Класс бетона по предельно допустимой температуре применения

Обновлено: 03.05.2024

3.6. Прочность бетона на сжатие для каждой требуемой температуры нагрева не выше указанной в табл. 7 определяют после режимов твердения и сушки в соответствии с табл. 6 и после нагрева в камерной печи в соответствии с п.3.4 в охлажденном состоянии.

Прочность бетона на сжатие в нагретом состоянии принимают равной прочности бетона после нагрева до температуры, указанной в табл. 7.

Прочность бетона на сжатие для несущих конструкций в нагретом состоянии (R(1t)) бетонов классов по предельно допустимым температурам, указанным в табл. 7, определяют по формуле

R1t = R1t (t2 - t) / (t2-t1) , (4)

где R(1t) - прочность бетона на сжатие после нагрева до температуры, указанной в табл. 7;

t - температура, при которой определяют прочность бетона на сжатие в нагретом состоянии, град.С;

t(1) - температура, указанная в табл. 7, при которой определяют прочность бетона на сжатие после нагрева, град.С;

t(2) - предельно допустимая температура применения.

Класс бетона по предельно допустимой температуре применения

Температура нагрева t(1), град.С

3.7. В журнал заносят результаты испытаний образцов бетона по ГОСТ 10180, а также показатели:

вид и класс бетона по предельно допустимой температуре применения и по прочности на сжатие;

температуру нагрева образцов;

прочность в проектном возрасте и остаточную прочность.

Метод определения устойчивости заполнителей
и добавок при воздействии высоких температур

Сущность метода состоит в проверке способности заполнителей и добавок не разрушаться при нагреве, а также после него.

1.1. Для проверки устойчивости заполнителей и тонкомолотых добавок отбирают пробы от каждой партии указанных материалов из нескольких мест, но не менее чем из трех.

1.2. Пробу заполнителя отбирают в объеме 10 л, методом квартования уменьшают ее до 5 л. Пробу тонкомолотой добавки отбирают в объеме 5 л, методом квартования уменьшают ее до 1 л.

2. Средства контроля

2.1. Для проведения испытаний применяют:

сушильный электрический шкаф типа СНОЛ по ТУ 16.681.032;

камерную электрическую печь типа СНОЛ по ТУ 16.681.139;

ванну с крышкой для выдержки образцов над водой;

сетчатые стеллажи для размещения образцов.

3. Подготовка к испытаниям и испытания

3.1. Для испытания необходимо иметь заполнитель, приготовленный дроблением шамотного кирпича и рассеянного на фракции 0-5 и 5-20 мм в соответствии с требованиями пп. 1.5.7 и 1.5.9 настоящего стандарта.

3.2. Приготовляют бетонную смесь, состоящую из портландцемента, проверяемой добавки и чистого шамотного заполнителя в долях 1:0,3:4.

3.3. Из бетонной смеси изготовляют шесть образцов-кубов с ребром длиной 7 или 10 см. Образцы выдерживают в условиях согласно табл. 4.

3.4. Три образца испытывают после высушивания при температуре (105 +/- 5) град.С.

3.6. Тонкомолотую добавку считают пригодной, если после нагрева и последующей выдержки над водой в течение 7 сут образцы не имеют дутиков, трещин, а остаточная прочность отвечает требованиям п.1.4.5 настоящего стандарта.

3.7. Для проверки качества заполнителя приготовляют бетонную смесь, состоящую из портландцемента, добавки и проверяемого заполнителя (1:0,3:4); возможна проверка на рабочем составе.

3.8. Изготовление, хранение, испытание образцов, а также оценку пригодности заполнителя осуществляют в соответствии с пп. 3.3-3.6 настоящего приложения.

3.9. Керамзитовый заполнитель допускается проверять прокаливанием и последующим кипячением.

3.10. Среднюю пробу керамзитового гравия массой 0,5 кг прокаливают в течение 3 ч при температуре 800 град.С.

3.11. Прокаленную пробу керамзита после остывания помещают в сосуд, заливают водой и кипятят в течение 4 ч. После остывания воду сливают, а керамзит рассыпают тонким слоем на металлический лист, выбирают разрушенные зерна и взвешивают.

3.12. Партию керамзита считают пригодной для применения в качестве заполнителя в бетоне, если разрушенные зерна в высушенном состоянии до постоянной массы составят не более 5% первоначальной навески.

3.13. Окончательное заключение о пригодности керамзита составляют после получения результатов испытания, предусмотренных пп. 3.7-3.8 настоящего приложения.

Метод определения температур, соответствующих
4 и 40%-ной деформациям под нагрузкой

По настоящему методу определяют температуры, соответствующие 4 и 40%-ной деформациям под нагрузкой, для установления класса бетона по предельно допустимой температуре применения в соответствии с требованиями табл. 2.

1.1. Температуры, соответствующие 4 и 40%-ной деформациям под нагрузкой при высоких температурах, определяют на образцах-цилиндрах диаметром (36+/-1) мм и высотой (50+/-1) мм.

1.2. Образцы изготовляют в формах, удовлетворяющих требованиям ГОСТ 22685, или выпиливают из средней части контрольных неармированных блоков и изделий в соответствии с ГОСТ 10180.

1.3. Верхнее и нижнее основания образцов должны быть отшлифованы корундовым диском.

Отклонение от перпендикулярности основания и боковой паверхности цилиндра не должно превышать 0,5 мм. Отклонение от перпендикулярности определяют по ГОСТ 10180.

2. Средства контроля

Для испытаний применяют:

муфельную печь по ТУ 16.681.139;

электрический шкаф по ТУ 16.681.032;

электрическую криптоловую печь с механическим устройством для нагружения образца и измерения деформации по ТУ 14-13-7;

оптический пирометр по ГОСТ 8335;

платино-платинородиевую термопару по ТУ 25-02.792301.

2.2. Электрическая криптоловая печь и механическое устройство для нагружения образца и измерения деформации должны обеспечивать:

равномерный подъем температуры со скоростью 5 град.С/мин и рабочую температуру печи не менее 1700 град.С;

вертикальную передачу нагрузки на образец;

измерение деформации образца с погрешностью +/-0,1 мм;

сжатие образца не менее чем на 20 мм.

3. Подготовка к испытаниям и испытания

3.1. Перед загрузкой с механического устройства криптоловой печи необходимо снять характеристики холостого хода. Твердение и сушку изготовленных образцов осуществляют в соответствии с требованиями табл. 4. Образцы из бетона на жидком стекле дополнительно подвергают термообработке по режиму: подъем до температуры 800 град.С со скоростью 200 град.С/ч, выдержка при 800 град.С 1 ч и охлаждение до температуры воздуха в помещении.

3.2. Для определения температуры деформации бетона под нагрузкой испытывают один образец.

3.3. Нагрузку на образец выбирают таким образом, чтобы в поперечном сечении образца, перпендикулярном к действию сжимающей силы, создать напряжения, равные МПа:

0,2 - для бетонов средней плотности 1500 кг/куб.м и более;

0,15 - для бетонов средней плотности от 1000 до 1500 кг/куб.м;

10 - для бетонов средней плотности менее 1000 кг/куб.м.

3.4. Образец устанавливают на стержень по центру печи так, чтобы середина его высоты находилась в центре визирной трубки, используемой для измерения температуры образца. Сверху и снизу образца между стержнями и образцом устанавливают угольные прокладки диаметром 50 и толщиной 10 мм. Сверху образца устанавливают стержень и механическое устройство для нагружения и измерения деформации образца.

3.5. Скорость подъема температуры при испытании не должна превышать, град.С/мин: 10 - при нагреве до 800 град.С; 5 - при нагреве св. 800 град.С.

3.6. Температуру измеряют:

платино-платинородиевой термопарой при нагреве до 1300 град.С;

параллельно термопарой и оптическим пирометром при нагреве от 1000 до 1300 град.С;

оптическим пирометром при нагреве св. 1300 град.С.

При измерении температуры горячий спай термопары следует располагать на уровне середины высоты образца бетона; спай не должен касаться внутренней нагреваемой поверхности печи.

Оптическим пирометром измеряют температуру боковой поверхности бетонного образца через визирную трубку из высокоогнеупорного материала внутренним диаметром 10-12 мм, установленную в футеровке печи в середине зоны наименьшей температуры нагрева. Снаружи трубку закрывают заслонкой, открываемой только на время измерения температуры.

3.7. После достижения температуры 400 град.С температуру и деформацию бетонного образца измеряют каждые 5 мин.

Результаты измерений записывают в журнал. Испытание заканчивают в тот момент, когда деформация бетонного образца достигнет 49%-ной первоначальной его высоты или произойдет разрушение образца.

3.8. Результаты определения деформаций под нагрузкой оформляют в виде диаграммы "Температура-деформация" (черт. 1).

Диаграмма "Температура-деформация"

1 - кривая для бетонного образца с пластичным
разрушением; 2 - то же, с хрупким разрушением

3.9. На диаграмме "Температура-деформация" отмечают температуру:

начала размягчения, определяемую по точке НР, лежащей на 3 мм ниже наивысшего положения этой кривой;

соответствующую 4%-ной деформации бетонного образца, определяемую по точке, лежащей на 20 мм ниже наивысшего положения кривой;

соответствующую 40%-ной деформации бетонного образца, определяемую по точке, лежащей на 200 мм ниже наивысшего положения кривой;

при которой произошло внезапное разрушение образца.

Температурный интервал размягчения определяют, как разность между температурой, соответствующей 40%-ной деформации образца (или температурой разрушения ТР), и температурой начала размягчения.

3.10. Результаты испытания округляют до целых десятков градусов Цельсия.

В журнале испытаний отмечают внешний вид образца после испытания (например, бочкообразный, оплавленный, с трещинами на поверхности и т.п.).

3.11. Результаты испытания признают недействительными и испытания повторяют, если при визуальном осмотре испытанного бетонного образца обнаружено:

грибовидная форма, свидетельствующая о неравномерном нагреве образца по высоте;

перекос - смещение в сторону верхнего основания относительно нижнего на 4-5 мм или разница в высоте образца по его периметру более 2 мм;

одностороннее оплавление или другие признаки неравномерного нагрева образца.

3.12. Погрешность определения результатов испытаний по данной методике не должна превышать +/-20 град.С.

3.13. Форма журнала записи образцов определения температуры деформации бетона под нагрузкой приведена в табл. 8.

3.14. Температуры 4 и 40%-ной деформации должны быть не ниже значений, приведенных в табл. 2 для данного класса бетона по предельно допустимой температуре применения.

Маркировка образца и вид жаростойкого бетона

Время отсчета по приборам

Деформации образца, мм

истекшее от начала испы тания

Метод определения термостойкости бетона

Изготовляют три бетонные образца-куба с ребром длиной 7 см из бетонной смеси рабочего состава.

2. Средства контроля

Для испытания применяют:

сушильный электрический шкаф типа СНОЛ по ТУ 16.681.032;

камерную электрическую печь типа СНОЛ по ТУ 16.681.139;

весы технические по ГОСТ 24104;

ванну вместимостью 10 л.

3. Подготовка к испытаниям и испытания

3.1. Образцы после изготовления выдерживают в условиях согласно табл. 6, затем подвергают визуальному осмотру и взвешивают.

Образцы, на которых обнаруживают трещины, бракуют.

3.2. Для бетонов средней плотности 1500 кг/куб.м и более термостойкость Т(1) определяют в водных теплосменах в следующем порядке.

3.2.1. Образцы помещают в печь, предварительно разогретую до расчетной температуры, и выдерживают при этой температуре 40 мин. Колебания температуры в печи допускаются в пределах +/-20 град.С. Время отсчитывают с момента, когда в печи установится необходимая температура.

3.2.2. По истечении 40 мин образцы вынимают из печи и погружают в ванну вместимостью 10 л с водой комнатной температуры.

3.2.3. Образцы охлаждают в воде в течение 5 мин, после чего вынимают из воды и выдерживают при температуре (20+/-5) град.С в течение 10 мин. Затем нагревание повторяют. После каждой теплосмены воду в ванне необходимо менять.

3.3. Для бетонов средней плотности менее 1500 кг/куб.м и ячеистой структуры термическую стойкость Т(2) определяют в воздушных теплосменах в следующем порядке.

3.3.1. После высушивания образцы помещают в печь, предварительно разогретую до расчетной температуры, и выдерживают при той температуре 1 ч. Колебания температуры в печи допускаются в пределах +/-20 град.С.

3.3.2. Через 1 ч образцы вынимают из печи и охлаждают струей воздуха комнатной температуры из вентилятора в течение 20 мин. Затем нагревание повторяют.

3.4. Каждый нагрев и охлаждение в воде или на воздухе являются теплосменой. После каждой теплосмены остывшие образцы осматривают, отмечают появление трещин, характер разрушения (выкрошивание или окол материала) и определяют потери в массе.

3.5. Число теплосмен, вызвавших разрушение образцов или потерю бетоном 20% первоначальной массы, принимают за термическую стойкость бетона в водных или воздушных теплосменах.

Метод определения усадки жаростойких бетонов

Сущность метода заключается в определении изменения размеров образца бетона после нагрева до предельно допустимой температуры применения бетонов классов И3-И12 и до температуры эксплуатации для бетонов классов И13-И18.

Изготовляют три бетонные образца-куба с ребром длиной 7 см из бетонной смеси рабочего состава. Образцы выдерживают в условиях согласно табл. 6. Из бетонов ячеистой структуры образцы выпиливают из затвердевших изделий, конструкций или контрольных блоков.

2. Средства контроля

Для испытаний принимают:

штатив с индикатором часового типа с ценой деления 0,01 мм и ходом штока 10 мм, приведенный на черт. 2;

сушильный электрический шкаф типа СНОЛ по ТУ 16.681.032;

камерную электрическую печь типа СНОЛ по ТУ 16.681.139.

Схема штатива с индикатором
часового типа

1 - основание; 2 - стойка; 3 - кронштейн;
4 - шаровая опора; 5 - индикатор

3. Подготовка к испытаниям и испытания

3.1. После режима твердения в соответствии с табл. 6 образцы измеряют с помощью индикатора часового типа. Среднее значение трех измерений принимают за размер образца после твердения (l(1)).

3.2. Затем образцы термообрабатывают по режиму: подъем до (105+/-5) град.С со скоростью 50 град.С/ч, выдержка при (105+/-5) град.С 48 ч и охлаждение до температуры воздуха в помещении.

3.3. После сушки образцы нагревают до температуры эксплуатации. Скорость подъема температуры - 150 град.С/ч, время выдержки - 4 ч.

3.4. После нагревания и охлаждения образцов до температуры воздуха в помещении их подвергают визуальному осмотру. При наличии поверхностных трещин шириной раскрытия более 0,1 мм или признаков оплавления образцы бракуют.

Образцы измеряют согласно п.3.1 и определяют среднее значение трех измерений образца после нагревания (l(2)).

Усадку ( x ), %, вычисляют по фрмуле

x = ( ( l1 - l2 ) / l1) 100, (5)

где l(1) - среднее значение размера образца после твердения, мм;

l(2) - среднее значение размера образца после нагревания, мм.

Если деформации усадки превышают значения, указанные в п.1.5.8, то бетон бракуют.

Метод определения активности отвердителя

Сущность метода состоит в проверке способности отвердителя обеспечивать затвердение жидкого стекла.

1.1. Для проверки активности отвердителя отбирают пробы от каждой партии указанного отвердителя из нескольких мест, но не менее чем из трех.

1.2. Пробу отвердителя отбирают в объеме 5 л, методом квартования уменьшают ее до 1 л.

2. Средства контроля

Для испытаний применяют:

весы по ГОСТ 24104;

термометр по ГОСТ 13646;

ареометр по ГОСТ 18481.

3. Подготовка к испытаниям и испытания

3.1. 200 г тонкомолотого шамота смешивают со 100 г отвердителя (нефелинового шлама, саморассыпающегося шлама) или 30 г отвердителя (кремнефтористого натрия), затворяют жидким стеклом плотностью 1,36 г/куб.см до получения теста нормальной густоты.

3.2. Из полученной массы изготовляют лепешку, которую сразу же помещают в полиэтиленовый пакет.

3.3. После выдерживания лепешки в пакете при температуре не ниже 20 град.С в течение 24 ч ее вынимают и осматривают.

3.4. Отвердитель считают активным, если он обеспечивает однородное твердение раствора по всему сечению.

Refractory concretes. Specifications

Дата введения 2019-09-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Структурным подразделением АО "НИЦ "Строительство" - Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ им.А.А.Гвоздева АО "НИЦ "Строительство")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 28 февраля 2019 г. N 116-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 26 апреля 2019 г. N 171-ст межгосударственный стандарт ГОСТ 20910-2019 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2019 г.

ВНЕСЕНА поправка, опубликованная в ИУС N 12, 2021 год

Поправка внесена изготовителем базы данных

1 Область применения

Настоящий стандарт распространяется на жаростойкие бетоны (далее - бетоны), предназначенные для применения при эксплуатационных температурах не выше 1800°C.

Требования настоящего стандарта следует соблюдать при разработке новых стандартов, пересмотре действующих стандартов, технических условий, проектной и технологической документации и производстве сборных бетонных и железобетонных изделий и конструкций, монолитных и сборно-монолитных сооружений (далее - изделия, конструкции и сооружения) из бетонов данного вида.

Настоящий стандарт не распространяется на огнеупорные бетоны.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 310.2-76 Цементы. Методы определения тонкости помола

ГОСТ 969-91 Цементы глиноземистые и высокоглиноземистые. Технические условия

ГОСТ 2642.0-2014 Огнеупоры и огнеупорное сырье. Общие требования к методам анализа

ГОСТ 2642.1-2016 Огнеупоры и огнеупорное сырье. Методы определения содержания влаги

ГОСТ 2642.2-2014 Огнеупоры и огнеупорное сырье. Метод определения относительного изменения массы при прокаливании

ГОСТ 2642.3-2014 Огнеупоры и огнеупорное сырье. Методы определения оксида кремния (IV)

ГОСТ 2642.4-2016 Огнеупоры и огнеупорное сырье. Методы определения оксида алюминия

ГОСТ 2642.5-2016 Огнеупоры и огнеупорное сырье. Методы определения оксида железа (III)

ГОСТ 2642.6-2017 Огнеупоры и огнеупорное сырье. Методы определения оксида титана (IV)

ГОСТ 2642.7-2017 Огнеупоры и огнеупорное сырье. Методы определения оксида кальция

ГОСТ 2642.9-97 Огнеупоры и огнеупорное сырье. Методы определения оксида хрома (III)

ГОСТ 2642.10-86 Огнеупоры и огнеупорное сырье. Методы определения пятиокиси фосфора

ГОСТ 2642.11-97 Огнеупоры и огнеупорное сырье. Метод определения оксидов калия и натрия

ГОСТ 2642.12-97 Огнеупоры и огнеупорное сырье. Методы определения оксида марганца (II)

ГОСТ 6507-90 Микрометры. Технические условия

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 8335-96 Пирометры визуальные с исчезающей нитью. Общие технические условия

ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2014 Смеси бетонные. Методы испытаний

ГОСТ 10832-2009 Песок и щебень перлитовые вспученные. Технические условия

ГОСТ 12730.1-78 Бетоны. Методы определения плотности

ГОСТ 12730.5-84 Бетоны. Методы определения водонепроницаемости

ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 13236-83 Порошки периклазовые электротехнические. Технические условия

ГОСТ 13646-68 Термометры стеклянные ртутные для точных измерений. Технические условия

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 18481-81 Ареометры и цилиндры стеклянные. Общие технические условия

ГОСТ 20419-83 Материалы керамические электротехнические. Классификация и технические требования

ГОСТ 22685-89 Формы для изготовления контрольных образцов бетона. Технические условия

ГОСТ 23037-99 Заполнители огнеупорные. Технические условия

ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия

ГОСТ 24104-2001 Весы лабораторные. Общие технические требования*

ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования

ГОСТ 25485-89 Бетоны ячеистые. Технические условия

ГОСТ 25592-91 Смеси золошлаковые тепловых электростанций для бетонов. Технические условия

ГОСТ 25820-2014 Бетоны легкие. Технические условия

ГОСТ 26134-2016 Бетоны. Ультразвуковой метод определения морозостойкости

ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 27005-2014 Бетоны легкие и ячеистые. Правила контроля средней плотности

ГОСТ 32496-2013 Заполнители пористые для легких бетонов. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 бетон: Искусственный камневидный строительный материал, получаемый в результате формования и твердения рационально подобранной и уплотненной бетонной смеси.

3.2 жаростойкие бетоны: Специальные бетоны, предназначенные для применения в бетонных и железобетонных конструкциях и изделиях, работающих в условиях воздействия высоких технологических температур.

3.3 конструкционные бетоны: Бетоны несущих и ограждающих конструкций зданий и сооружений, определяющими требованиями к качеству которых являются требования по физико-механическим характеристикам.

3.4 крупнопористые бетоны: Бетоны, у которых пространство между зернами крупного и мелкого заполнителя не полностью заполнено или совсем не заполнено мелкими заполнителями и затвердевшими вяжущими, поризованными добавками, регулирующими пористость в объеме не более 6%.

3.5 легкие бетоны: Бетоны на цементном вяжущем, пористом крупном и пористом или плотном мелком заполнителе.

ОКП 57 4600, 57 6700, 58 0000

Дата введения 1991-07-01

1. РАЗРАБОТАН И ВНЕСЕН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Госстроя СССР

В.В.Жуков, д-р техн. наук (руководитель темы); А.Ф.Милованов, д-р техн. наук; К.Д.Некрасов, д-р техн. наук; Н.П.Жданова, канд. техн. наук; А.П.Тарасова, канд. техн. наук; Г.В.Чехний, канд. техн. наук; И.М.Дробященко, канд. техн. наук; И.А.Тихомирова; В.И.Пименова; С.П.Абрамова; И.Н.Нагорняк

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 12.10.90 N 86

5. Срок проверки - 1996 г.

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, приложения

* Вероятно, ошибка оригинала. Следует читать: ГОСТ 10180-90. - Примечание изготовителя базы данных.

* Вероятно, ошибка оригинала. Следует читать: ГОСТ 12730.2-78. - Примечание изготовителя базы данных.

2.1, 2.2, приложение 2

ТУ Лит. ССР 15-76

ТУ Лит. ССР 49-80

Настоящий стандарт распространяется на жаростойкие бетоны (далее - бетоны), предназначенные для применения при эксплуатационных температурах до 1800 °С.

Требования настоящего стандарта следует соблюдать при разработке новых, пересмотре действующих стандартов, технических условий, проектной и технологической документации и при производстве сборных бетонных и железобетонных изделий и конструкций, монолитных и сборно-монолитных сооружений (далее - изделий, конструкций и сооружений) из этих бетонов.

Стандарт не распространяется на огнеупорные бетоны.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Бетоны должны соответствовать требованиям настоящего стандарта и обеспечивать изготовление изделий, конструкций и возведение сооружений, удовлетворяющих требованиям стандартов или технических условий, нормам проектирования и проектной документации на эти изделия, конструкции и сооружения.

1.2. Основные параметры

1.2.1. Бетоны подразделяют:

по назначению - на конструкционные, теплоизоляционные;

по структуре - на плотные, тяжелые и легкие, ячеистые;

по виду вяжущего - на портландцементе и его разновидностях (быстротвердеющем портландцементе, шлакопортландцементе), на алюминатных цементах (глиноземистом и высокоглиноземистом), на силикатных вяжущих (жидком стекле с отвердителем, силикат-глыбе с отвердителем);

по виду тонкомолотой добавки - с шамотной, кордиеритовой, золошлаковой, керамзитовой, аглопоритовой, магнезиальной, периклазовой, алюмохромитовой;

по виду заполнителя - с шамотным, муллитокорундовым, корундовым, магнезиальным, карборундовым, кордиеритовым, кордиеритомуллитовым, муллитокордиеритовым, шлаковым, золошлаковым, базальтовым, диабазовым, андезитовым, диоритовым, керамзитовым, аглопоритовым, перлитовым, вермикулитовым, из боя бетона.

1.3. Наименования бетонов должны включать основные признаки: вид бетона (BR - бетон жаростойкий); вид вяжущего (Р - портландцемент, А - алюминатный цемент, S - силикатное вяжущее), класс бетона по прочности на сжатие (В1-В40) и класс бетона по предельно допустимой температуре применения (И3-И18).

1. BR Р В20 И12 - бетон жаростойкий на портландцементе, класса В20 по прочности на сжатие, температурой применения 1200 °С.

2. BR А В35 И16 - бетон жаростойкий на алюминатном цементе, класса В35 по прочности на сжатие, температурой применения 1600 °С.

3. BR S В25 И13 - бетон жаростойкий на силикатном вяжущем, класса В25 по прочности на сжатие, температурой применения 1300 °С.

1.4.1. Для бетонов конкретного назначения основными показателями качества являются:

прочность на сжатие;

предельно допустимая температура применения;

термостойкость (термическая стойкость);

1.4.2. Прочность бетона в проектном возрасте характеризуют классом прочности на сжатие по СТ СЭВ 1406.

Для бетонов установлены следующие классы по прочности на сжатие: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В35; В40.

Для изделий, конструкций и сооружений, запроектированных до ввода в действие СТ СЭВ 1406, показатели прочности бетона на сжатие характеризуют марками: М15; М20; М25; М35; М50; М75; М100; М150; М200; М250; М300; М350; М400; М450; М500.

Упаковка: МКР (Биг Бэг) по 1т; мешки по 50 кг

Отгрузка: от 50 кг

Описание

Жаростойкий бетон – это бетон специального предназначения, изготовленный из материалов, позволяющих не изменять его физические характеристики при воздействии высоких температур. Его также называют огнеупорным или жаропрочным бетоном, поскольку после набора прочности он может быть использован в условиях прямого контакта с пламенем.

Марки жаропрочного бетона формируются исходя из их назначения, структуры, вида вяжущего, вида тонкомолотой добавки и заполнителя. Наименования бетона, в зависимости от торговой марки, могут быть различными, но если они изготовлены в соответствии с ГОСТ 20910-90, то обязательным условием должно быть наличие аббревиатуры содержащей:

  • вид бетона: BR – жаростойкий
  • вид вяжущего: P – портландцемент; А – алюминатный цемент; S – силикатное вяжущее
  • класс бетона по прочности на сжатие: от В1 до В40
  • класс бетона по предельно допустимой температуре применения: от И3 до И18

Жаропрочные бетоны, в зависимости от их назначения, могут быть изготовлены из различного сырья. В качестве вяжущего используют глиноземистый цемент, высокоглиноземистый цемент, жидкое стекло или силикат-глыбу (силикат натрия). В случае изготовления бетона на портландцементе или жидком стекле требуется добавление тонкомолотых добавок, устойчивых к высоким температурам. Обычно, такие добавки бывают:

  • шамотными
  • кардиеритовыми
  • золошлаковыми
  • керамзитовыми
  • аглопоритовыми
  • бетонными (дробленые огнеупорные бетоны)

В качестве заполнителей, при изготовлении бетонов, обычно используют шамотные, корундовые и муллитокорундовые материалы, однако, нормативно-техническая документация содержит более широкий спектр материалов для этих целей. В качестве заполнителей в жаростойких бетонах могут быть применены заполнители кордиеритовые, карборундовые, перлитовые, вермикулитовые и другие (см. таблицу 3 ГОСТ 20910-90). При этом следует помнить, что загрязнение заполнителя, способное пагубно воздействовать на характеристики бетона, не допускается.

Как цена, так и жаропрочность бетона напрямую зависит от сырья, из которого он изготовлен. По эксплуатационному температурному режиму жаростойкий бетон подразделяется на:

  • жароупорный бетон, с режимом эксплуатации до 1580 o C
  • огнеупорный бетон, с режимом эксплуатации от 1580 o C до 1770 o C
  • высокоогнеупорный бетон, с режимом эксплуатации выше 1770 o C.

Купить жаростойкий бетон в обычном строительном магазине проблематично. Материал, преимущественно, используется в промышленности, поэтому, как правило, изготавливают его под заказ специализированные организации-производители.

Применение

Жаростойкие бетоны используют в агрегатах и конструкциях, подверженных кратковременному или длительному воздействию высоких температур и огня. В отличие от шамотных материалов, бетоны в различных конструкциях обладают большей прочностью и большой несущей способностью, что делает их незаменимыми в строительстве различных промышленных печей, в том числе доменных и туннельных. Также бетоны широко используются в нефтегазовой отрасли, в частности для изготовления трубчатых подогревателей на нефтеперерабатывающих заводах.

Использование жаростойких бетонов на производстве в значительной степени увеличивает сроки эксплуатации ключевых объектов, сокращает сроки и стоимость их строительства и капитального ремонта.

Для футеровки топок в конструкциях газоходов, дымовых труб при строительстве тепловых электростанций, в элементах защитных стен и перекрытий АЭС применяют жаростойкие бетоны. Обычный тяжелый цементный бетон пригоден для изготовления строительных конструкций, подвергающихся длительному воздействию температуры лишь до 200° С. В зависимости от предельно допустимой температуры применения жаростойкие бетоны разделяют на классы - от 3 до 16 (предельная температура применения соответственно от 300 до 1600). Их также классифицируют:
- по огнеупорности - на жароупорные с огнеупорностью ниже 158СС, огнеупорные - от 1580 до 1770°С и высокоогнеупорные - свыше 1770°С;
по плотности в высушенном состоянии - на тяжелые с ро> 1500 кг/м3 и легкие- ро< 1500 кг/м3;
по виду применяемого вяжущего - на портландцементе, шла-копортландцементе, глиноземистом цементе, жидком стекле, периклазовом цементе, алюмофосфатной связке и др. На портландцементе, быстротвердеющем цементе и шлако-портландцементе изготавливают бетоны классов от 3 до 12 в зависимости от вида заполнителей и тонкомолотых добавок.
В качестве тонкомолотых добавок применяют целый ряд дисперсных материалов, обладающих активностью по отношению к СаО, - на основе золы-уноса, глиняного кирпича, доменного гранулированного шлака, шамота. Тонкомолотые добавки вводят в бетонные смеси обычно, когда максимальная температура службы бетона превышает 350°С, количество их назначается, как правило, не менее 30% массы смешанного вяжущего - 100- 150кг/м3, но при применении чистоклинкерного портландцемента и повышении температуры эксплуатации бетона может достигать 600 - 700 кг/м3. Реакционная способность добавок по отношению к СаО при повышенных температурах возрастает, когда кремнезем или другие оксиды (глинозем, оксид хрома) в добавках находятся в аморфном или стекловидном состоянии. Так, реакция взаимодействия между СаО и аморфным кремнеземом идет уже при 500 - 600°С, а для кристаллического кварца она только начинается при 600 °С. Использование добавок, содержащих кварц, нежелательно и из-за способности его к полиморфным превращениям, вызывающим нарушение структуры. Нежелательно также использование таких добавок как глины, диатомит и других, приводящих к значительному увеличению усадочных явлений. Для повышения огнеупорных свойств бетонов применяют соответствующие добавки из огнеупорных материалов - хромита, магнезита, хромомагнезита. Степень измельчения добавок должна быть примерно такая же, как и цемента, от нее в значительной мере зависит их реакционная способность.
На рис. 8.27. приведены по данным К. Д. Некрасова кривые изменения прочности при сжатии цементного камня в зависимости от вида тонкомолотой добавки. Введение тонкомолотой добавки уменьшает , как правило, сброс прочности особенно после воздействия температуры 600°С. Лучшие результаты получены при введении тонкомолотого шамота. Введение в цемент тонкомолотых добавок, не содержащих компонентов способных связывать оксид кальция и улучшать жаростойкие свойства цементного камня, приводит к резкому падению прочности.
Огнеупорность портландцемента в зависимости от минералогического состава находится в интервале 1700- 1750°С. Введение тонкомолотых добавок приводит к значительному снижению огнеупорности за счет образования эвтектик. Только такие добавки как тонкомолотый хромит не образуют эвтектик и повышают огнеупорность.
Предельная рабочая температура жаростойких бетонов определяется температурой деформации (размягчения) под нагрузкой 0,2 МПа. Температура начала размягчения портландцемента без тонкомолотых добавок находится в пределах от 970 до 1130°С, а температура 40%-ной деформации от 1370 до 1480°С. Тонкомолотые добавки повышают температуру размягчения, если образуют при нагревании с цементом соединения, обладающие высокой огнеупорностью и незначительной растворимостью в расплаве. К таким добавкам относятся хромит и магнезит. Цементный камень без тонкомолотой добавки разрушается под действием нагрузки 0,2 МПа при температуре 1460°С, тогда как образцы с 3 мае.ч. магнезита при температуре более 1700°С.

При нагревании обычных цементных бетонов деструктивные процессы происходят не только в цементном камне, но и в заполнителях. Такие процессы обусловлены неравномерным температурным расширением полиминеральных кристаллических пород, каковыми являются, например, граниты. Непригодны в качестве заполнителей бетонов, работающих в условиях нагревания, материалы, содержащие свободный кварц (песчаник, кварцевые пески, кварциты и др.). Наиболее опасным является превращение (3-кварца в а-кварц при 573 °С, связанное с уменьшением плотности зерен и, соответственно, эффектом объемного расширения.
Обычные заполнители используют при температуре до 200"С. Известняки и доломиты, широко применяемые как заполнители для тяжелого бетона, начинают разлагаться примерно при 600°С, однако их нагрев уже до 200"С приводит к снижению прочностных характеристик бетона.
Выбор заполнителей для жаростойких бетонов зависит от максимальной температуры их эксплуатации. Заполнители из таких излившихся изверженных пород, не содержащих свободного кварца, как андезиты, диабазы, базальты, вулканические лавы, туфы, пеплы, пемза при введении в бетонные смеси тонкомолотых добавок могут использоваться в условиях температуры до 700 - 800°С. В таком же диапазоне температуры используются нераспадающиеся доменные отвальные шлаки с модулем основности не более 1, а также топливные шлаки и бой обыкновенного глиняного кирпича.
Для легких жаростойких бетонов используют в качестве заполнителей керамзит, перлит, вермикулит.
Наибольшее распространение как заполнитель жаростойких бетонов получил шамот. К шамотным относятся материалы с содержанием А12О3+ТЮ2 от 30 до 45%. Их получают обжигом огнеупорных глин и каолинов до спекания. Обожженный продукт сортируют, измельчают и рассеивают по фракциям.
Для жаростойких бетонов с наиболее высокой температурой применения в качестве заполнителей используют бой магнезитовых, хромомагнезитовых, корундовых и других огнеупоров.
Тяжелые жаростойкие бетоны на портландцементе изготавливают обычно классов В15 - В40.
Легкие жаростойкие бетоны имеют прочность, соответствующую классам В2,5 - В15 и плотность 500 - 1200 кг/м3. Минимально допустимая остаточная прочность бетонов после нагревания до 800°С составляет 30 - 50% начальной прочности.
При работе тепловых агрегатов жаростойкие бетоны подвергаются резким колебаниям температуры, что является одной из основных причин появления трещин и отколов на футеровке. Термическая стойкость бетонов зависит от вида вяжущих, заполнителей и тонкомолотых добавок, водовяжущего отношения. Для пор-тландцементных бетонов с шамотным заполнителем при нагреве до 800°С уже через 10- 15 циклов появляется волосяные, а 20- 25 циклов открытые трещины. Для повышения термостойкости бетонов применяют дисперсное армирование температуростойкими волокнами из асбеста, базальта и др. Для повышения термической трещиностойкости необходимо подбирать состав бетона с минимальным различием температурных деформаций крупного заполнителя и растворной части. Нагрев жаростойкого бетона на портландцементе желателен не ранее чем через 7 суток нормального твердения.
Важным показателем трещиностойкости жаростойких бетонов является усадка. Она обусловлена в основном усадкой цементного камня, которая возрастает не только с увеличением водоцемент-ного отношения, но и с повышением температуры нагрева. Усадка бетонов при сушке составляет 0,04-0,07%. При 800- 1100"С линейная усадка жаростойкого бетона возрастает до 0,2 - 0,7%. Величина усадки увеличивается с повышением расходов цемента и тонкомолотой добавки.
Коэффициент термического расширения жаростойкого бетона в основном зависит от расширения заполнителя и колеблется в интервале 4-11106. Качество жаростойких бетонов в значительной мере зависит от режима сушки и первого нагрева.
Жидкое стекло в качестве вяжущего для жаростойких бетонов применяют с модулем от 2,4 до 3,0 и плотностью от 1,36 до 38 г/см3. Ускорение твердения жидкого стекла и повышение прочности бетонов достигается введением добавки отвердителя - кремнефтористого натрия. Отвердителями жидкого стекла служат также нефелиновый шлам, феррохромовый шлак, технический глинозем, глиноземистый шлак, клинкерный портландцемент.
Бетоны на основе жидкого стекла используют при температурах 600 - 1600 °С, начальная прочность их на сжатие обычно не превышает 10 - 20 МПа, однако остаточная прочность после нагревания до 800°С значительно выше, чем для портландцементных бетонов - 50 - 90%. Эти бетоны при применении соответствующих заполнителей в условиях высоких температур стойки к кислотам (кроме НР), расплавам солей, другим агрессивным средам. Однако для ряда составов не допускается воздействие пара и воды.

Бетоны на основе глиноземистого и высокоглиноземистого (не менее 75% А12О3) цементов эксплуатируются при температурах 1300- 1700°С. При их изготовлении не требуются тонкомолотые добавки, заполнителями служат обычно хромит, электрокорунд и другие высокоглиноземистые материалы. Поскольку твердение глиноземистого цемента характеризуется высокой экзотермией при применении его в конструкциях, толщина которых превышает 400 мм, необходим интенсивный отвод тепла. Температура в толще бетона в первые сутки твердения не должна превышать 40°С, прочность бетонов на глиноземистом цементе соответствует классам В20 - В40 и достигается через 3 суток нормального твердения.
Огнеупорные бетоны, обладающие высокой термической стойкостью и сопротивляемостью истирающим воздействиям, получают с применением фосфатных вяжущих. Ими служит ортофос-форная кислота или ортофосфаты различной степени замещения. Тонкомолотыми добавками в таких бетонах являются обычно высокоглиноземистые (не менее 62% АI2О3) порошки. При нагревании ортофосфорная кислота вступает в реакцию с АI2О3, образуя высокоогнеупорные алюмофосфатные связки. Бетоны на алю-мофосфатных связках применяют при температурах нагрева до 1600 - 1800°С. Их прочность на сжатие достигает 70 МПа. После нагревания до 800 °С снижения прочности не наблюдается. Термическая стойкость - 39 - 60 водных теплосмен при начальной температуре 800"С. В отличие от жаростойких бетонов на других вяжущих алюмофосфатные бетоны вместо огневой усадки после нагревания до максимальной температуры характеризуются расширением (до 0,2%).

Читайте также: