центр "Строительство" (АО "НИЦ "Строительство")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

4 ВВЕДЕН ВПЕРВЫЕ

1 Область применения

Настоящий стандарт распространяется на химически стойкие бетоны, приготовленные на основе фурановых, фурано-эпоксидных, полиэфирных, карбамидных, акриловых синтетических смол (полимербетоны), а также жидкого натриевого или калиевого стекла с полимерной добавкой (полимерсиликатные бетоны), и предназначенные для изготовления конструкций и изделий (далее - изделия), работающих в условиях воздействия агрессивных сред по ГОСТ 31384 следующих видов:

- соли и основания;

Стандарт устанавливает технические требования к химически стойким бетонам и материалам для их изготовления, а также методам контроля технических характеристик этих бетонов.

Требования настоящего стандарта должны соблюдаться при разработке стандартов и технических условий на изделия из химически стойких бетонов, а также нормативных документов технической, проектной и технологической документации.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы:

ГОСТ 4.212 Система показателей качества продукции. Строительство. Бетоны. Номенклатура показателей

ГОСТ 12.1.044 (ИСО 4589-84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 12.4.011 Система стандартов безопасности труда. Средства защиты работающих. Общие требования и классификация

ГОСТ 12.4.021 Система стандартов безопасности труда. Системы вентиляционные. Общие требования

ГОСТ 310.2 Цементы. Методы определения тонкости помола

ГОСТ 473.1 Изделия химически стойкие и термостойкие керамические. Метод определения кислотостойкости

ГОСТ 5822 Реактивы. Анилин гидрохлорид. Технические условия

ГОСТ 7076 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме

ГОСТ 7473 Смеси бетонные. Технические условия

ГОСТ 8267 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 8736 Песок для строительных работ. Технические условия

ГОСТ 9077 Кварц молотый пылевидный. Общие технические условия

ГОСТ 10060 Бетоны. Методы определения морозостойкости

ГОСТ 10106 Алкамон ОС-2. Технические условия

ГОСТ 10180 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181 Смеси бетонные. Методы испытаний

ГОСТ 10587 Смолы эпоксидно-диановые неотвержденные. Технические условия

ГОСТ 12730.1 Бетоны. Методы определения плотности

ГОСТ 12730.5 Бетоны. Методы определения водонепроницаемости

ГОСТ 13015 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 13078 Стекло натриевое жидкое. Технические условия

ГОСТ 13087 Бетоны. Методы определения истираемости

ГОСТ 13531 Бетоноукладчики для заводов сборного железобетона. Технические условия

ГОСТ 14231 Смолы карбамидоформальдегидные. Технические условия

ГОСТ 14888 Бензоила перекись техническая. Технические условия

ГОСТ 15173 (СТ СЭВ 2899-81) Пластмассы. Метод определения среднего коэффициента линейного теплового расширения

ГОСТ 17022 Графит. Типы, марки и общие технические требования

ГОСТ 17623 Бетоны. Радиоизотопный метод определения средней плотности

ГОСТ 17624 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 18105 Бетоны. Правила контроля и оценки прочности

ГОСТ 20282 Полистирол общего назначения. Технические условия

ГОСТ 20370 Эфир метиловый метакриловой кислоты. Технические условия

ГОСТ 20907 Смолы фенолоформальдегидные жидкие. Технические условия

ГОСТ 21341 Пластмассы и эбонит. Метод определения теплостойкости по Мартенсу

ГОСТ 22372 Материалы диэлектрические. Методы определения диэлектрической проницаемости и тангенса угла диэлектрических потерь в диапазоне частот от 100 до 5·10 Гц

ГОСТ 22690 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 22783 Бетоны. Метод ускоренного определения прочности на сжатие

ГОСТ 23683 Парафины нефтяные твердые. Технические условия

ГОСТ 24316 Бетоны. Метод определения тепловыделения при твердении

ГОСТ 24452 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона

ГОСТ 24544 Бетоны. Методы определения деформации усадки и ползучести

ГОСТ 24545 Бетоны. Методы испытаний на выносливость

ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования

ГОСТ 25781 Формы стальные для изготовления железобетонных изделий. Технические условия

ГОСТ 26633 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 26871 Материалы вяжущие гипсовые. Правила приемки. Упаковка, маркировка, транспортирование и хранение

ГОСТ 27952 Смолы полиэфирные ненасыщенные. Технические условия

ГОСТ 28570 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

ГОСТ 29167 Бетоны. Методы определения характеристик трещиностойкости (вязкости разрушения) при статическом нагружении

ГОСТ 30108 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов

ГОСТ 30124 Весы и весовые дозаторы непрерывного действия. Общие технические требования

ГОСТ 31384 Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования

ГОСТ 31914 Бетоны высокопрочные тяжелые и мелкозернистые для монолитных конструкций. Правила контроля и оценки качества

ГОСТ 32496 Заполнители пористые для легких бетонов. Технические условия

ГОСТ Р 58896 Бетоны химически стойкие. Методы испытаний

ГОСТ Р 51568 Сита лабораторные из металлической проволочной сетки. Технические условия

СП 2.13130 Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов (сводов правил) в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии свода правил целесообразно проверить в Федеральном информационном фонде стандартов.

3 Термины, определения и сокращения

3.1 Термины и определения

В настоящем стандарте применены термины по ГОСТ 25192-2012 (приложение А), ГОСТ 31384, а также следующие термины с соответствующими определениями:

3.1.1 входной контроль: Контроль продукции поставщика, поступающей к потребителю или заказчику и предназначаемой для использования при изготовлении, ремонте или эксплуатации изделий.

3.1.2 выборочный контроль: Контроль партии продукции путем проверки каждой единицы продукции, входящей в одну или несколько специально отобранных выборок из этой партии.



Коэффициенты линейного расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К-1).
Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.


По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Источник: В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.







Как регулировать?

Значение зависит от таких факторов:

  • температуры;
  • класс;
  • наполнителя.

Заполнитель и цемент имеют разный температурный коэффициент. Потому при нагревании и расширении может происходить деформация и появляются трещины. Для того чтобы это не произошло применяют специальные швы. Кроме этого, увеличивают армирование строительной конструкции. Бетон делят на отдельные блоки. Но эти методы дорогостоящие и не всегда эффективны. Потому для результата используют напрягающие и расширяющие вяжущие.

Теплоемкость бетона Коэффициент расширения бетона


Теплоемкость бетона — это количество тепла, которое нужно передать бетону, для того что бы его температура изменилась, на одну единицу.

Связанные статьи: Преимущества пенобетона

Коэффициент расширения бетона

Температурно усадочные швы

  • Дома из пенобетонных блоков
  • Сколько цемента в кубе бетона

Теплоемкости бетонов

Теплопроводность пористого бетона и его разновидностей — составляет порядка 0.35 — 0.75 Bт/(m*ºC)= 0.3-0.6 ккал/(ч*m*ºC), учитывайте, что прочность таких бетонов значительно ниже.

Удельная теплоемкость тяжелых и пористых бетонов (сухих) — около 1кДж/(кг*ºС) = 0.2 ккал/(кг*ºC)

Объемная теплоемкость тяжелых бетонов — около 2.5 кДж/(м3*К), пористых же зависит и изменятся от их плотности.

Смотрите так же: Керамзитобетон состав и пропорции

Кавабанга! Вес керамзитобетонного блока 400х200х200 — таблица

Удельная теплоемкость бетонной смеси (жидкой)- около 1.5 кДж/(кг*ºC) = 0.3 kkal/(kg*ºC), не забывайте, что такая смесь легче, чем тяжелый бетон и тяжелее чем пористый.


Бетон расширяющийся: свойства, сферы применения, нюансы изготовления


Бетон расширяющийся (ГОСТ 32803-2014) — это материал, содержащий в своем составе напрягающий цемент или специальные расширяющие добавки для формирования предварительного напряжения конструкций в период твердения смесей.

В результате таких условий схватывания раствора, удается получить расширяющийся бетон, обладающий повышенной плотностью, водонепроницаемостью и долговечностью (см. видео в этой статье).











Ленточный

Наиболее популярным основанием для возведения частного дома считают ленточный фундамент. Он представляет собой своего рода замкнутую ленту из бетона, проходящую под всеми несущими стенами здания.


Для средней полосы, при возведении небольших частных домов и бань, достаточно выполнить заглубление в пределах 1500 мм с высотой наземной части до 400 мм.

Формула расчета выглядит так:

V=h*b*l, где:

  • V – объем раствора в м 3 ;
  • h – высота в м;
  • b – ширина в м;
  • l – длина ленты в м.

В итоге получаем более точную формулу расчета объема бетона для ленточного фундамента:

V=h*b*l + 0,02*(h*b*l)

Полученное значение округляется до целого числа. Для наших примеров уточненное вычисление будет выглядеть так: для дома 6х6 V=24+0,02*24=24,48 (25) м 3 , для дома 10х10 V=48+0,02*48=48,96 (49) м 3 .

Приготовление расширяющихся смесей



Готовим смеси своими руками

Расширяющие и напрягающие бетоны при необходимости можно приготовить своими руками, в условиях строительной площадки.

Существует два основных способа для изготовления быстротвердеющих водонепроницаемых смесей:

  • с применением напрягающих и расширяющихся цементов;
  • с использованием специальных расширяющихся добавок на основе портландцемента.

Расход модифицированных цементов и пропорции по отношению к заполнителям, такие же, как и для приготовления обычного тяжелого бетона. Инструкция для приготовления расширяющихся смесей с использованием портландцемента для каждой добавки индивидуальна. Пропорции и порядок действий описаны на тыльной стороне упаковки продукта.

Столбчатый

Чтобы высчитать объем столбов с квадратным или прямоугольным сечением, нужно использовать следующую формулу:

V=a*b*l*n, где a и b – стороны сечения столба, l – длина столба, n – количество столбов в фундаменте.

Для вычисления объема бетона для заливки столбов с круглым сечением, понадобится формула нахождения площади круга: S=3,14*R*R, где R – радиус. Получаем формулу вычисления объема столбов с круглым сечением:

V=S*L*n

Для получения общего объема бетона, требуемого для заливки столбов и ростверка, необходимо сложить уже полученные показатели, не забывая про коэффициент погрешности в 2%.

Бетон расширяющийся: свойства, сферы применения, нюансы изготовления

Бетон расширяющийся (ГОСТ 32803-2014) — это материал, содержащий в своем составе напрягающий цемент или специальные расширяющие добавки для формирования предварительного напряжения конструкций в период твердения смесей.

В результате таких условий схватывания раствора, удается получить расширяющийся бетон, обладающий повышенной плотностью, водонепроницаемостью и долговечностью (см. видео в этой статье).

Коэффициенты линейного расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К -1 ).

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.


По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Кавабанга! Как рассчитать, сколько кубов бетона нужно на фундамент

Источник: В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.

Температурный показатель

Коэффициент можно найти в таблице, в которой даются средние значения. По табличным данным для бетона этот показатель равен 0,00001 (ºС)-1. Так, при 80 градусах увеличение будет 0,8 мм/м. Но такие табличные данные не являются довольно точными, так как во всех схемах предоставлены усредненные значения. Потому желательно самостоятельно измерять или рассчитывать показатели.



Данный показатель для каждого вида материала будет отличаться.

Коэффициент теплового расширения бетона

Теплоемкость

Под теплоемкостью бетона понимают количество тепла, которое необходимо передать материалу для изменения его температуры на одну единицу. Размер бетона, изменяющийся под воздействием температуры, называют коэффициентом температурного расширения.

Теплопроводность

Теплопроводность – одна из важнейших теплофизических характеристик. Высокая теплопроводность тяжелого бетона является его недостатком. Панели для наружных стен производят из тяжелого материала с включением внутреннего слоя утеплителя.

Расширяющиеся и напрягающие бетоны

Бетоны напрягающие — это смеси на основе напрягающих цементов, способные в начальной фазе твердения увеличиваться в объеме и растягивать находящуюся в непосредственном контакте арматуру, которая в результате таких процессов получает эффект самонапряжения (обжатия).

  • Причем, арматурные стержни растягиваются независимо от их направления и схемы расположения в структуре изделия, что способствует получению двухосного объемного самонапряжения конструкций.
  • Механизм действия расширяющихся материалов основан на создании контролируемого направленного кристаллообразования в период твердения цементного камня, что способствует регулированию процесса объемных деформаций в пластической структуре изделия.
  • Применение расширяющихся быстротвердеющих бетонов, благодаря регулируемому линейному расширению, позволяет значительно компенсировать последствия усадочных деформаций, повысить трещиностойкость и сроки эксплуатации зданий и сооружений.

Свойства

В практике существуют два основных вида расширяющихся материалов:

  • с нормируемой величиной обжатия;
  • с компенсированной усадкой, но с ненормируемым самонапряжением (обжатием).

Помимо этих категорий, можно выделить в отдельную группу расширяющиеся мелкозернистые смеси, применяемые для ремонтно-восстановительных работ.

Основные характеристики напрягающих бетонов (ГОСТ 32803-2014):

  1. Для тяжелого предусматривают следующие классы на сжатие: B20—B90; на растяжение — Bt0,8—Bt4,0.
  2. Для легкого: на сжатие — B10—B40; на растяжение — классы Bt0,8—3,2.
  3. С учетом величины напряжения, бетон классифицируют по следующим маркам: Sp0,6—4,0.

Подсказки: марки по самонапряжению Sp 0,6—1,0 относят к разряду бетонов с компенсированной усадкой, а классы Sp 1,2—4,0 к расширяющимся смесям с нормируемым обжатием.

  1. По морозостойкости F200—F
  2. По водонепроницаемости: тяжелые —W12—W20, легкие — W8—W
  3. Данный материал обладает высокой прочностью (40–70 Мпа). Причем, рост этого значения особенно интенсивно наблюдается в раннем возрасте (28 суток). По истечении трех месяцев прочность на растяжение—сжатие увеличивается на 30%, а по достижению 6 месяцев — на 40%.
  4. Отсутствует коррозия арматуры.
  5. Высокая сульфатостойкость.
  6. Газопроницаемость в 40 раз ниже в сравнении с тяжелыми бетонами на портландцементе.

Применение


Отмеченные свойства данного материала позволяют его эффективное применение как в монолитных, так и в сборных железобетонных конструкциях:

Коэффициент температурного расширения бетона

Коэффициент расширения бетона

Так как коэффициенты температурного расширения бетона и стали по величине очень близки, то температурные напряжения не нарушают монолитности железобетона. [c.28]

Температурный коэффициент линейного расширения бетонов [c.188]

В жаростойком железобетоне арматуру располагают в местах, где температура не превышает 350° С. При более высоких температурах температурное расширение арматуры больше, чем у бетона, [c.72]

Предел прочности, МПа, при. сжатии растяжении изгибе Адгезия к бетону, МПа Коэффициент линейного температурного расширения в пределах температур 40. 100 °С, ГС [c.92]

Примечание 1. Эмпирические формулы для вычисления температурного коэффициента линейного расширения бетонов в интервале температур от —30″ до 0°С ( ) и от О до +40°С ) я з вискиости от лажностк по объему т (%) и температуры Г °С следующее [c.189]

Расширяющиеся и напрягающие бетоны

Бетоны напрягающие — это смеси на основе напрягающих цементов, способные в начальной фазе твердения увеличиваться в объеме и растягивать находящуюся в непосредственном контакте арматуру, которая в результате таких процессов получает эффект самонапряжения (обжатия).

  • Причем, арматурные стержни растягиваются независимо от их направления и схемы расположения в структуре изделия, что способствует получению двухосного объемного самонапряжения конструкций.
  • Механизм действия расширяющихся материалов основан на создании контролируемого направленного кристаллообразования в период твердения цементного камня, что способствует регулированию процесса объемных деформаций в пластической структуре изделия.
  • Применение расширяющихся быстротвердеющих бетонов, благодаря регулируемому линейному расширению, позволяет значительно компенсировать последствия усадочных деформаций, повысить трещиностойкость и сроки эксплуатации зданий и сооружений.

Свойства

В практике существуют два основных вида расширяющихся материалов:

  • с нормируемой величиной обжатия;
  • с компенсированной усадкой, но с ненормируемым самонапряжением (обжатием).

Помимо этих категорий, можно выделить в отдельную группу расширяющиеся мелкозернистые смеси, применяемые для ремонтно-восстановительных работ.

Основные характеристики напрягающих бетонов (ГОСТ 32803-2014):

  1. Для тяжелого предусматривают следующие классы на сжатие: B20—B90; на растяжение — Bt0,8—Bt4,0.
  2. Для легкого: на сжатие — B10—B40; на растяжение — классы Bt0,8—3,2.
  3. С учетом величины напряжения, бетон классифицируют по следующим маркам: Sp0,6—4,0.

Подсказки: марки по самонапряжению Sp 0,6—1,0 относят к разряду бетонов с компенсированной усадкой, а классы Sp 1,2—4,0 к расширяющимся смесям с нормируемым обжатием.

  1. По морозостойкости F200—F
  2. По водонепроницаемости: тяжелые —W12—W20, легкие — W8—W
  3. Данный материал обладает высокой прочностью (40–70 Мпа). Причем, рост этого значения особенно интенсивно наблюдается в раннем возрасте (28 суток). По истечении трех месяцев прочность на растяжение—сжатие увеличивается на 30%, а по достижению 6 месяцев — на 40%.
  4. Отсутствует коррозия арматуры.
  5. Высокая сульфатостойкость.
  6. Газопроницаемость в 40 раз ниже в сравнении с тяжелыми бетонами на портландцементе.

Применение

Отмеченные свойства данного материала позволяют его эффективное применение как в монолитных, так и в сборных железобетонных конструкциях:

Читайте также: