Карбонизационная усадка бетона это

Обновлено: 28.03.2024

Кроме усадки при высыхании бетон подвергается усадке за счет карбонизации. Это явление было обнаружено только в последнее время и в большинстве имеющихся экспериментальных данных по усадке, величина усадки при высыхании включает в себя и усадку при карбонизации бетона. Однако природа усадки при карбонизации и высыхании совершенно различна.

Углекислый газ СО2, имеющийся в атмосфере, в присутствии влаги вступает во взаимодействие с продуктами гидратации клинкерных минералов. Это взаимодействие происходит даже при малых концентрациях СО2 в атмосфере, где парциальное давление СО2 около ЗХЮ~4 атмосферы; в непроветриваемой лаборатории парциальное давление может составлять до 12X10~4 ат. Степень карбонизации увеличивается, с увеличением концентрации СО2 в воздухе.

В присутствии СО2 карбонизуется Са(ОН)2 бетона до СаСОз, в такие же реакции вступают и некоторые другие продукты гидратации цемента. Эти реакции могут протекать при низких концентрациях СО2 в атмосфере, однако глубина карбонизации незначительна и медленно увеличивается во времени.

Степень карбонизации легко определяется при обработке свежего излома бетона фенолфталеином, при этом Са(ОН)2 приобретает малиновый цвет, в то время как карбонизован-ный участок бетона не окрашивается. Степень карбонизации зависит также от влажности бетона и относительной влажности окружающей среды. Размер образцов тоже влияет на карбонизацию. Это связано с тем, что влага, образующаяся, в результате взаимодействия Са(ОН)2 с СО2, стремится диффундировать в атмосферу с тем, чтобы установилось равновесие внутри образцов. Если диффузия протекает медленно, то давление пара в бетоне увеличивается до состояния насыщения и проникание СОг в образец приостанавливается.

Карбонизация сопровождается увеличением веса и усадкой бетона, которая при карбонизации вызывается растворением кристаллов Са(ОН)2 под действием сжимающих напряжений (вызванных действием усадки при высушивании) и отложением СаСОз в ненапряженных объемах.

На рис. 6.19 приведены кривые усадки при высыхании растворных образцов, хранившихся в атмосфере, свободной от СО2, но с различной влажностью, а также кривые усадки под действием последующей карбонизации. Как видно из приведенных графических зависимостей, карбонизация приводит к увеличению усадки при значениях относительной влажности воздуха, от 100% ДО 25%. В последнем случае в поро-вом пространстве цементного камня содержится недостаточно влаги для образования из СОг угольной кислоты. При 100% влажности поры бетона заполнены водой, и диффузия СОг в цементный камень протекает очень медленно; возможно также, что диффузия ионов кальция из цементного камня приводит к образованию СаСОз с последующей кольматацией пор, расположенных в поверхностном слое.

Последовательность протекания процессов высыхания и карбонизации в значительной степени влияет на величину общей усадки.

Одновременное высыхание и карбонизация приводит к меньшей усадке, чем в случае, когда карбонизация происходит после высыхания (рис. 6.20), так как в первом случае большая часть процесса карбонизации идет при относительной влажности больше 50%, а при этих условиях усадка за счет карбонизации бетона автоклавного твердения очень мала.

В случае, когда бетон подвергается попеременному увлажнению и высушиванию в атмосфере, содержащей СОг, усадка, обусловленная карбонизацией (в цикле высыхания), становится значительно более заметной. При этом в любой стадии усадка больше, чем в атмосфере, не содержащей СО2, поскольку карбонизация увеличивает величину необратимой ее части и может способствовать образованию трещин в бетоне.

Карбонизация бетона, предшествующая испытаниям при переменном увлажнении и высушивании, уменьшает влажностные деформации иногда наполовину. Это обстоятельство используется в практических целях путем предварительной карбонизации элементов заводского изготовления, проводимой сразу после распалубки. В этом случае при строгом соблюдении влажностных условий при карбонизации получают бетон с малыми величинами влажностных деформаций.

Карбонизация бетона приводит также к увеличению его прочности и снижению проницаемости вследствие того, что вода, выделяющаяся при карбонизации, способствует гидратации, а СаСО3 уплотняет цементный камень.

Карбонизация бетона: влияние на долговечность конструкции

Прочностные характеристики бетона позволяют использовать его при строительстве несущих конструкций, которые подвержены высоким нагрузкам. Он прочен, долговечен и устойчив к перепадам температур, но, несмотря на это, бетон имеет один важный недостаток — карбонизацию.

Что такое карбонизация бетона

Это одна из самых распространенных причин разрушения бетонных и железобетонных сооружений. Этот процесс приводит к деформации поверхности и создает условия для возникновения коррозии металлической арматуры, используемой при строительстве.

Карбонизация — это процесс нейтрализации бетона под воздействием углекислого газа и влаги, поглощенных из окружающей среды. В течение этого процесса происходит постепенное изменение изначальных свойств материала — понижение щелочного баланса и образование карбоната кальция.

Общие сведения

Коррозия на арматуре

Бетон — пористый материал, из-за чего он с легкостью впитываетСО2, который при взаимодействии с цементным камнем и клинкерными добавками, снижает щелочность жидкой фазы материала, что приводит к негативным последствиям.

Конструкции, имеющие в основании металлическую арматуру,в ходе карбонизации начинают корродировать, в результате чего появляется ржавчина, которая в свою очередь, приводит к нарушению целостности сооружения и снижению несущей способности.

Химические процессы

Процесс карбонизации начинается с момента изготовления материала и длится в течение всей эксплуатации. Происходит он следующим образом — в бетоне при контакте с воздушной средой, а именно кислотообразующими газами (углекислый газ), происходит сложная химическая реакция по превращению гидроксида кальция в карбонат кальция.

Углекислый газ проникает в поры бетонного основания и при воздействии влаги нейтрализует щелочную среду. В процессе реакции показатели рН снижаются с 12-12,5 до 9, в результате чего защитные свойства материала ослабляются, и появляется комфортная среда для развития коррозии.

Основные этапы образования ржавчины:

  • Диффузия СO2 через поры бетона.
  • Реакция и растворение СO2 в щелочной поровой жидкости.
  • Нейтрализация Ca(OH)2 полученной кислотой.

Насколько активным будет процесс карбонизации зависит от качества бетона и характеристик окружающей среды. Особое значение имеют следующие показатели:

  • Влажность воздуха.
  • Концентрация углекислого газа.
  • Пористость и проницаемость бетона.
  • Давление.
  • Температура окружающего пространства.

В результате реакции остаются продукты гидратного образования с побочными веществами — глинозем, гидратированный кремнезем, оксид железа.

Даже малый процент углекислого газа в воздухе запускает реакцию нейтрализации бетона.

Интенсивность течения

Ржавчина на бетоне

Скорость течения процесса напрямую зависит от показателей влажности воздуха:

  • В пределах 25% и около 100% — минимальная скорость;
  • от 50% до 60% — максимальные значения.

Недостаток влаги или ее избыток практически нейтрализуют процесс карбонизации. При минимальных значениях влаги не достаточно для начала запуска реакции, а при максимальных — снижается способность диффузной проницаемости.

Глубина карбонизации бетона

При проведении оценки надежности бетонной конструкции проводится определение глубины карбонизации. Подданным определением понимается расстояние от поверхности конструкции до границы перехода рН с кислого на щелочной.

При нормальных условиях коррозия может продвигаться вглубь на4-5 мм ежегодно или оставаться в пассивном состоянии. При наличии разрушенных участков или оголенной арматуры процесс ускоряется и может достигать 20 — 30 мм в год.

Как определить степень карбонизации бетона

Степень и глубина может определяться разными методами, например:

  • Рентгенодифрактометрией.
  • Инфракрасной спектроскопией.
  • Микроскопией.
  • Дифференциально-термическим анализом.
  • Химическим анализом.
  • Электрохимическим методом.
  • Определение с помощью индикаторов.

Чаще всего применяют тесты индикаторного типа в сочетании с карбометрическими физико-химическими способами.

Для выявления поврежденного участка вычисляется степень перехода бетона в форму карбоната, а для определения глубины процесса проводятся обследования объекта, в ходе которых используют колориметрический метод — нанесение 0,1% спиртового раствора фенолфталеина.

Средства для оценки

Анализ карбонизации

Лабораторные исследования по измерению степени карбонизации проводят в несколько этапов:

  • Образцы бетона покрывают изолирующими материалами, например, эпоксидной или акриловой смолой, затем помещают в эксикаторы под раствор хлорида натрия.
  • Спустя два дня образцы вынимают и измеряют диаметр, результаты заносятся в специальный журнал, где отмечают площадь каждого образца.
  • Далее образцы раскалывают и проводят оценку глубины проникновения раствора, именно она показывает способность конкретного материала подвергаться карбонизации.

Применение фенолфталеина

Раствор фенолфталеина используется в качестве индикаторного теста для выявления поврежденных участков и глубины проникновения коррозии.

Поверхность смачивается бесцветным 0,1% раствором фенолфталеина и по изменению его оттенка измеряется степень проникновения. Пробы снимаются только на свежем сколе.

При наличии щелочной среды (рН>8,3) бесцветный раствор меняет цвет на малиновый,в кислотной среде (рН).

Способы восстановления бетона

Есть два основных способа защиты и восстановления бетонной поверхности — это снижение способности бетона к окислению и влагопоглощению и укрепление конструкции путем физико-химической обработки.

Замедлить процесс можно при применении специальных защитных покрытий, которые имеют хорошие показатели водопроницаемости и отличаются высокими коэффициентами сопротивления к диффузии углекислого газа — полиуретановые, акриловые и эпоксидные смолы, силиконы, силоксаны и т.п.

Восстановление бетона

Для замедления процесса используется подщелачивание бетона, выполняется оно двумя способами:

  • Электрохимическое воздействие при помощи проводников с катодами. Позволяет восстановить щелочной баланс материала и обеспечить пассивное состояние металлической арматуры.
  • Восстановление щелочности в процессе ионной диффузии. На бетонное основание наносится высокощелочной раствор, который стимулирует оптимальный химический баланс для поддержания прочности материала.

Эти методы замедления процесса карбонизации являются профилактическими. В качестве же капитальной меры производится полное удаление и замена дефектной части — поврежденные слои снимаются, тщательно зачищаются, затем поверхность обрабатывается изолирующим покрытием.

Прогнозирование карбонизации

Для предупреждения возникновения разрушения будущей постройки проводится комплексное обследование конструкции.

Первоначальное прогнозирование происходит на этапе проектирования.

Прогнозирование опирается на следующие данные:

  • Условия внешней среды — температура, влажность, давление, концентрация кислотных газов.
  • Изначальные свойства материала— показатели прочности, влагостойкости и паропроницаемости.
  • Степень гидратации цемента.
  • Динамика изменений свойств материала— измеряется в ходе эксплуатации.

На основе полученных данных проводится обследование конструкции и последующее прогнозирование, которое позволяет определить текущее состояние бетона и его антикоррозийные свойства.

Преимущества карбонизации

Процесс приводит к изменению изначальных свойств бетона, и несмотря на то, что он создает условия для коррозии арматурных конструкций, у него есть несколько преимуществ:

  • Повышение плотности бетона за счет образования карбоната кальция.
  • Увеличение водостойкости и газонепроницаемости за счет снижения объема пор.
  • Повышение прочности материала на 20 — 50%(в зависимости от марки бетона).

Карбонизация не влияет на прочность и долговечность бетонных сооружений, она оказывает пагубное влияние только на арматуру.

Карбонизация — частая причина разрушения построек из бетона, она снижает технические свойства материала, приводит к деформации поверхности, а самое главное — создает условия для возникновения коррозии стальных элементов конструкции.

Важно проводить прогнозирование и своевременную диагностику поверхности, чтобы в случае возникновения опасности принять меры по укреплению сооружения и замедлению процесса окисления бетона.

Действие на бетон атмосферного С02 в присутствии влаги приводит к развитию физических и химических процессов. При карбонизации поверхность бетона начинает покрываться сетью тонких трещин. Это явление особенно нежелательно для сборных изделий, для которых важен декоративный внешний вид. Карбонизация снижает рН норовой жидкости и повышает опасность коррозии арматуры. В пористых изделиях С02 способен более активно взаимодействовать с составляющими цементного камня, вызывая усадку (карбонизационную усадку), которая может быть нежелательной; на ее долю приходится до 1/3 общей усадки бетона.

Искусственная карбонизация полезна для стабилизации объема бетонных блоков. Это достигается путем их предварительной карбонизации. Хотя при карбонизации происходит разложение гидративных новообразований цементного камня, этот процесс может улучшить прочность бетона.

Несмотря на то, что накоплено большое число данных о масштабах изменений бетона под действием С02, механизм карбонизационной усадки еще не вполне ясен; этим и объясняется неослабевающий интерес к данной проблеме.

Особенности кристаллической структуры возникающих карбонатов зависят от условий хранения и вида материалов. Данные рентгеновского анализа и инфракрасной спектроскопии позволили идентифицировать ватерит, кальцит и арагонит. Последний из них превалирует в малогидратированных пробах; ватерит переходит в стабильную форму, т. е. в кальцит.

Высказано предположение, что все три перечисленные модификации карбонатов кальция существуют в виде плохо закристаллизованных соединений. В спрессованных растворных образцах из C3S и P-QS доминирующей фазой был кальцит. Таким образом, возможно образование комплексов между CSH и С02.

Карбонизация изменяет поровую структуру гидратированных цементных паст. В результате того, что карбонаты кальция кольматируют эти поры, общая пористость и объемная концентрация крупных пор (125—1000 Ас) обычно уменьшаются.

Морфологические исследования карбонизированного цементного камня и его отдельных компонентов не привели к получению данных, которые позволили бы объяснить физические свойства или механизм карбонизации. Гидратированный C3S, подвергшийся карбонизации и выдерживанию в кислоте, может иметь такую же неопределенную морфологию, как и негидратированных C3S, несмотря на то, что для него характерна очень высокая удельная поверхность. Аналогичные друг другу структуры имели карбонизированный и некарбонизированный пористый бетон. Возможно, это объясняется тем, что исходный материал мог быть уже карбонизирован.

Усадка: связь с влажностью. Усадка гидратированных портландцементных материалов зависит как от высушивания, так и от карбонизации. Усадка при высушивании уже обсуждалась, высушивание в равновесных условиях при относительной влажности от 0 до 100%, за которым следует карбонизация и высушивание с одновременной карбонизацией. Как видно, в последнем случае максимальное значение карбонизационной усадки намного меньше, чем усадки при высушивании с последующей карбонизацией, причем наиболее благоприятны для ее развития условия 50 %-ной относительной влажности воздуха. Карбонизация способствует развитию усадки только при относительной влажности воздуха менее 100%. По-видимому, позиции развития карбонизационной садки прессование гидратированных цементов может служить в качестве удовлетворительной модели гидратированных цементных паст в реальных условиях по сравнению с гидратированными портцементными образцами и другие СаО., установлено, что карбонизация усадка спрессованных и хранившихся затем в одинаковых условиях относительной влажности образцов из гидратированного портландцемента п Са (ОН)2 развивается сходным образом 2 и 42 суток для образцов из гидратированного портландцемента.

Обе сравниваемые системы характеризуются незначительной усадкой при низкой и высокой относительной влажности воздуха.

На ход кривых карбонизационной усадки в функции от относительной влажности воздуха влияют несколько факторов: размер образцов, концентрация С02, давление, проницаемость материала и основность гидросиликатов кальция. От толщины образцов зависит как глубина диффузии в них углекислого газа, так и степень потери влаги В тонких образцах результаты, полученные на начальных стадиях карбонизации, могут быть сопоставимыми с данными более длительных испытаний массивных образцов. Кроме того, должно быть достигнуто равновесие между относительной влажностью воздуха и влагой в порах образцов: только в этом случае можно получить воспроизводимые данные.

Обнаружено, что кривые карбонизационная усадка — влажность сдвигаются относительно осп влажности. причем этот эффект связан с размерам образцов; от него зависит также максимальная величина усадки в функции от оптимальной влажности воздуха. Карбонизационная усадка в целом возрастает с увеличением концентрации СО, и давления.

Известно несколько различных теоретических представлений о механизме карбонизационной усадки, которые в целом не согласуются друг с другом; однако три из них — Пауэрса, Рамачандрана—Фельдмана и Свенсона—Середы — находятся в лучшем соответствии с опытными данными, чем другие, и поэтому считаются более предпочтительными.

Гипотеза Пауэрса. Наблюдаемое увеличение сжимаемости гидратированного портландцемента Пауэре обусловливает растворением кристаллов гидроксида кальция, когда последний находится под капиллярным давлением, вызванным эффектом менисков в матрице С S- -Н-фазы при 50 %-ной относительной влажности воздуха.

Карбонат кальция осаждается в тех местах, которые не находятся под давлением. Ионы кальция из С -S- -Н реагируют с СОо юнохимнчески, поэтому карбонизация С- S И не приводит к усадке, поскольку не происходит растворения этой фазы. Хотя Са (ОН)2 при высокой влажности растворяется, кристаллы гидроксида кальця не сжаты матрицей С—S—Н, так как сжимающий эффект, обусловленный наличием менисков, пренебрежимо мал; соответственно величина усадки минимальна. При низкой относительной влажности растворяется незначительное количество Са(ОН)2 и, следовательно, ничтожно мала карбонизационная усадка материала.

Кристаллы карбоната кальция сдерживают развитие влажностной усадки, обусловленной удалением влаги, когда образцам дают высохнуть после карбонизации. Поскольку карбонат кальция менее сжимаем и имеет меньшую плотность, чем Са(ОН)2, его образование сопряжено с некоторым снижением влажностной усадки образцов.

Гипотеза Рамачандрана—Фельдмана. Эти авторы считают, что в начальный период времени карбонизационная усадка одного Са,Н0, вызван попаданием воды в эти пустоты. В отличие от представлении Пауэрса, согласно которым сжимающие силы при усадке связаны с появлением менисков, для схемы Рамачандрана— Фельдмана мениски не обязательны, так как к усадке при карбонизации могут привести молекулярные силы Ваи-дер-Ваальса.

Авторы предположили также, что участие С—S— Н-фазы в карбонизационной усадке включает полимеризацию кремнезема, аналогичную той, которая была описана Ленцем.

Гипотеза Свенсона—Середы. Свенсон и Середа исходят из того, что карбонизационная усадка — результат

осуществления последовательного ряда циклов. Каждый из этих циклов, в свою очередь, состоит из двух полу циклов: увлажнения и высушивания.

Локальное образование влаги, обусловленное описанной ранее реакцией карбонизации Са (ОН)2, представляет собой первую (влажностную) половину цикла; его вторую половину (высушивание) обеспечивают относительно непроницаемые пленки карбоната кальция, экранирующие Са(OH)s и поэтому тормозящие процесс его карбонизации; в результате появляется возможность удаления накопившейся влаги в атмосферу. Разрушение экранирующих пленок при высушивании приводит к дальнейшему протеканию реакции карбонизации Са(ОН)2 и. т. д.

Таким образом, механизм усадки заключается в растворении Са2 подтверждают, что при действии С02 на С—S—Н имеет место также полимеризация кремнезема.

Все изложенное ранее может быть резюмировано следующим образом: карбонизационная усадка гидратированного портландцемента — результат как физических, так и химических процессов. Нестабильность С—S—Н-фазы обусловлена несколькими причинами образованием неупорядоченных плохо закристаллизованных продуктов, часто в образцах с невысокой пористостью и значительной напряженностью структур в точках их кристаллизационных

контактов. При их разрушении высвобождается потенциальная энергия. Существенны также дефектность цепочек из SiOj-тетраэдров и их полимеризация. Эти процессы, развивающиеся во времени, приводят к усадке капиллярно-пористых систем.

Значительная усадка при карбонизации С—S—Н-фазы свидетельствует о той важной роли, которую играет в ней СО, связанный с С—S—Н. Разрушение С—S—Н в присутствии влаги и Са02 лежит, таким образом, в основе процесса, приводящего к большой усадке. Однако выщелачивание гидроксида кальция из насыщенных водой цементных паст не вызывает усадочных деформаций.

Значительные деформации усадки в уплотненном гидроксиде кальция, в точках их контакта друг с другом, проявляется в тем большей степени, чем выше их растворимость в среде, содержащей С02.

Было постулировано, что молекулы воды, которые могут в отсутствие С02 уменьшить усилия, вызванные усадкой, не в состоянии выполнить эти же функции в присутствии С02. Стабилизация силикатов кальция обеспечивается при развитии процесса ползучести, циклическом насыщении водой и высушивании, а также при автоклавировании, модифицирующих и стабилизирующих микроструктуру. Прослеживается аналогия между тем, что происходит в С S -Н-фазе, изменением микроструктуры и возрастанием стабильности керамики, что обеспечивается ее высокотемпературным спеканием.

Предсказуемости характеристик и применения в течение нескольких десятилетий СаС12 — все еще наиболее полезный ускоритель в практике изготовления бетона.

lignosulfat

Одна из наиболее важных областей использования замедлителей — бетонирование в жаркую погоду, когда замедление в транспортировании и перегрузке бетонной смеси в промежутке между перемешиванием и укладкой могут привести к раннему схватыванию и потере ее удобоукладываемости. Этого можно избежать введением замедлителей. При тампонировании глубоких скважин, когда температура обычно выше 90°С, используются такие замедлители, как сахар, казеин, декстрин, глицерин, карбоксиметилцеллюлоза и неорганические соединения. При строительстве большеразмерных объектов хорошая удобоукладываемость в течение всего периода укладки бетонной смеси и предотвращение холодных швов (стыков) достигаются введением замедлителей.

Введение добавок в рекомендованных дозировках может по-разному изменять химический состав цементов разных марок, поэтому перед практическим применением рекомендуется проверить действие добавок на данных материалах в используемых соотношениях.

В бетон, содержащий лигносульфоиат и сахар, могут вовлекаться небольшие количества воздуха. Однако гидроксилированные соли адипииовой кислоты или глюконовая кислота и их производные не вовлекают воздуха.

Замедлители на основе гидрокенкарбоновых кислот повышают скорость водоотделения и способность к водоотделению пластифицированного бетона. Они могут быть полезны в условиях, когда превалирует скорость высушивания. При нормальных условиях отделочные операции должны быть задержаны до тех пор, пока отделяемая вода не исчезнет с поверхности. Условия для сильного водоотделении создаются, когда для производства бетона используют грубо измельченный цемент.

Как следует из обзора литературы, большинство исследователей убеждены в том, что замедление происходит вследствие адсорбции замедлителя на поверхности цементных зерен или на продуктах гидратации. Однако по молекулярной структуре нельзя предсказать, будет ли вещество вести себя как замедлитель. В основном большинство эффективных замедлителей имеет несколько атомов кислорода, способных к сильному поляризационному эффекту. Эти кислородные атомы могут находиться в составе гидроксильной, карбоксильной или карбонильной групп.

Лигносульфонаты очищенные от сахаров.

Известно, что добавки, основанные на лигносульфонатах,- замедляют реакции гидратации портландцемента. Промышленные лигносульфонаты содержат разные количества Сахаров, таких, как кенлоза, манноза, глюкоза, галактоза, арабиноза и фруктоза. Сахара являются сильными замедлителями схватывания цемента и поэтому некоторые исследователи считают, что чистые лигносульфонаты практически вообще не играют роли в замедлении схватывания. В этих исследованиях оценивалось влияние лигносульфоната только на гидратацию С3А, а окончательные выводы были распространены на гидратацию портландцемента.

Приготовить чистый лигносульфонат из промышленного продукта — нелегкая задача: приходится учитывать влияние различных факторов, в том числе молекулярной массы, концентрации раствора, природы катиона, связанного с молекулой лигносульфоната, и метода очистки

Поскольку лигносульфонат необратимо адсорбирован на составляющих цемента во время его гидратации, резонно ожидать, что он также будет воздействовать на скорость гидратации цемента.

Усадка при высушивании зрелой цементной пасты с замедлителями близка к усадке цементной пай ты того же возраста без добавки.

Изучая действие 65 различных замедлителей, включающих лигносульфонаты, гидроксикарбоновую кислоту, углелеводороды, а также чистые реагенты Шолер нашел, что пластическая усадка (при хранении пасты в условиях различной влажности, через разные промежутки времени и пока она еще находится в пластичном состоянии) возрастает в присутствии замедлителя. Это может быть вызвано увеличением времени нахождения в пластичной стадии и возросшей дисперсностью частиц в пастах, от держащих замедлитель.

В бетонах с замедлителем обычно происходит небольшое увеличение или уменьшение усадки, усадка возрастает с повышением дозировки добавки. В стандартных требованиях допускается небольшое превышение величины усадки бетона с замедлителем по сравнению с усадкой бетона без добавки

Прочность. В ранний период твердения цементного раствора прочность бывает ниже, чем в эталонных образцах, что происходит большей частью из-за низкой степени гидратации цемента. Обычно через длительный период времени растворы с замедлителем обладают большей прочностью, чем в отсутствие добавки.

Существует возможность того, что через длительный период времени продукты гидратации будут образовываться при более низких скоростях диффузии и осаждения. Это должно привести к их более однородному распределению в промежутках между зернами цемента. В результате достигается большая общая площадь контактов и, следовательно, увеличивается прочность

Морозостойкость. Изучение морозостойкости на бетонах с вовлеченным воздухом (путем их попеременного замораживания-оттаивания) показало, что бетон с добавками на основе гидроксикарбоновых кислот и углеводородов

имел такую же морозостойкость, как аналогичный бетон без добавок. Относительная морозостойкость (в процентах к морозостойкости проб эталона) большинства бетонов, содержащих лигносульфонаты, в среднем колебалась от 90 до 100%; этот показатель соответствует требованиям канадского и американского стандартов. Как уже было показано, бетон, содержащий лигносульфонаты, вовлекает воздух и требует лишь небольшого количества воздухововлекающих добавок для получения требуемого воздухововлечения. Тот факт, что морозостойкость бетона, содержащего лигносульфонат, меньше, чем у содержащего другие добавки, может свидетельствовать о том, что размеры пузырьков воздуха и фактор расстояния в бетонах, изготовленных с лигносульфонатами, не столь оптимальны, как в случае введения обычных воздухововлекающих добавок, таких, как ринсоловая смола.

Читайте также: