Кирпичная кладка тепловой камеры

Обновлено: 28.03.2024

Тепловые камеры - особые защитные конструкции, необходимые при прокладке инженерных коммуникаций, трубопроводов газовых и тепловых, водопроводных и канализационных сетей.

Тепловые камеры и их применение

Для защиты важных участков трубопровода, подверженных опасности, таких, как стыки и вентили, компенсаторы, отводы, дренажные устройства и перемычки, необходимо устройство тепловой камеры серии. Её основное предназначение в защите трубопроводов и всей системы от коррозий и влажности окружающей среды.

Тепловая камера представляет специализированное углублённое сооружение из тяжёлого бетона, составленное из следующих изделий:

  • перевёрнутого стакана с отверстием наверху;
  • кольца в середине;
  • железобетонного стакана внизу.

В изготовлении изделий используют бетон с особыми высокопрочными свойствами, которые ему придают особые химические добавки.

От качества тепловой камеры, её изоляционных свойств, герметичности и водонепроницаемости, напрямую зависит стабильность работы инженерной системы.

Размеры и спецификации тепловых камер

Качественные тепловые камеры гарантируют эффективную и бесперебойную эксплуатацию газопроводов и теплотрасс. На стыках теплотрассы они размещаются с шагом, не превышающим 150 - 200 метров.

Классификация размеров тепловых камер выглядит так:

  • ТК 1,8 х 1,8 х 2,0;
  • ТК 2,5 х 4,0 х 2,0;
  • ТК 2,5 х 4,0 х 4,0;
  • ТК 2,6 х 2,6 х 2,0;
  • ТК 3,0 х 3,0 х 2,0;
  • ТК 4,0 х 4,0 х 2,0;
  • ТК 4,0 х 4,0 х 4,0;
  • ТК 4,0 х 5,5 х 2,0;
  • ТК 4,0 х 5,5 х 4,0.

В случаях нестандартных возможно изготовление конструкций с индивидуальными габаритами.

В производстве тепловых камер применяется только бетон высоких марок с показателями водонепроницаемости не ниже W 4 и морозостойкости более F 150. Жёсткое соответствие требованиям ГОСТ в монтаже обеспечивает надёжность тепловой камеры в эксплуатации.

Устройство тепловых камер

Типовая конструкция составляется из двух либо трёх железобетонных блоков - нижнего ТДК, среднего ТК и верхнего ТКП.

Расчёт тепловой камеры производят так, чтобы нужная прочность обеспечивалась не слишком высоким весом, дающим возможность её изменения или ремонта.

Нижний её блок – это железобетонное кольцо с дном и боковыми отверстиями для прохождения магистралей. Средний представляет собой обычное сквозное кольцо, верхний же – аналогичное нижнему перевёрнутое кольцо с днищем. В крышке камеры есть отверстие, обеспечивающее доступ рабочих.

Помимо железобетона, можно использовать кирпич или монобетон, который часто используют для создания днища камеры. Очень важен уклон днища, которые не должен быть менее 5 см в сторону приёмника, который для удобства эксплуатации подводится прямо к стоку ливневой канализации.

Для придания сверхпрочности схема тепловой камеры использует особую арматуру из углеродистой стали высочайшего качества. К техническим свойствам, кроме прочности и водонепроницаемости, стоит отнести особую морозоустойчивость тепловых камер.

Блоки, составляющие камеру, соединяются закладными деталями.

Типы тепловых камер, в зависимости от конструктивной необходимости, бывают сплошными или с прямоугольными отверстиями.

Гидроизоляция тепловых камер и необходимость её применения

Днище камеры покрывается гидроизоляционным слоем из битумных составляющих, толщина которого зависит от уровня залегания грунтовых вод. Если необходим высокий уровень водонепроницаемости, гидроизоляция дополняется специальными штукатурными примесями.

Устройство тепловых камер на теплосетях и коммуникациях под землёй на некоторых участках, например, пересечений магистралей либо точек регулирования давлений, создают специальные железобетонные камеры теплосетей для проведения диагностических или ремонтных работ.

Виды гидроизоляции

Особого внимания заслуживает необходимость антикоррозионной обработки тепловой камеры для обеспечения сохранности защитных свойств и безаварийной эксплуатации теплосети, канализации и водопровода.

Гидроизоляционные составы для покрытий тепловой трубы обладают термостойкостью, эластичностью и повышенной прочностью.

Если коммуникации проводятся вне грунтовых вод, то производится обмазочная изоляция и оклеечная гидроизоляция тепловых камер. В случае прокладки коммуникаций в близком соседстве с грунтовыми водами, применяется оклеечная гидроизоляция 0,5 м выше уровня грунтовых вод.

Материалы для гидроизоляции

Внешнюю поверхность днища и стенок тепловых камер в случае близкого залегания грунтовых вод, вне зависимости от встроенного попутного дренажа, дополняют оклеечной гидроизоляцией из битумного рулонного материала. Необходимое количество слоёв этих материалов устанавливается проектом.

В случаях, когда требования водонепроницаемости повышены, кроме стандартной наружной оклеечной гидроизоляции, применяется дополнительная штукатурная цементно-песчаная внутренняя гидроизоляция тепловых камер. Такая дополнительная гидроизоляция в больших объёмах наносится методом торкретирования.

Для тепловых камер принимается определённая нумерация, обозначенная на плане коммуникаций во избежание её блокирования во время строительства или прокладки дорог. Аварии теплосетей могут вызвать затопление территорий, деформации почвы и обвалы зданий. Опасны такие аварии разливом горячей воды, поэтому камеры теплосетей должны быть обеспечены доступом.

В устройстве тепловых сетей имеется масса оборудования, которое нуждается в обслуживании. Оно располагается в специально оборудованной тепловой камере.

Что это такое?

Тепловая камера представляет собой сооружение на теплосети, где размещаются и обслуживаются приборы, оборудование, арматура. Камерой тепловых сетей называют изделие высокой прочности, что применяется при прокладывании коммуникаций под землей, например, газовых сетей, водопровода и канализаций. Ко всему прочему назначением теплофикационной конструкции является сопряжение труб с разными габаритами, а также их пересечение.

В теплокамере располагаются следующие виды оборудования:

  • задвижки;
  • компенсаторы сальникового типа;
  • устройства для воздуха и дренажа;
  • контрольно-измерительное оборудование;
  • ответвление к потребителю;
  • неподвижные опоры.



Основным направлением использования тепловых камер является строительство гражданского, жилищного, инженерного назначения. Благодаря высокой прочности конструкции все коммуникации, что находятся под землей, являются защищенными от негативного воздействия факторов окружающей среды, вибраций транспорта, что проезжает на поверхности, от давления почвы, а также случайных или несанкционированных проникновений людей и иных живых существ.

Для тепловых камер характерны повышенная прочность, а также усиленная гидроизоляция. Погружение данной конструкции происходит на глубину 4-х метров.

Заглубленность верхушки перекрытия не должна быть меньше чем на 30 сантиметров.

Устройство

Тепловая камера, как специально заглубленный вид сооружения, имеет в своем составе несколько железобетонных конструкций сборного типа.

  1. Верхушка камеры. Эта часть сооружения имеет вид перевернутого стакана с отверстием.
  2. В центральной части находится сквозное кольцо.
  3. В нижней части располагается железобетонный стакан.

В зависимости от конструктивной особенности теплокамера может быть несколько типов:

  • камера из сборных блоков;
  • камера из сборных плит и панелей.



Данная конструкция имеет вид заглубленного устройства. Дно тепловой камеры обычно состоит из грунта, однако в некоторых случаях на него выкладывают сборные железобетонные плиты либо балки. Иногда в основе конструкции находится монолитная основа. Дно должно характеризоваться наличием уклона примерно на 20 сантиметров. Благодаря данной особенности происходит естественный водный сток.

В сточном участке обязательно должен располагаться приямок с габаритами 400-400 и глубиной 30 сантиметров. Решетка обычно съемная. Обычно высота камеры составляет от 180 до 200 сантиметров. Стены выкладывают из фундаментных блоков, иногда из кирпичей, бетонных блоков, панелей. В стенах должны быть сделаны отверстия, из которых будут выходить трубопроводы.

Верхушку теплокамеры закладывают при помощи плиты из железобетона. В ней должен присутствовать проем для смотрового колодца. Внутри данной конструкции наблюдается довольно высокий температурный режим, поэтому в камере запрещено находиться детям и подросткам, так как это может быть опасно.



Виды конструкций

Привычные для многих и распространенные тепловые камеры – это те важные строительные объекты, благодаря которым регулируется тепло в домах и квартирах населения. В настоящее время можно встретить несколько разновидностей камер тепловых сетей, например, изготовленных из кирпича, ФБС, а также монолитных конструкций.

Круглые камеры из железобетонных колец

В конструкцию круглой камеры входят следующие составляющие:

  • плита перекрытия;
  • блок, не имеющий отверстия;
  • блок, имеющий отверстия;
  • щебень в утрамбованном виде;
  • приямок;
  • бетонная заготовка.



Стены круглой камеры собирают из 3-х блоков в виде колец, наложенных друг на друга. Возможность пропускать трубопровод обеспечивается проемами, что имеются в одном из блоков. Данный блок обычно монтируется в центральном либо верхнем ряду, так как должен отвечать оптимальному заглублению трубопровода относительно земной поверхности. Нижнее кольцо устанавливают на бетонную подготовку, толщина которой не превышает 5 сантиметров.

На верхнем кольцевом блоке находится круглая плита для перекрытия с ребром и люковыми отверстиями. Для монтажа горловин используется кирпичная кладка, а в качестве перекрытий – чугунные люки. Покрытие наружной поверхности происходит при помощи неоднократного залива битумом.



Сборная железобетонная теплокамера из прямоугольных блоков

Тепловая камера из блоков основана на таких составных частях:

  • стеновом блоке, не имеющем отверстий;
  • стеновом блоке с отверстиями;
  • блоке для днища;
  • блоке перекрытия.

Внутренние габариты типовой конструкции составляют 150х150, 150х200 и 200х200 сантиметров. Среди преимуществ прямоугольной формы конструкции удобство обслуживания оборудования, которое располагается внутри. В составе камеры имеются прямоугольные замкнутые звенья, что накладываются друг на друга.

Блок для стены данной камеры обычно представляет собой Г-образную плиту, одна из сторон которой считается ее основой. Блоки могут быть как сплошными, так и с отверстиями для проведения труб. У донного прямоугольного блока на всех сторонах имеются петли арматуры. Минимальным заглублением данной камеры считается 30 сантиметров.

Камеры прямоугольной формы из вертикальных стеновых блоков

Прямоугольные камеры могут иметь размеры 1,5х1,5 и 2,5х2,5 метра. Для монтажа камеры из вертикального блока в котловане стоит сделать бетонную заготовку. На нее устанавливают днище, а также угловые блоки. После того как будет пропущена стеновая арматура и связана с петлевой, при помощи бетона заполняют зазоры между стенами и днищем.

Швы необходимо заделывать цементом, заливая его в пазы начиная от верха. Внешние поверхности плит и перекрытий покрывают с помощью горячего битума дважды.

Преимуществом такой конструкции считается легкость изготовления, а также простота транспортировки и монтажа.

Камеры тепловых сетей используют не только в канализационной, но и в газовой сфере. По мнению специалистов, их эксплуатация возможна в слабой агрессивной среде, а именно: в коммуникациях, сосредоточенных под землей. Чтобы сети работали бесперебойно, стоит пользоваться качественно изготовленными тепловыми конструкциями. Люди, кто работает в тепловых камерах, не должны нарушать технику безопасности, обязаны пользоваться средствами индивидуальной защиты и знать технологию тушения пожара.

О тепловых камерах смотрите в следующем видео.


анат



Просмотр профиля

Братцы, помогите плз. Возник вопрос. На первый взгляд тупой, но все таки.
Искал в нормодоках материал из которого допускается строить тепловые камеры.
Не нашел запрета на применение красного полнотелого кирпича.
Возможно я туплю, но имхо, его сейчас не применяют для этих целей, ибо продолжительность жизни строительных конструкций, в условиях периодически обводненных грунтов не может быть меньше нормативного срока жизни тр-дов.
Подскажите плз. существует ли четкий перечень или рекомендации о допустимых строительных материалах для тепловых камер?


nik4t



Просмотр профиля


Машинист



Просмотр профиля

Эко Интегратор Всея Руси

Ни в одном снипе по тепловым сетям не написано про кирпич, везде железобетон, сборный или монолитный.
Последний актуализированный снип

СП 124.13330.2012
ТЕПЛОВЫЕ СЕТИ
Актуализированная редакция
СНиП 41-02-2003

СП 43.13330.2012
СООРУЖЕНИЯ
ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ
Актуализированная редакция
СНиП 2.09.03-85,

и там тоже железобетон.

Я не строитель, но по-моему, красный кирпич в земле - это лажа.
Плюс к тому, это будет дороже бетона, если вновь сооружаемая камера.
Если существующая - тогда сделайте обследование конструкции.


nik4t



Просмотр профиля

От кирпича (теперь) наверное зависит.
Прошлый год пролазил по одному коллектору в центре, полностью из кирпича красного.
1904г постройки.
Если бы его немного в 1981г не "повскрывали", он бы и сейчас еще бодрячком выглядел.


Машинист



Просмотр профиля

Эко Интегратор Всея Руси

Да я тоже, когда прадедову избу разбирали, старые кирпичи из земли поднимал, от печи оставшиеся. Бодрячком они были.
А те, что поновее - полежат в грунте и потом лопатой копаются, глина глиной.
Строительный вопрос.


анат



Просмотр профиля

Спасибо всем откликнувшимся на призыв.
От себя добавлю.
Как то, в одном из маев ( 1-9 мая) мы, сплавляясь по Верхней Волге на байдарках, имели возможность увидеть
как был армирован ДОТ в районе Ржевского укрепрайона.
Так как в результате размыва берега Волги, часть ДОТА сползла вниз к реке, а часть осталась на прежнем месте.
В результате можно было видеть, что армирование бетонных стен этого сооружения было выполнено из стволов деревьев!
Уж не знаю подвергался ли дот обстрелу или наши сдали Ржев не успев воспользоваться теми дотами и рвами, но хочу сказать,
Хотя и называется сооружение долговременным, а период этой самой "долговременности" определяется жизненным циклом этого самого сооружения.
И на мой взгляд, применение стволов деревьев в качестве арматуры, при отсутствии стальной арматуры вполне оправдано в той конкретной ситуации.
Дак к чему это я?
Срок жизни сооружения должен быть не меньше срока жизни сетей, в нем размещенных. Имхо.

Оптимизация защитных функций внешней оболочки здания – одна из актуальных задач строительства, решение которой должно приводить к сокращению потерь тепловой энергии и уменьшению затрат на эксплуатацию здания. С целью определения эксплуатационной эффективности наружных стеновых конструкций в климатической камере проводились теплотехнические испытания кладок из крупноформатных пустотелых керамических блоков, полнотелого обычного кирпича, кладок из щелевых и полнотелых керамзитобетонных блоков. Предлагаем результаты данных испытаний и рекомендации, сформированные на их основе.

Теплотехнические испытания кладок из различных строительных материалов

Задача оптимизации защитных функций наружных стеновых конструкций многогранна, поскольку необходимо повышение как их энергетической, так и эксплуатационной эффективности. Повышение уровня тепловой защиты наружных ограждающих конструкций реализуется путем:

  • применения эффективных теплоизоляционных материалов;
  • минимизации мостиков холода;
  • минимизации накопления влаги;
  • повышения герметичности здания.

Поскольку необходимо решать задачу сокращения как тепловых потерь, так и затрат на проведение последующих капитальных ремонтов зданий, необходимо знание о долговечности используемых материалов, физико-механические свойства которых в эксплуатационных условиях могут значительно изменяться. Кроме того, зачастую широко рекламируемые новые материалы не соответствуют заявленному качеству, не в полной мере удовлетворяют спектру климатических параметров России.

В климатической камере были проведены теплотехнические испытания кладок из крупноформатных пустотелых керамических и керамзитобетонных блоков. Для сравнительного анализа одновременно испытывались кладки из крупноформатных пустотелых керамических блоков и полнотелого обычного кирпича; кладки из щелевых и полнотелых керамзитобетонных блоков. На следующем этапе испытаний эти кладки последовательно утеплялись плитами из каменной минеральной ваты, пенополистирола, пеностекла.

Подготовка к теплотехническим испытаниям

В климатической камере ОАО «НИИМосстрой» смонтированы четыре фрагмента наружных ограждающих конструкций размером 1 500×1 500 мм и толщиной кладок 380 мм каждая (рис. 1):

  • кладка из пустотелых крупноформатных керамических блоков;
  • кладка из полнотелого обыкновенного глиняного кирпича;
  • кладка из щелевых керамзитобетонных блоков;
  • кладка из полнотелых керамзитобетонных блоков.

После изготовления фрагментов кладок их наружная и внутренняя поверхности затирались штукатурным раствором толщиной не более 5 мм и плотностью 1 200 кг/м 3 . Для проведения сравнительного анализа процедуры возведения кладок, измерений всех теплотехнических характеристик строго следовали рекомендациям соответствующих нормативных документов: ГОСТ 530, ГОСТ Р 54853, ГОСТ Р 54852 1 .
На следующем этапе указанные выше кладки последовательно утеплялись плитами из каменной минеральной ваты толщиной 90 мм, плитами из пенополистирола толщиной 100 мм, плитами из пеностекла толщиной 100 мм (рис. 1) и проводились их теплотехнические испытания.

Теплотехнические испытания

При проведении теплотехнических испытаний (согласно ГОСТ 530 и ГОСТ Р 54853) в качестве основных средств измерений использовались измерители плотности тепловых потоков и температуры ИТП-МГ4.03 «ПОТОК» с семью модулями по десять каналов каждый, многофункциональный прибор Testo-435, тепловизор Therma CAM P65 и другие вспомогательные измерительные приборы и оборудование. Все используемое в испытаниях оборудование и средства измерения аттестованы и прошли поверку в установленном порядке.

При проведении испытаний температура и относительная влажность воздуха в отсеках климатической камеры поддерживалась автоматически с точностью ±1 °С и ±5 % соответственно.

Схема размещения датчиков температуры и тепловых потоков составлялась на основе предварительно проведенного термографирования поверхности кладок (согласно ГОСТ Р 54852). Температурное поле снималось с целью выявления теплопроводных включений и термически однородных зон, их конфигурации и размеров. Для определения теплотехнических характеристик ограждающей конструкции датчики температуры и тепловых потоков устанавливались как в центре термически однородных зон, так и в местах с теплопроводными включениями, в зонах поверхности горизонтального и вертикального швов кладки.

Приведенное термическое сопротивление теплопередаче кладки определялось как средневзвешенное значение R пр К по формуле (1) (см. Формулы), а приведенное сопротивление теплопередаче кладки R пр о по формуле (3).

Фрагменты кладок испытывались в два этапа: на первом этапе кладки выдерживали и подсушивали в течение двух недель до влажности не более 6 %; на втором этапе кладки дополнительно высушивали до влажности менее 1 %.

Влажность изделий в кладке определялась методом взятия проб и приборами неразрушающего контроля (прибор GANN UNI-2 с датчиками МВ 35 и В60) в соответствии ГОСТ 21718 2 , а средняя плотность материалов кладок – с ГОСТ 7025 3 (табл. 1).

Измерения теплотехнических характеристик кладок

Результаты измерений теплотехнических характеристик кладок на втором этапе испытаний приведены в табл. 2. Средние значения температуры воздуха в теплом tсрв и холодном tсрн отсеках климатической камеры измерялись на расстоянии 0,1 м от поверхностей кладок, равны соответственно 19,7 и –28,1 0 С. Среднее значения коэффициента теплоотдачи с внутренней стороны кладок αсрв равно 8 Вт/(м 2 ·К), с внешней стороны αсрн – 17,5 Вт/(м 2 ·К).

По результатам полученного в испытаниях приведенного термического сопротивления теплопередаче кладки R пр К по формуле (5) определяется величина эквивалентного коэффициента теплопроводности кладки λэкв.

Далее по данным, полученным на двух этапах теплотехнических испытаний, определяются (согласно ГОСТ 530):

  • значение эквивалентного коэффициента теплопроводности кладки на один процент влажности Δλэкв по формуле (6);
  • коэффициент теплопроводности кладки в сухом состоянии λо по формуле (7) (результаты в табл. 3, где для сравнения приведены значения коэффициентов теплопроводности кладок и из других источников).

Результаты и анализ теплотехнических испытаний

Результаты теплотехнических испытаний кладок из обыкновенного глиняного кирпича достаточно хорошо согласуются с данными, приведенными в ГОСТ 530 и СП 50.13330 4 . Однако для ряда кладочных материалов характерно существенное расхождение значений теплотехнических характеристик, полученных в результате испытаний с аналогичными значениями, предоставленными производителями материалов.

Например, для кладки из пустотелых крупноформатных керамических блоков плотностью 800 кг/м 3 получено значение эквивалентного коэффициента теплопроводности в сухом состоянии 0,31 Вт/(м·K), а в сертификатах производителей приводится значение 0,15 Вт/(м·K); для кладки из полнотелых керамзитобетонных блоков плотностью 1 400 кг/м 3 получено значение 0,91 Вт/(м·K), в сертификатах – 0,36 Вт/(м·K).

Можно сделать вывод, что сегодня на рынке строительных материалов в основном представлены сертификаты, выданные по заказу либо самих производителей, либо ангажированных ими компаний, и практически отсутствуют реальные данные, полученные на базе независимых испытаний.

При проектировании наружных ограждающих конструкций рекомендуется разделять функциональные элементы конструкций на конструкционные (несущие) и теплозащитные. Наметившаяся тенденция совмещения этих двух функций в одном конструкционном элементе (два в одном), например в керамзитобетонных блоках, по-видимому, будущего не имеет. Более перспективными представляются конструкции с прочной несущей частью (например, кирпич или железобетон) и с эффективным слоем наружной теплоизоляции.

Как видно (табл. 4), значения величин приведенных термических сопротивлений теплопередаче R пр К исследованных ограждающих конструкций в сухом состоянии при утеплении кладок плитами из минеральной ваты толщиной 90 мм, пенополистирола и пеностекла толщиной 100 мм близки по величине. Температурные поля кладок, утепленных слоем высокоэффективного теплоизолятора, характеризуются достаточной теплотехнической однородностью – на термограммах не наблюдается тепловых потерь, обусловленных кладочными швами.

Приведенные термические сопротивления теплопередаче и коэффициенты условий работы

Вычисленные по экспериментально полученным данным R пр К средние значения эквивалентного коэффициента теплопроводности для слоя каменной минеральной ваты равны 0,045 Вт/(м·K), плит из пенополистирола – 0,05 Вт/(м·K), плит из пеностекла – 0,06 Вт/(м·K). Более высокое значение эквивалентного коэффициента теплопроводности для пенополистирольных плит 0,05 Вт/(м·K), чем для плит из каменной минеральной ваты 0,045 Вт/(м·K), обусловлено влиянием зазоров между пенополистирольными плитами, их худшим прижатием к поверхности кладки.

При проектировании и строительстве наружных ограждающих конструкций важную роль играют технические мероприятия по устранению мостиков холода, поэтому при монтаже плит важно избегать зазоров между плитами более 2 мм, еще лучше укладывать их с перехлестом 50–100 мм.

Несмотря на то, что эквивалентный коэффициент теплопроводности плит из пеностекла ниже, чем для плит из минеральной ваты, этот тип утеплителей благодаря их свойству не накапливать влагу и большей долговечности находит все более широкое применение в строительстве.

Влияние инфильтрации воздуха на теплотехнические характеристики фрагментов ограждающих конструкций

Инфильтрация воздуха играет существенную роль в формировании теплозащитных качеств наружных ограждающих конструкций. К примеру, кладка из крупноформатных блоков, вертикальные швы которой выложены по технологии «паз – гребень», характеризуется высокой теплотехнической неоднородностью вдоль швов. Из термограмм такой кладки (рис. 2), снятых со сторон теплого и холодного отсеков климатической камеры, видно, что вдоль вертикальных швов кладки, которая выложена по технологии «паз – гребень» без использования раствора, наблюдаются значительные тепловые потери: температурный перепад между гладью кладки и швами составляет полтора градуса.

Определение воздухопроницаемости исследуемой ограждающей конструкции (рис. 3) проводилось в соответствии с ГОСТ 31167. 5

Климатическая камера ОАО «НИИМосстрой» – герметичное помещение с высокой степенью теплоизоляции, оснащенное климатическим оборудованием для создания внутри отсеков (теплого и холодного) различных температурных режимов. Теплый и холодный отсеки климатической камеры разделены исследуемой ограждающей конструкцией, состоящей из различных типов кладок. При измерении воздухопроницаемости:

  • двух объединенных отсеков климатической камеры до монтажа исследуемых кладок получено среднее значение величины кратности воздухообмена, равное n50 = 3,5 ч –1 ;
  • после монтажа исследуемых кладок и их сушки получены средние значения величины кратности воздухообмена для теплого отсека климатической камеры n50 = 16,5 ч –1 , для холодного отсека – n50 = 17,5 ч –1 . Разность полученных величин кратности воздухообмена Δn50 = 16,5 – 3,5 = 13 ч –1 и Δn50 = 17,5 – 3,5 = 14 ч –1 может быть отнесена к воздухопроницаемости испытываемых фрагментов кладок. Эти значения более чем в три раза превышают нормативные значения этой величины 4 ч –1 .

Полученные результаты в такой постановке измерений можно считать предварительными, они требуют дальнейших, более детальных исследований, в частности для каждого типа кладок в отдельности.

Проведена серия испытаний по изучению влияния ветрового воздействия на теплотехнические характеристики ограждающих конструкций, в которых использовался стенд, оснащенный четырьмя вентиляторами ВР 300-45-2.5/3 (рис. 4). Так, в результате выполненных измерений при ветровом воздействии со средней скоростью 7,5 м/с на поверхности кладок получено, что приведенное термическое сопротивление:

  • для кладки из щелевых керамзитобетонных блоков снизилось на 10 % – от 0,44 м 2 ·К/Вт (табл. 2) до 0,40 м 2 ·К/Вт;
  • для кладки из полнотелых керамзитобетонных блоков на 17 % – от 0,42 до 0,36 м 2 ·К/Вт.

Среднее значение коэффициента теплоотдачи на поверхности с холодной стороны поверхности кладок αн равно 27,8 Вт/(м 2 ·К).

Отметим, что существенную роль в наблюдающемся в московском жилищном строительстве превышении фактического энергопотребления зданий над проектными значениями играет инфильтрация наружного воздуха через наружные ограждения [1]. Величина удельного расхода тепловой энергии на отопление здания может быть снижена посредством повышения герметичности ограждающих конструкций, стыков, кладочных швов, использования эффективных теплоизоляционных материалов и рационального расположения их в ограждающих конструкциях.

Кроме того, эксплуатационная надежность систем теплоизоляции напрямую зависит от количества мостиков холода теплоизоляционной оболочки, которые являются очагами интенсивного старения слоя утеплителя и преждевременного разрушения системы. При проектировании теплозащиты зданий следует применять конструкции со сплошным контуром утепления и с минимумом теплопроводных включений и стыковых соединений.

Коэффициенты условий работы наружных ограждающих конструкций

Наиболее существенную роль в формировании теплозащитных качеств наружной ограждающей конструкции играют их эксплуатационная влажность, инфильтрация воздуха и изменение теплозащитных свойств конструкции, вызванное деградацией теплоизоляционных материалов.

В табл. 4 приведены результаты испытаний исследуемых ограждающих конструкций во влажном состоянии при условиях эксплуатации Б: R пр К.влаж и отношение величин R пр К.влаж / R пр К, которое в дальнейшем назовем коэффициентом условий работы mвлаж, учитывающим снижение теплозащитных свойств конструкции за счет изменения влажности конструкции.

При проектировании и строительстве наружных ограждающих конструкций зданий особое внимание следует уделять их влажностному режиму. Накопление влаги в слое утеплителя значительно снижает теплотехнические качества наружных ограждающих конструкций зданий, приводит к преждевременному старению и износу. Взаимное расположение отдельных слоев ограждающих конструкций должно способствовать высыханию конструкций и исключать возможность накопления влаги в ограждении в процессе эксплуатации [2, 3].

Аналогично определяем, используя результаты испытаний для величин приведенных термических сопротивлений теплопередаче с учетом инфильтрации воздуха R пр К.инф и с учетом изменения свойств теплоизоляционных материалов в процессе эксплуатации R пр К.долг, коэффициенты условий работы, учитывающие снижение теплозащитных свойств конструкции соответственно:

  • за счет инфильтрации воздуха mинф, равное отношению R пр К.инф / R пр К;
  • за счет деградации теплозащитных свойств конструкции mдолг, равное RпрК.долг / R пр К.

Для сравнения указаны (табл. 4) величины приведенных термических сопротивлений теплопередаче R пр К.СР, полученные по данным производителей материалов.

Для учета данных трех аспектов, влияющих на теплозащитные свойства теплоизоляционных материалов, предлагаем ввести понятие обобщенного коэффициента условий работы наружной ограждающей конструкции mр. Данная величина равна наименьшему значению из коэффициентов условий работы, учитывающих снижение теплозащитных свойств конструкции за счет изменения влажности конструкции, инфильтрации воздуха и деградации теплозащитных свойств конструкции, см. формулу (8). Рекомендуемые значения обобщенного коэффициента условий работы для применения при проектировании наружных ограждающих конструкций приведены в табл. 4.

Резюме

На основании проведенных экспериментальных исследований сделаны следующие выводы.

  1. Для ряда кладочных материалов характерно существенное расхождение значений теплотехнических характеристик, полученных в результате испытаний, с аналогичными значениями, предоставляемыми производителями.
  2. Существенную роль в тепловых потерях зданий играет инфильтрация наружного воздуха через наружные ограждения. Прежде всего это связано с качеством монтажа и герметичностью ограждающих конструкций, стыков и кладочных швов.
  3. При проектировании наружных ограждающих конструкций рекомендуется разделять функциональные элементы конструкций на конструкционные (несущие) и теплозащитные. Наиболее перспективными представляются конструкции с прочной несущей частью и с эффективным слоем наружной теплоизоляции.
  4. Поскольку наиболее существенную роль в формировании теплозащитных качеств наружной ограждающей конструкции играют их эксплуатационная влажность, инфильтрация воздуха и изменение теплозащитных свойств конструкции, вызванное деградацией теплоизоляционных материалов, предлагается ввести понятие обобщенного коэффициента условий работы наружной ограждающей конструкции mр = min(mвлаж, mинф, mдолг).

ФОРМУЛЫ

Литература

  1. Васильев Г. П., Личман В. А., Песков Н. В. Методика инструментального определения энергопотребления вводимых в эксплуатацию зданий // Жилищное строительство. 2014. № 12. С. 32–36.
  2. Vasilyev G. P., Lichman V. A., Peskov N. V., Brodach M. M., Tabunshchikov Y. A., Kolesova M. V. Simulation of heat and moisture transfer in a multiplex structure // Energy and Buildings. 2015. Vol. 86.
  3. Васильев Г. П., Личман В. А., Песков Н. В. Моделирование процесса сушки в ограждающих конструкциях зданий // Жилищное строительство. 2013. № 7.

1 ГОСТ 530–2012 «Кирпич и камень керамические. Общие технические условия», ГОСТ Р 54853–2011 «Здания и сооружения. Метод определения сопротивления теплопередаче ограждающих конструкций с помощью тепломера», ГОСТ Р 54852–2011 «Здания и сооружения. Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций».

2 ГОСТ 21718–84 «Материалы строительные. Диэлькометрический метод измерения влажности».

3 ГОСТ 7025–91 «Кирпич и камни керамические и силикатные. Методы определения водопоглощения, плотности и контроля морозостойкости».

4 СП 50.13330.2012 «Тепловая защита зданий. Актуализированная редакция СНиП 23-02–2003».

5 ГОСТ 31167–2009 «Здания и сооружения. Методы определения воздухопроницаемости ограждающих конструкций в натурных условиях».

Также щиток из кирпича востребован среди жильцов загородных домов, в которых установлены шведские печи Жирнова. Внешне они напоминают камин, а конструктивно состоят из топки и варочной поверхности: большая часть тепла уходит на отопление, небольшая часть — на приготовление.

Печи производства Ферингер также в большинстве случаев дополняются кирпичной стеной, что позволяет повысить их производительность.

Если отопительный щиток для металлической печи или кирпичной плиты не используется, то тепло, полученное от сгорания топлива, в прямом смысле вылетает в трубу. А в случае его наличия тепло задерживается, что позволяет обогреть помещение.

Кирпичный отопительный щиток

Печь со щитком для отопления помещения

Тепловой щиток, имеющий вид толстой кирпичной стены, можно сравнить с газовоздушным теплообменником, который пристраивается к любой печи с целью повышения эффективности ее работы. Газовые потоки под воздействием тяги дымохода движутся по вертикальным и горизонтальным каналам внутри стены.

Принцип работы данного приспособления основан на заборе тепла у дымовых газов. В результате сложенная из кирпича конструкция нагревается сама, а потом нагревает воздух в помещении. Благодаря теплоемкости материала стена долго остывает и продолжает отдавать тепло после прогорания топлива.

Как правило, щиток не оборудуется собственной камерой сгорания, играя роль лишь дополнительного элемента. Но иногда конструкцией предусматривается наличие топливника.

Кирпичный отопительный щиток.

Кирпичный отопительный щиток

Схема следующая. Как видно на рисунке дымовые задвижки сделаны в верхней части щитка. Вторая задвижка отвечает за летний ход газов. Третья — зимний режим (она открыта, а газы идут в дымообороты щитка, вторая задвижка закрыта). Пока газы прохождят по каналам они охлаждаются, отдавая часть своего тепла щитку, и в остывшем состоянии идут в трубу. .

Размеры нашего отопительного толстостенного щитка 89 х 38 х 224 см. Масса — 1,2 т. Теплоотдача: одна хорошая топка — 430 ккал/ч; две топки соответственно — 600 ккал/ч. Как правило щитки оштукатуривают или кладут сразу из красивого огнеупорного кирпича. Три дымовые заслонки дают возможность регулировать движение газов. Режимы работы следующие.

Режимы работы щитка.

  • В зиму зимняя задвижка закрыта, первая и вторая открыты. Идя по всем ходам щитка, газы теряют свое тепло отдая щитку.
  • В летнее время 1 и 3 задвижки открыты, вторая закрыта. Газы, минуя дымоход щитка, напрямую уходят через трубу. Для наилучшей вентиляции помещения в насадной трубе устраивается специальный канал. Он открывается решеткой, имеющей жалюзи (клапаны). Их присутствие позволяет эксплуатировать систему вентиляции в 3 режимах: открытом, открытом паполовину и закрытом. Далее увидим кладку отопительного щитка.

Материал для кладки отопительного щитка:

  • огнеупорный кирпич — 400 шт.;
  • речной песок — три-четыре мешка;
  • глиняная смесь- три мешка;
  • рубероид для гидроизоляции — 1-2 м.
  • чугунные задвижки 13 х 13 см -3 шт.;
  • вентиляционная дрерка с клапаном (15-20 см);
  • чугуннаяе дверки 14 х 13 см — 3 шт.

При кладке фундамента под щиток она на два ряда по высоте не доводится до уровня чистого пола. Сверху на фундаменте кладется один ряд кирпича, по нему настилается гидроизоляция, после чего размечается фигура печи. Далее ведется кладка второго ряда, который выходит верхней поверхностью на уровень чистого пола. После этого можно приступать к выкладыванию щитка.

Обратите внимание на перевязку.
30-й ряд — в ходе кладки справа щитка ставится задвижка, слева перекр. канал.
В 31-м и 32-м рядах перевязку швов делаем по другому

Верх щитка — перекрваем в три ряда. Это видно на рисунке. Такая схема полностью сделана по требованиям пожарной безопасности.
33, 34 и 35-й ряды — по рис.
36-й ряд — в ходе кладки делаем вентиляционный и дымовой ход

Кирпичный отопительный щиток

В кухонных дровяных печах большая часть тепловой энергии в буквальном смысле улетает в трубу, и лишь незначительное количество тепла расходуется на разогрев плиты. Чтобы задержать горячие газы и пустить их на обогрев жилища, нужен отопительный щиток – кирпичная стенка с дымооборотными каналами внутри. Отопительно-варочная печь со щитком идеальна для дачи и летней кухни – она не занимает много места, эффективно отапливает помещение и может работать в зимнем и летнем режимах.

  1. У компактных габаритов металлических печек есть и недостаток – слишком маленькая поверхность воздушного теплообмена.
  2. Помимо этого, газообразные продукты сгорания обладают очень высокой температурой — от +300° градусов и более. Поэтому приходится думать о пожарной безопасности и термоизолировать дымоход.
  3. Как известно, КПД печек пропорционален обратно температуре выводимых отходов сгорания. Для приготовления же еды варочные агрегаты используют далеко не всю генерируемую тепловую энергию.
  4. Помимо этого, такие печи обычно имеют короткие дымоходные каналы. Поэтому и они поглощаются немного тепла.
  1. Такие тепловые потери с любой точки зрения нерациональны. Возникает нужда их минимизировать. Один из самых распространенных способов понизить энергетические потери печи — это оснастить агрегат своими руками отопительным щитком.

Что представляет собой устройство

  1. Щиток представляет собой пристраиваемую к печи небольшую кирпичную стенку, внутри которой имеется развитая система дымоходов.
  2. С топкой такие устройства почти никогда не делаются. Нагревается щиток благодаря отводимым от печки газам. Конструктивно стенка не способна выбрасывать много тепла в окружающую среду.
  1. Есть более сложные и удобные конструкции, цена которых выше. Они оснащаются своими топками небольшого размера. Можно их делать и независимыми от варочной плиты и пристраивать, например, к печам с камином.
  2. Кирпич имеет хорошую теплопроводность, а главное — высокую теплоемкость. Разогреваясь при растопке печи либо приготовлении еды, он отдает тепло комнате несколько часов. Так можно получить аналог печки из кирпича. Только более простой конструктивно и за меньшие деньги.

Разновидности и схемы щитков

По внутреннему устройству данные сооружения бывают 2 видов:

  • канальные: в теле щитка устроена развитая сеть газоходов, представляющая собой несколько вертикальных каналов, соединенных между собой. Прежде чем выйти наружу, газы совершают извилистый путь по этим ходам, интенсивно отдавая тепло;
  • колпаковые: такой щиток для чугунной печи или плиты имеет одну или две камеры с горизонтальными сводами, где раскаленные газы задерживаются до тех пор, пока не остынут. Только после этого они могут попасть в вертикальный канал и уйти в дымоход.

Отопители канального типа конструктивно проще, поэтому и сложить их легче. Колпаковые щитки эффективнее с точки зрения отбора теплоты, но в исполнении гораздо сложнее. Новичкам браться за их возведение не рекомендуется, здесь нужна рука мастера. Для самостоятельного строительства представляем вам чертежи и разрезы простого отопительного щитка канального типа с тремя вертикальными газоходами:

Кирпичный отопительный щиток

Для того чтобы наша отопительно-варочная печь могла использоваться в летнее время для приготовления пищи, конструкцией предусмотрено переключение дымооборотов на летний режим. Переход осуществляется с помощью трех задвижек, встроенных в газоходы. Кроме того, в верхней части сооружения имеется вытяжная вентиляционная шахта для организации воздухообмена в помещении. Чтобы избежать опрокидывания тяги при сильном ветре, на выходе из шахты установлена решетка с обратным клапаном.

На следующей схеме, изображенной ниже, показана металлическая варочная плита с отопительным щитком колпакового типа. Как видите, здесь газы после выхода из топки печи попадают в камеру со сводом, откуда ведут 2 канала.

Поскольку из камеры можно двигаться только вниз, продукты горения с высокой температурой задерживаются под сводом, пока не остынут. Тогда они становятся тяжелее и согласно закону конвекции покидают пространство камеры. В этом случае для повышения эффективности печь с отопительным щитком оборудована трубчатыми нагревателями, размещенными внутри газоходов.

Кирпичный отопительный щиток

Поскольку предполагается, что большинство интересующихся людей имеют мало опыта в печном деле, то для самостоятельного строительства предлагается простая канальная конструкция, представленная на первом чертеже предыдущего раздела. В отличие от мастера, несведущему человеку для возведения понадобится порядовка отопительного щитка, которую мы и покажем на схеме:

Кирпичный отопительный щиток

Для строительства канального щитка по этой порядовке понадобятся следующие материалы и фурнитура:

  • кирпич красный керамический полнотелый – 309 шт.;
  • задвижка 130 х 130 мм – 3 шт.;
  • дверца для прочистки 130 х 140 мм – 3 шт.;
  • решетка вытяжная с клапаном 150 х 200 мм;
  • глина – 6 ведер;
  • песок – 4 ведра;
  • рубероид – 2 м2.

Следует отметить, что кладка отопительного щитка ведется по всем правилам печного искусства. Вначале необходимо устроить фундамент из бетона, не связанный с основанием здания. Его верх должен быть на 150 мм ниже уровня пола. Уложив на фундамент гидроизоляционный слой из рубероида, начинают кладку в соответствии с порядовкой. Кладочный раствор надо тщательно размешать из предварительно замоченной и профильтрованной глины и просеянного песка.

Кирпичный отопительный щиток

Чтобы правильно сложить своими руками щиток из кирпича, нужно выдерживать толщину шва 3 мм, максимально допустимый слой – 5 мм. После укладки камней каждый ряд нужно проверять на соответствие горизонтали и вертикали с помощью строительного уровня и отвеса. Излишки раствора, выступающие из швов, надо удалять, а внутреннюю поверхность газоходов еще и протирать влажной тряпкой после укладки 3-4 рядов.

Кирпичный отопительный щиток

Построенный своими руками щиток для буржуйки или любой другой отопительно-варочной печки должен как следует просохнуть. Образовавшиеся мелкие трещины следует аккуратно заделать глиной. После этого можно протопить печь, начав с небольшой закладки дров и постепенно наращивая температуру.

Разновидности и схемы щитков

По внутреннему устройству данные сооружения бывают 2 видов:

  • канальные: в теле щитка устроена развитая сеть газоходов, представляющая собой несколько вертикальных каналов, соединенных между собой. Прежде чем выйти наружу, газы совершают извилистый путь по этим ходам, интенсивно отдавая тепло;
  • колпаковые: такой щиток для чугунной печи или плиты имеет одну или две камеры с горизонтальными сводами, где раскаленные газы задерживаются до тех пор, пока не остынут. Только после этого они могут попасть в вертикальный канал и уйти в дымоход.

Отопители канального типа конструктивно проще, поэтому и сложить их легче. Колпаковые щитки эффективнее с точки зрения отбора теплоты, но в исполнении гораздо сложнее. Новичкам браться за их возведение не рекомендуется, здесь нужна рука мастера. Для самостоятельного строительства представляем вам чертежи и разрезы простого отопительного щитка канального типа с тремя вертикальными газоходами:

Кирпичный отопительный щиток

Для того чтобы наша отопительно-варочная печь могла использоваться в летнее время для приготовления пищи, конструкцией предусмотрено переключение дымооборотов на летний режим. Переход осуществляется с помощью трех задвижек, встроенных в газоходы. Кроме того, в верхней части сооружения имеется вытяжная вентиляционная шахта для организации воздухообмена в помещении. Чтобы избежать опрокидывания тяги при сильном ветре, на выходе из шахты установлена решетка с обратным клапаном.

На следующей схеме, изображенной ниже, показана металлическая варочная плита с отопительным щитком колпакового типа. Как видите, здесь газы после выхода из топки печи попадают в камеру со сводом, откуда ведут 2 канала.

Поскольку из камеры можно двигаться только вниз, продукты горения с высокой температурой задерживаются под сводом, пока не остынут. Тогда они становятся тяжелее и согласно закону конвекции покидают пространство камеры. В этом случае для повышения эффективности печь с отопительным щитком оборудована трубчатыми нагревателями, размещенными внутри газоходов.

Кирпичный отопительный щиток

Как выложить щиток с автономной топкой

Особенности кладки

Порядовка отопительного щитка в этой конструкции имеет свои особенности (схему можно найти в интернете, задав соответствующий запрос). В общих чертах процесс выглядит следующим образом:

  • 1 и 2 ряд выкладываются в соответствии с порядовкой.
  • В 3 ряду необходимо оставить зольник под топку.
  • 4 ряд: устанавливаются две задвижки (одна – для летнего хода, другая – для зимнего) и четыре дверки (две поддувальные + две прочистные с кирпичными закладками внутри).
  • 5 ряд аналогичен четвертому (соблюдается перевязка швов).
  • 6 ряд все каналы уменьшаются, все дверки перекрываются. Ставится духовой шкаф и водогрейная коробка.

Кирпичный отопительный щиток

  • В 7 ряду укладываются две колосниковые решетки (одна – для топливника плиты, другая – для топливника щитка). Кирпичи с обеих сторон решеток стесываются. Длинный канал слева перекрывается, чтобы образовалось два коротких канала.
  • В 8 ряду (кладется по порядовке) устанавливаются топочные дверки (одна размером поменьше – для топливника щитка, другая – побольше – для топливника плиты).
  • 9 ряд кладется по схеме, также и 10, но в нем над духовкой кладется стальная полоска.
  • 11 ряд: дверки перекрываются, верх духовки смазывается глиняным раствором. Справа от водогрейной коробки канал закрывается кирпичом, слева – остается не заложенным.
  • В 12 ряду укладывается чугунный настил, вокруг плиты укрепляется каркас из стальных уголков. Этот ряд – завершающий в кладке плиты.

Кирпичный отопительный щиток

Прочие порядовки – это кладка щитка (смотреть на схеме).

  • В 16 ряду необходимо стесать кирпич справа у второго канала.
  • В 19 – ставится задвижка, которая закрывает трубу (с этого и по 25 ряд включительно из трех имеющихся каналов образуется пять).
  • В 22 ряду ставится самоварник, далее в последующих рядах остается один канал – труба, а щиток перекрывается кладкой в три ряда.
  • В 31 ряду канал трубы уширяется с помощью стесывания кирпича.
  • В 32 и 33 рядах ставится вентиляционная решетка (для этого образуется отдельный канал).

Размеры, на которые следует ориентироваться:

  • Длина – 1400 мм.
  • Ширина – 1020 мм.
  • Высота — 2170 мм.
  • Масса — 2800 кг.
  • Длина стальной полосы над духовкой – 550 мм.

Типы отопительных щитков

Кирпичный отопительный щиток

Конструкцию классифицируют по разным признакам.

По толщине стенок:

  • в полкирпича (толстые стенки, оптимальный вариант в том случае, если планируется регулярная долгая работа плиты, а также как защита от потенциального возгорания);
  • в четверть кирпича (тонкие стенки, которые быстрее нагреваются, но при этом быстрее остывают, при этом кладка в этом варианте требует более тщательного соблюдения правил пожарной безопасности, а также укладки щитка на гидроизолированный фундамент и непременного оснащения печи металлическим кожухом).

По конструктивным особенностям и особенностям монтажа:

колпакового типа – одна или две кирпичные поверхности, соединенные каналами. В каждом колпаке вход и выход дымохода ставятся ниже его верхней плоскости. Причина в том, что горячий воздух стремится вверх, так что, нагревшись и попав в колпак, он останется в нем вплоть до момента остывания, а затем, будучи вытеснен более горячим газом, уйдет выше по дымовыводящей трубе.

В этом смысле двухколпаковый отопительный щиток выгоднее – он заберет у печных газов тепла больше, чем конструкция с одним колпаком.

канального типа – предполагает установку виткового дымоходного канала, который имеет одинаковый диаметр на всех участках трубы. Такой дымоход может быть вертикальным или горизонтальным, но, в любом случае, в нем устанавливаются перегородки. Также этот тип предполагает установку перемычек – летом они препятствуют ненужному нагреву всей поверхности, сосредотачивая тепло исключительно на плите.

  • прямая – наиболее распространенная форма щитка;
  • угловая – встречается реже, зато экономит место в помещении и дает больше тепла благодаря большей площади.

Заключение

Роль кирпичного щитка действительно очень важна. Получается, что при совместной работе с ним будет эффективной даже простая буржуйка, чей КПД не превышает 30—40%. Сооружение позволяет значительно снизить расход дров и при этом успешно обогревать помещение. К сожалению, не во всяком доме возможно подобное строительство и решать вопросы экономичности приходится иными путями.

Металлические варочные и отопительно-варочные печки имеют одно несомненное преимущество — компактность. Подобный агрегат не будет занимать много места в вашем доме или на даче. Чтобы повысить эффективность стальных и чугунных печей, применяется кирпичный отопительный щиток.

Читайте также: