Какую температуру выдерживает бетон

Обновлено: 26.04.2024

Температурный фактор оказывает существенное влияние на формирование и изменение свойств бетона. Повышение температуры при твердении ускоряет химические реакции гидратации, что положительно влияет на рост прочности бетона. Резкое ускорение процессов твердения бетонов наступает при температурах 70-95С, и особенно при 170-20С. Однако при недостатке воды в бетоне воздействие повышенных температур замедляет процесс гидратации, снижает прочность бетонов. При полном испарении воды процесс твердения прекращается. Положительное влияние повышенных температур на скорость твердения бетонов послужило основой разработки и широкого применения в технологии железобетонных конструкций тепловлажностной обработки. Бетон нагревают с помощью пара, электроэнергии, инфракрасных лучей и др. При температурах более 100С тепловлажностную обработку ведут в автоклавах и специальных герметичных формах.
Для получения долговечного бетона важно свести к минимуму его деформации при температурном воздействии.
Остаточные деформации имеют место при недостаточном предварительном выдерживании бетона до тепловой обработки, повышенной скорости подъема температуры и ее снижения после отключения подачи пара.
Опасность возникновения трещин при развитии температурных напряжений повышается при обработке изделий большой толщины сплошного сечения или из ячеистых бетонов с повышенным водосодержанием.
Возникновение термических напряжений в бетоне возможно не только при его нагреве от внешних источников тепла, но и в результате саморазогрева за счет экзотермии при твердении. Трещинообразование в массивном бетоне носит обычно термический характер.
Тепловыделение, или экзотермия, бетона является следствием гидратации цемента и структурообразования цементного камня. Анализ тепловыделения (калориметрический анализ бетона) является одним из наиболее объективных высокоинформативных методов исследования, широко используемый при исследовании кинетики процессов твердения цемента, оценке влияния его химико-минералогических и структурных особенностей, эффекта химических добавок, параметров порообразования, льдообразования и др. Обстоятельные исследования применения калориметрического анализа (в различных направлениях) выполнены О.П. Мчедло-вым-Петросяном и А.В. Ушеровым-Маршаком.
Имеется положительный опыт использования калориметрических данных в компьютерных системах и информационных технологиях бетона.
Экспериментальное определение тепловыделения бетонов производится в калориметрах термосного, адиабатического или изотермического типов. Наиболее широкое распространение получили простые по устройству термосные калориметры, недостатком которых является переменный и по существу случайный температурный режим твердения образцов бетона. Для пересчета получаемых данных на изотермический режим твердения разработана расчетная методика установления т.н. эквивалентных сроков, т.е. таких сроков, в которые бетон при постоянной температуре твердения 20°С будет показывать те же величины тепловыделения, какие наблюдаются при проведении опыта в термосном калориметре. Установленная таким путем зависимость изотермического тепловыделения от времени твердения является основной характеристикой бетона для расчета температурных полей в массивных бетонных конструкциях.
В адиабатических калориметрах повышение температуры адекватно температуре в средней части крупных бетонных массивов, однако они сложны по устройству и редко используются на практике. Наиболее предпочтительными являются калориметры изотермического типа, позволяющие поддерживать температуру бетона в процессе измерения тепловыделения на постоянном уровне.
Для приближенной расчетной оценки тепловыделения бетона предложены зависимости, учитывающие удельное тепловыделение цемента, параметры состава бетона, температуру и длительность твердения.
Наиболее удобна для расчетного определения тепловыделения бетона зависимость, учитывающая удельное тепловыделение цемента.

Интенсивные деструктивные процессы при нагревании бетона идут при температуре более 200°С .

Нагрев в интервале 200-400°С приводит к постепенному снижению прочности цементного камня и бетона из-за дегидратации в основном гидроалюминатов, а также распада и перекристаллизации гидросульфоалюминатов кальция. При нагревании свыше 300°С нарушается структура цементного камня и бетона в результате различия деформаций гид-ратных продуктов цементного камня и непрогидратированых зерен цемента.
При 500-600°С идёт разложение гидратных новообразований и дегидратация Са(ОН)2 - продукта гидролиза клинкерных минералов, преимущественно трехкальциевого силиката, что способствует дальнейшему снижению прочности цементного камня.
В интервале 600-700°С возможно модификационное превращение р - 2СаО*SiO2 в у - 2СаО*SiO2, сопровождаемое некоторым увеличением объёма. Портландцементные образцы, прогретые до температуры 600-800°С, полностью разрушаются после выдерживания их в воздушно-сухих условиях в основном в результате вторичной гидратации оксида кальция. При непрерывном нагревании ДО 1200°С прочность цементного камня составляет 35-40% прочности контрольных образцов. При этом развивается значительная усадка - до 1 % и более.
Установление основной причины разрушения цементного камня - гидратации, образующегося при нагреве оксида кальция -позволило разработать основной способ придания ему жароупорных свойств. Этот способ заключается во введении в цемент или бетонные смеси тонкомолотых минеральных добавок, которые химически связывают СаО, не образуют с минералами цемента легкоплавких веществ, являются устойчивыми к воздействию высоких температур и уменьшают усадку цементного камня при нагревании.
Портландцемент по жаростойкости значительно уступает шлакопортландцементу, образующему при гидратации значительно меньшее количество Са(ОН)2. При достаточной величине остаточной прочности на сжатие бетона после нагревания до 800°С и использовании шлакопортландцемента отпадает необходимость введения тонкомолотых добавок.
Специфическим видом разрушения бетона при тепловом воздействии является разрушение под воздействием огня в условиях пожара. Под влиянием высокотемпературного пламени снижается несущая способность бетонных и железобетонных конструкций, а через определённое время под действием огня возможно их разрушение. Снижение прочности бетона в условиях пожара происходит в результате развития внутренних напряжений вследствие различия температурного коэффициента линейного расширения цементного камня и заполнителей. При температуре выше 500°С снижение прочности бетона под воздействием огня усиливается разложением гидроксида кальция и полиморфным превращением b-кварца в а-кварц.
Огнестойкость бетона, также, как и огнестойкость других строи-тельныхматериалов, характеризуется пределом огнестойкости - продолжительностью сопротивления воздействию огня до потери им прочности. Пределом огнестойкости строительных конструкций называется время, в течение которого они сохраняют несущие и ограждающие функции в условиях пожара. Потеря конструкцией несущей способности сопровождается ее внезапным либо очень быстрым обрушением. Ограждающая способность конструкций теряется, когда температура необогреваемой поверхности в среднем возрастает на 160°С и в смежных помещениях возможно самовоспламенение материалов. При этом в конструкциях образуются сквозные трещины, через которые проникают продукты горения и пламя.
Предел огнестойкости определяется испытанием образцов в специальной камере, где тепловой режим поддерживают по стандартной кривой температура-время.
Предел огнестойкости бетонных и железобетонных конструкций составляет 2-5 ч. Его повышают, увеличивая толщину бетонного слоя и подбирая соответствующий состав бетона.
Способность бетона противостоять, не разрушаясь, совместному действию напряжений от механической эксплуатационной нагрузки и термических напряжений при определенном числе циклов нагрева и охлаждения либо при температурном градиенте называют термостойкостью. Требования к термостойкости бетона и железобетонных конструкций зависят от их назначения, конкретных условий эксплуатации. Так, термостойкие агрегаты должны сохранять проектную прочность в течение всего нормативного срока эксплуатации, железобетонные колонны в зданиях 1-ой степени огнестойкости при пожаре не должны разрушаться ранее 2,5 ч, покрытие пола горячих цехов должно выдерживать попеременный нагрев и остывание при действии ударных нагрузок.
Существенное значение имеет вид заполнителя. Одним из важнейших факторов, влияющих на термическое расширение и термостойкость бетона, является его влажность. Равновесная влажность тяжелого бетона зависит от проницаемости бетона, степени гидратации и вида вяжущего, относительной влажности и температуры окружающей среды. Например, для тяжелого бетона на портландцементе с В/Ц=0,5 при 1=20°С равновесная влажность колеблется от 0,5 до 6,8% при изменении относительной влажности от 0,15 до 0,95. При интенсивном тепловом воздействии разрушению в большей степени подвергаются поверхностные слои бетона в изделиях и конструкциях с наибольшим градиентом влажности. Давление пара в бетоне в значительной степени зависит от скорости нагрева, проницаемости и начальной влажности. Наибольшее давление пара от теплового воздействия наблюдается при заполнении водой 70-80% порового пространства. Термостойкость бетона увеличивается с уменьшением размера крупного заполнителя, при тщательном приготовлении бетонной смеси и уходе за бетоном при его твердении с целью получения структуры с наименьшим количеством и минимальными по длине трещинами.
Величина коэффициента расширения и термостойкость уменьшаются с возрастом бетона. Большей термостойкостью будет обладать бетон с меньшими значениями модуля упругости, большей теплопроводностью. Важное значение имеет также различие температурных деформаций крупного заполнителя и растворной части. Термостойкость бетона можно увеличить дисперсным армированием температуростойкими волокнами из асбеста, базальта или стальных фибр, конструктивным армированием, применением заполнителей из андезита, базальта, диабаза и других материалов, обеспечивающих минимальное различие температурных деформаций отдельных компонентов.

Огнеупорный бетон – жаропрочный материал, который способен на протяжении достаточно длительного времени не менять своих характеристик под воздействием огня и высоких температур. Такой бетон применяется в самых разных сферах, но всегда там, где есть риск воспламенения или необходимость обеспечить стойкость конструкции к огню, повышенной температуре.

Уровень огнестойкости материала определяется такими параметрами, как: скорость горючести, теплопередачи при переменных условиях (вентиляция, температура огня, наличие/отсутствие источников топлива в здании). Бетонные стены из обыкновенного материала способны продержаться до 4 часов. Горит бетон без выделения токсинов, жидких частиц, дыма.

В частном строительстве зданий жаропрочный бетон используется редко – лишь отдельных конструкций. Свойства такого раствора актуальны при возведении туннельных аварийных выходов, конструкций инфраструктуры, производств, специальных сооружений для спасения членов правительства и т.д.

приготовление жаростойкого бетона

Общие сведения: материалы и характеристики жаростойких бетонов

Жаростойкий бетон – особый вид бетонного материала, который способен долго выдерживать воздействие температуры в диапазоне +1580-1770С максимум без потери эксплуатационных и механических свойств (огнеупорный бетон, в свою очередь, выдерживает недолговременный нагрев и до температуры максимум +200С).

Бетон используют в строительстве жилых и промышленных объектов. Из огнеупорного и жаропрочного бетона делают мангалы, домашние отопительные печи, сауны, бани, дымовые трубы, камины и т.д.

После достижения предельной температуры и по прошествии определенного времени жаростойкие бетоны начинают высыхать, покрываться трещинами, разрушаться.

  • Высокий уровень прочности
  • Надежная термоизоляция
  • Усиление эксплуатационных характеристик в процессе работы
  • Простота приготовления (дополнительный обжиг не нужен)
  • Уменьшение затрат времени, финансов, труда

Жаростойкий бетон может быть конструкционным и теплоизоляционным. По структуре бывает легким поризованным, плотным, ячеистым.

огнеупорный бетон

Состав плотных огнестойких растворов

Плотный тяжелый жаростойкий бетон (состав может быть разным) обычно используется в создании огнестойких конструкций, а также в виде жаростойкой футеровки в тех или иных тепловых агрегатах: на производствах химической промышленной сферы, рекуператоров доменных печей, в специальных печах обжига кирпича, в процессе строительства дымовых труб.

Благодаря применению тяжелых смесей удается существенно сократить время на выполнение строительства и ремонта тепловых агрегатов, заметно понизить себестоимость, уменьшить объем трудозатрат.

Вяжущие

Жаростойкие бетоны производятся в соответствии с ГОСТ 20910 90. Данный документ предполагает возможность использования различных вяжущих в приготовлении раствора.

  • Жидкое стекло
  • Глиноземистый (сюда можно включить и высокоглиноземистый) цемент
  • Шлакопортландцемент со специальными микронаполнителями
  • Портландцемент с обязательным включением в состав микронаполнителя (тонкомолотой добавки)

В нейтральной/щелочной среде обычно применяют смесь на шлакопортландцементе и портландцементе. Для газовой кислой среды подойдет жидкое стекло. Для водородной, фосфорной, углеродной среды лучше выбирать глиноземистые и высокоглиноземистые цементы.

Возможно добавление минеральных компонентов (доменный шлак в гранулах, бой шамотного/магнезитового кирпича, лессовидный суглинок, андезит и т.д.) с целью улучшения структуры и упрочнения состава.

Заполнители

Огнеупорные бетоны предполагают введение в состав не только специальных вяжущих, но и правильных заполнителей, которые должны равномерно расширяться и таким образом выдерживать воздействие огня и высоких температур. Обыкновенные заполнители гарантируют стойкость при максимум +200С, дальше они становятся менее прочными и при +600С полностью деформируются.

Когда готовят огнеупорный бетон, состав предполагает в качестве заполнителей использование материала, который не будет разрушаться/размягчаться при высоких температурах, а также не станет причиной появления высоких напряжений во внутренней структуре монолита.

примерный состав растворов на портландцементе

  • +600 – 800С: горные породы (диабаз, андезит, базальт), пористые материалы из горных вулканических пород, это могут быть доменные гранулированные шлаки, бой кирпича, искусственные пористые структуры (вспученный перлит, керамзит, подойдет шлаковая пемза и т.д.).
  • +1200 – 1700С: добавляют дробленые огнеупорные материалы – хромит, шамотный кирпич, магнезит, часто выбирают корунд, обожженный каолин.
  • Возможно добавление специальных материалов, полученных посредством обжига при высокой температуре смеси огнеупорной глины и магнезита – алюмосиликаты, которые отличаются минимальной деформацией, хорошей огнеупорностью.

Технические требования

Марка огнестойкого бетона должна включать такие параметры:

  • Тип бетона: жаростойкий обозначается буквами BR
  • Вяжущее: алюминатный (А), портландцемент (Р), силикаты (S)
  • Класс прочности на сжатие/растяжение – B1-В40
  • Температура эксплуатации – ИЗ-И18

Пример: жаростойкий бетон на базе портландцемента с прочностью В20, способный выдерживать +1200С, будет обозначаться BR Р В20 И12.

Что касается плотности, то материал с показателем 1100 кг/м3 применяют в качестве теплоизоляции для ограждающих конструкций ненагруженного типа, >1400 – для возведения ограждающих несущих конструкций общественных/жилых зданий. По уровню предельной температуры бетоны могут принадлежать к одному из 18 классов: И13-И18 используют лишь для ненесущих конструкций.

прочностные свойства жаростойких бетонов

Если плотность бетона составляет 1500 кг/м3, он должен обладать водонепроницаемостью в диапазоне W-W8. Морозостойкость находится на уровне F-F75. Остаточная прочность и показатель температуры деформации при воздействии механической нагрузки напрямую зависят от вида вяжущих и точной температуры нагрева.

Что касается класса прочности, то для напряженных жаростойких конструкций показатель должен быть минимум В30, без нагрузки – допускается минимум В12.5.

Основные виды тяжелого огнестойкого бетона

Состав огнеупорного бетона может быть разным, что зависит от нужных характеристик, используемых материалов и их пропорций. Тяжелых бетонов существует несколько видов, ниже рассмотрены основные из них.

Бетон на портландцементе и шлакопортландцементе

Это самый распространенный вид жаростойких бетонов, отличающийся невысокой стоимостью, отработанной технологией приготовления и использования, хорошей прочностью. Обычно такой бетон выбирают для сооружения дымовых труб, тепловых агрегатов, создания огнестойких конструкций атомных электростанций и т.д.

Класс прочности должен быть в диапазоне В15-В40. В приготовлении используют цемент М400 и выше, добавляют лишь активные минеральные вещества (топливная зола, шамот, доменный шлак и т.д.). Наиболее прочный бетон получается с включением в состав шамотной добавки тонкого помола.

На глиноземистом алюминатном цементе

изделия из жаропрочного бетона

  • Минимальная термическая усадка, небольшое линейное расширение в процессе нагрева
  • Высокий показатель механической прочности
  • Сохранение стабильного состояния при резких перепадах температуры
  • Теплопроводность минимальная
  • Уже через сутки после заливки конструкции могут эксплуатироваться

Жидкое стекло в качестве вяжущего жаростойких бетонов

До того, как приготовить жаропрочный бетон из жидкого стекла, необходимо тщательно изучить состав смеси. Применяют калиевые/натриевые составы, благодаря которым огнеупорные бетоны могут эксплуатироваться при температуре +800-1600С.

По структуре жидкое стекло может быть высокомодульным (обозначается буквой В), среднемодульным (Б) и низкомодульным (буква А).

  • Лучшие показатели натриевого стекла в качестве вяжущего для огнеупорной смеси – при силикатном модуле 2.0-3.5, калиевого – 2.5-4.0.
  • Жидкое стекло твердеет долго, поэтому в смесь добавляют разные отвердители (соединение кремниефторида натрия, фторсиликат щелочных металлов). Кроме быстрого твердения, эти вещества способствуют повышению прочности, плотности раствора. Также для ускорения твердения можно добавлять феррохром, шлаки ферромарганца, нефелиновый шлам.
  • Стоит отметить, что в состав смесей могут вводиться разнообразные пластификаторы, тонкомолотые добавки, регуляторы, присадки для лучшей удобоукладываемости.
  • На кубический метр бетона нужно примерно 250-400 кг/м3 вяжущего, отвердителя – 0.1-0.2 частей от веса вяжущего. Заполнителя понадобится около 0.12-0.3 веса жидкого стекла.
  • Раствор на базе жидкого стекла замешивают на объекте, так как заливать смесь нужно в течение получаса. Укладка производится при температуре минимум +15С, влажность должна составлять максимум 70%.

Другие виды бетонов, стойких к огню

В производстве легких ячеистых/поризованных бетонов используются те же вяжущие, но пористые заполнители или пенообразователи, которые уменьшают вес.

Легкие поризованные бетоны

Тут в качестве заполнителя используют разного типа пористые материалы, способные выдерживать влияние температуры до +1000С: вулканический туф, вспученный перлит, керамзит. Легкие бетоны соответствуют маркам D300-1800.

Классификация поризованных бетонов по сфере эксплуатации:

  • Конструкционные – с плотностью 1400-1800 кг/м3, прочностью минимум М50, любой теплопроводностью.
  • Теплоизоляционные – с плотностью максимум 500 кг/м3, прочностью в диапазоне М14-М25, теплопроводностью максимум 0.14 Вт/м*К.
  • Теплоизоляционно-конструкционные – прочность минимум М35, теплопроводность в пределах 0.14–0.54 Вт/м*К, плотность равна 500-800.

Легкие бетоны, приготовленные на базе портландцемента или глиноземистого цемента, демонстрируют высокий уровень огнестойкости. Если использовать керамзитовый щебень в качестве заполнителя, то морозостойкость вырастает до F25-100.

Ячеистые бетоны

Данный тип раствора применяется в теплоизоляции и в качестве жаростойкого материала. Часто ячеистые бетоны выбирают для частного строительства в виде заводских конструкций либо блоков.

  • Для теплоизоляции – плотность до 500 кг/м3
  • Теплоизоляционно-конструкционные – показатель находится в диапазоне 500-900 кг/м3
  • Конструкционные – от 1000 до 1400
  • Жаростойкие – до 1200 кг/м3, могут использоваться при температуре до +800С

Данный тип бетонов может выдерживать воздействие открытого огня в течение 5-7 часов без изменения структуры. При нагревании до +400С отмечается повышение прочности материала, до +1000С – разрушение структуры.

Когда готовится жаропрочный бетон своими руками, предел огнестойкости ячеистого материала можно повысить посредством введения в состав алюмосиликатных щелочных вяжущих, металлургических шлаков, допускаются и топливные золы, известково-белитовые составы.

огнеупорная бетонная смесь

Применение

Обычно огнеупорный и жаростойкий бетон актуален для использования в возведении химических, энергетических, металлургических сооружений. Материал подходит для сооружения плавилен, доменных печей, теплоцентралей.

В быту необходимость приготовления термостойкого бетона появляется при строительстве печей, котлов отопления, каминов. Также из раствора делают выводы труб, выкладывают отопительные контура. В частном строительстве бетон готовят своими руками, используя специальные компоненты и точно следуя инструкции, соблюдая указанные пропорции.

Новые конструкции вводятся в эксплуатацию минимум после 3 суток (быстротвердеющий цемент, глиноземистый, жидкое стекло), 7 суток (портландцемент) или после набора проектной прочности монолитом. До нагрева конструкции просушивают для полного удаления свободной воды в составе. Разогревают по специальным режимам, в соответствии с технологическими инструкциями.

применение жаропрочного бетона

Производство в домашних условиях

Проще всего сделать жаростойкий бетон своими руками – купить готовую смесь и замесить раствор по инструкции (обычно находится на оборотной стороне тары). Все очень просто: сухая смесь высыпается в бетономешалку, мешается в течение 1 минуты, затворяется обычной водой или жидким стеклом.

  • Выбор оптимального состава материалов.
  • Заливка в бетономешалку 90% нужного объема воды либо жидкого стекла (в разбавленном виде).
  • Засыпка тонкомолотой добавки, добавление половины заполнителя и цемента, перемешивание, постепенное добавление оставшихся материалов, остатка воды (или стекла).
  • Замес должен осуществляться на протяжении минимум 5 минут.
  • Отгрузка готовой смеси непосредственно на объекте, заливка.

Бетонные работы в условиях сухого и жаркого климата

В условиях жаркого, сухого климата температура воздуха может подниматься до +40С, влажность обычно не превышает 25%, наблюдаются ветры и сильная солнечная активность. Все это плохо сказывается на бетонной смеси, провоцирует быстрое испарение воды, понижение прочности.

  • Правильно выбрать состав компонентов – в качестве вяжущего лучше всего брать портландцемент, заполнителя – материалы с идентичным показателем температурного расширения (близким к цементу).
  • Заполнители обязательно увлажняют.
  • Использование пластификаторов – для понижения водоцементного соотношения и улучшения подвижности.
  • Увеличение времени смешивания компонентов в среднем на 40-50%.
  • Смесь до объекта можно транспортировать исключительно в автобетономешалке, загрузив в миксер лишь сухие компоненты, а водой затворяя уже перед заливкой.
  • Опалубка перед заливкой проверяется на предмет герметичности и увлажняется.
  • Смесь подается на объект с использованием специальной бадьи или бетононасоса.
  • Бетонирование осуществляется с применением глубинного вибратора.
  • В процессе набора прочности смесью бетон нужно накрывать увлажненными матами из соломы, кусками рогожи, мешковины, потом каждые 3-4 часа поливать водой все 28 дней.

заливка огнеупорного бетона

Приготовленный по всем правилам жаростойкий или огнеупорный бетон будет демонстрировать все заявленные характеристики и позволит реализовать любой проект, гарантируя высокое качество и оптимальные свойства, надежность и долговечность конструкции.

Традиционные марки цемента боятся температурных изменений и начинают деформироваться при высокой температуре. А поскольку такой материал пользуется большой популярностью, строители выбирают специальные огнестойкие разновидности. Они приспособлены к любым воздействиям и обладают массой эксплуатационных преимуществ.

работа с огнеупорным цементом

Достоинства

Выбирая огнеупорный цемент, важно учитывать не только его плюсы, но и минусы. Среди них:

  1. Высокая стоимость, если сравнивать его с классическими вариантами вяжущих компонентов.
  2. Вероятность химической реакции при взаимодействии с некоторыми элементами из таблицы Менделеева. При подобных процессах материал не выделяет токсических веществ и остается безвредным для человеческого здоровья, однако результатом реакции является неприятный запах.

Список плюсов более обширный.

огнеупорный цемент

  1. Увеличенные прочностные свойства. Они обусловлены применением особой технологии производства, которая подразумевает термическое воздействие на исходное сырье. Под воздействием высоких температур обеспечивается улучшенное соединение керамических соединений. Чтобы изготовить кладочный и штукатурный раствор, необходимо в точности соблюдать пропорции и рецептуру.
  2. Высокая скорость схватывания и короткие сроки затвердевания. В сравнении с другими марками цементной смеси, включая Портландцемент М400, термостойкий цемент быстрее набирает требуемую прочность и делает конструкцию готовой к прямому использованию уже через сутки.
  3. Хорошая степень вязкости и сцепления с другими строительными материалами.
  4. Устойчивость к коррозийным процессам, которую обеспечивает наличие в составе алюмината кальция.
  5. Жаростойкость. Подобный вяжущий компонент способен выдерживать воздействие открытого огня и жара с температурами до +2000…+3500°C. Это делает его незаменимым решением для промышленных помещений или построек, размещенных в зоне повышенной пожарной опасности.
  6. Хорошая изоляция от электрических разрядов. В составе цемента отсутствует влага, поэтому он обладает неэлектропроводными свойствами.
  7. Надежность и устойчивость сцепления кирпичей. При производстве жаростойких марок используются особые гранулы клея, которые обеспечивают максимальную прочность соединения кирпичной кладки, блокируют пустоты и не дают воздуху выходить наружу.

Использование огнестойких смесей предусматривает соблюдение тех же пропорций, что и при выборе остальных связующих материалов.

Направления использования

Цемент жаростойкий можно применять для самых различных работ в сфере строительства. Однако из-за высокой стоимости его принято использовать для возведения построек и конструкций, находящихся под воздействием высокой температуры. Подобное решение особенно востребовано для промышленных помещений и частных домов.

жаростойкий цемент

  1. Организация монолитной футеровки при проведении ремонтных и восстановительных работ с тепловым и плавильным оборудованием, которое эксплуатируется в температурном режиме до +1600°C.
  2. Обустройство конструкций из железобетона, устойчивых к высокому нагреву.
  3. Производство блоков и кирпичей с огнеупорными характеристиками.
  4. Изготовление раствора для кирпичной кладки и обмазки банных печей.
  5. Создание клеевых основ для нефтеперерабатывающей промышленности.
  6. Возведение печей для производства стекла.
  7. Сооружение каминов и печей для жилых объектов.
  8. Монтаж систем дымоотвода.

Жаростойкие смеси необходимы и для горной или металлургической сферы деятельности. Еще они незаменимы для обустройства тоннелей, подложек и прочих конструкций, подвергающихся усиленному нагреву.

Марки огнеупорных цементов

Производство огнестойких цементных смесей подразумевает использование глинозема с учетом требований ГОСТа. В зависимости от концентрации в составе оксида алюминия цемент разделяется на несколько марок. Если содержание добавок не превышает 35%, продукция обозначается аббревиатурой ГЦ. При наличии более высокой доли применяется обозначение ВГЦ.

Смеси с маркой ВГЦ I на 60% состоят из алюминия. Еще в составе присутствуют такие компоненты:

  1. Кальций — 32%.
  2. Кремний — 3%.
  3. Железо, магний, сера — от 1 до 2%.

Серия ВГЦ II содержит 70% оксида алюминия и небольшое количество оксидов кремния и кальция. Возле маркировки присутствуют цифры, указывающие на прочностные свойства при сжимающих нагрузках. Так, смеси серии ГЦ 40 могут выдерживать нагрузки от 40 МПа.

При выборе марки покупатели обращают внимание на фактические термические и механические нагрузки, с которыми будет сталкиваться цементная смесь. В продаже предлагается широкий выбор жаропрочных компонентов как зарубежного, так и отечественного производства.

огнеупорный цемент марки

Ко второй группе относятся материалы, которые создаются на основе клинкера из приволжских и центральных регионов Российской Федерации, Москвы и Сибири. Также на рынке доступны турецкие, финские, французские и польские смеси, обладающие массой эксплуатационных достоинств.

Главные характеристики материала

Эксплуатационные характеристики жаропрочных цементных смесей выглядят следующим образом:

  1. Возможность эксплуатации под постоянным температурным воздействием до +3500°C. Устойчивость к прямому огню.
  2. Улучшенные огнеупорные свойства и прочность, обусловленная особой технологией производства.
  3. Повышенный коэффициент соединения с поверхностью и оптимальная вязкость.
  4. Высокая скорость затвердевания. Конструкции, соединенные термостойкими компонентами, подлежат эксплуатации уже через 20 часов.
  5. Отсутствие сложностей при самостоятельной подготовке смеси.
  6. Стандартные пропорции для изготовления. Чтобы подготовить качественную смесь, достаточно использовать общепринятую рецептуру, как при производстве традиционных марок цемента.

Жаропрочный бетон на основе глиноземистого цемента своими руками

Чтобы изготовить огнестойкий бетон на основе глиноземистого цемента в домашних условиях, нужно подготовить следующие компоненты:

Технологический процесс содержит массу нюансов. В первую очередь следует позаботиться о чистоте всех составляющих, а еще предотвратить вероятность загрязнения огнеупорных компонентов песком, гранитом или известняком.

Строители используют разные способы изготовления огнестойкого бетона. Наиболее простая технология подразумевает использование готовой сухой смеси, содержащей в своем составе жаропрочные добавки. Если состав изготовляется с нуля, понадобится грамотно составить пропорции компонентов и смешать их.

Специалисты рекомендуют останавливаться на первом варианте, поскольку готовые сухие смеси обладают требуемыми эксплуатационными характеристиками и произведены по заводскому технологическому процессу. Поэтому пользователю предоставляется цемент высшего качества, который нужно лишь разбавить водой или растворителем.

работа с огнеупорным цементом

Начиная самостоятельное изготовление огнеупорной бетонной смеси, важно предусмотреть наличие таких добавок:

  1. Хромитовая руда.
  2. Магнезитовый цемент.
  3. Андезит.
  4. Шамотный бой.

Если правильно подобрать ингредиенты, конечная конструкция будет надежной и долговечной.

Все составляющие переносятся в бетономешалку и тщательно перемешиваются в пропорции 1:4 (цемент и песок). Когда получится однородная смесь, к ней можно добавить жидкость до появления тестообразной консистенции. В таком случае смесь получит требуемую степень вязкости и быстро станет твердой. Разбавляя ее водой, важно придерживаться рекомендаций специалистов и не отклоняться от рецептуры.

Готовый состав помещается в формы и заливается в опалубку или применяется для кирпичной кладки. При использовании глиноземистых наполнителей важно вовремя разбавлять их водой, чтобы предотвратить чрезмерно быстрое схватывание.

После выполнения всех действий необходимо провести очистку оборудования и избавиться от застывшего материала с инструментом. Если возникает желание сделать небольшое количество раствора на основе портландцемента, смешивание компонентов можно выполнять без бетономешалки. Для этой цели используются широкие емкости и ручной инструмент.

Отличие от других видов цемента

Основное отличие огнеупорных цементных смесей от остальных марок заключается в усиленной защите от высокотемпературного воздействия. Классическая продукция подвергается растрескиванию при нагреве до +250°C.

самостоятельное приготовление жаростойкого бетона

Если на материал будет воздействовать температура свыше +500°C, бетон начнет деформироваться, массив потеряет целостность и станет непригодным для дальнейшего использования.

В отличие от традиционных марок цемента, жаропрочные аналоги сохраняют устойчивость к нагреву до +2000°C.

Стоимость продукции разных марок

Цена жаростойких материалов зависит от разных факторов, включая сезонный. Если они выпускаются в летний период, их стоимость повышается, поскольку объемы строительных работ стремительно растут. Зимой цемент более дешевый и продается как в розницу, так и оптом.

  1. 50 кг цемента ГЦ-40 обойдется по цене 1,3-1,4 тыс. рублей.
  2. 50 кг цемента Gorkal 40, производимого польской компанией, будут стоить 1,4-1,5 тыс. рублей.
  3. Российский цемент ВГЦ-50 продается по цене 1,8 рубля за 20 кг.

Перед тем как приобрести смесь, нужно ознакомиться с наличием сертификатов качества и ее маркой.

Как работать

Цементные составы с жаропрочными свойствами стоят дороже, чем простые марки, поэтому работать с ними нужно более осторожно и ответственно. Если не учитывать правила и допускать погрешности, это может привести к неоправданным финансовым затратам и образованию низкокачественной конструкции.

Чтобы материал хорошо сцепился с поверхностью, важно грамотно подойти к подготовительным работам и очистить эту зону от любых неровностей или дефектов.

Собираясь нанести массу на рабочую площадь, важно избавиться от пыли и грязи, провести шлифовальные работы и устранить сажу или жировые пятна. Чем грамотнее будут проведены эти мероприятия, тем дольше и качественнее прослужит конструкция.

Бетон – это особая смесь из воды, цемента, песка и других наполнителей. Затвердев, этот искусственный камень приобретает прочность, долговечность и отличную стойкость. Стойкость бетонного состава определяется его невосприимчивостью к влаге, различным температурным перепадам, не теряя при этом своих прочностных свойств. У этого строительного материала низкий предел горючести, что не влечет за собой распространения пожара при воздействии на него повышенных нагревов. Бетонным постройкам, зданиям и сооружениям, за счет качеств раствора, обеспечивается отличная огнестойкость. Изделия из бетона обладают не только огнестойкостью, но и высокой жаростойкостью.


Отличие огнестойкости от жаростойкости

Огнестойкость бетона – это качество, позволяющее стройматериалу противостоять повышенным температурам недолговременно, например, во время пожара. Жаростойкость – это сохранение свойств бетонного раствора при долговременном действии на него большой температуры, например, при использовании конструкций для теплообработки разнообразных изделий. Всем бетонам присуща огнестойкость, чего нельзя сказать о жаростойкости, этим качеством обладает далеко не каждый застывший раствор.

Несмотря на то, что бетон – пожаробезопасный и огнестойкий строительный материал, он все равно поддается большим температурным градусам. Огни, воздействующие на него в течение короткого времени, не способны привести к повреждению прочностных характеристик материала, но если огонь имеет продолжительное влияние на бетонные изделия, тогда происходит их повреждение. Если температура двести пятьдесят градусов, тогда бетон теряет свою прочность всего на двадцать пять процентов, а если в пределах пятисот градусов – стройматериал подвергается полному разрушению.

Бетонный состав, горючесть которого низкая, имеет повышенную прочность и стойкость к огненным влияниям, но может разрушиться и потерять свои прочностные характеристики как при пожаре, так и неправильном обращении с подогретым составом. Таким образом, резкое увлажнение или охлаждение уже подогретой смеси, влечет за собой образование трещин, разрушений, которые не поддаются устранению, а также ослабеванию арматурной конструкции, служащих для укрепления построек.

Горение отрицательно сказывается на структуре бетона, она разрушается и разлагается на составляющие компоненты цементного камня.

Жаростойкость бетонного состава получается путем введения в раствор специальных добавок на основе алюминия и кремния. Эти составляющие позволяют избегать плавления, горения в момент пожара и других разрушений бетонных конструкций при повышенных температурных режимах. Что касается огнестойкости, то она достигается путем добавления заполнителей в процессе приготовления раствора.

Воздействие высоких температур на бетонный состав


Температурные режимы, воздействующие на бетонный состав, в пределах 250 – 300 градусов влекут за собой разрушение структуры и уменьшение прочностных характеристик цементного камня. Когда на градуснике отметка достигает пятисот пятидесяти градусов по Цельсию, имеющиеся в бетоне песок и щебень подвергаются растрескиванию, если превышает 550 градусов – бетонные конструкции полностью разрушаются.

Повышение температурных показателей непосредственно влияет на прочность бетонного состава. Таким образом, при укладке и застывании раствора повышение отметки на градуснике может повлиять на прочность бетона, возраст которого начинается от семи суток и более. Происходит это из-за ускоренной гидратации, в результате чего достигается несовершенная физическая структура с большим количеством незаполненных пор. По результатам опытов было замечено, что при повышенных температурных показателях прочность бетонного раствора на высшем уровне в первые дни, после схватывания состава, но уже на четвертые сутки прочностные характеристики значительно опускаются. Чтобы улучшить прочность раствора, в него добавляют хлористый кальций, который способен повысить стойкость к повышенным температурным показателям.

Жароупорные бетоны

Жароупорный бетонный раствор основан на портландцементе, с помощью которого смесь из песка, щебня, цемента и воды способна выдерживать повышенные температурные показатели до тысячи градусов по Цельсию и выше. Помимо основных составляющих бетона и портландцемента, в него также входит алюминиевая добавка мелких фракций и кремниевая. Добавки в растворе позволяют связывать гашеную известь, которая образуется при гидратации цементного камня. Жароупорный строительный материал из смеси цемента, песка, щебня и воды также имеет в своем составе следующие заполнители, которые предотвращают плавление, деформацию и разрушение бетонных изделий даже в момент пожара:

  • андезит;
  • кирпичный щебень;
  • шамот;
  • доменный шлак;
  • базальт;
  • туф.

В зависимости от наполнителей определяется максимальный температурный режим жароупорного бетона. Приготовить такой раствор можно и собственноручно на строительной площадке.

Огнестойкость конструкций из железобетона


Предел огнестойкости по теплоизолирующей способности плит.

На огнестойкость железобетонных конструкций влияют следующие параметры:

  • нагрузка на постройку;
  • толщина защитного яруса;
  • размеры сечения сооружений;
  • количество и диаметр арматурный конструкций.

Чем меньше плотность используемого материала и чем больше его толщина, тем выше предел огнестойкости, который зависит и от вида опоры для конструкции, и от статической схемы. Исходя из этого, строители должны произвести расчет по огнестойкости ж/б конструкций, прежде чем приступать к их заливке. Конструкции, которые имеют горизонтальное положение, поддаются разрушениям под действием нагрева нижней арматуры, поэтому предел нагрева, прежде всего, зависит от класса арматурной конструкции, способности материала проводить тепло и от размеров слоя защиты.

Горизонтальные конструкции – это балочные плиты, балки, настилы и панели, прогоны и др. Конструкции, которые имеют тонкие стены и поддаются изгибаниям – это настилы, ригели, балки, панели ребристые и пустотелые. Огнестойкость колонн основана на следующих показателях:

  • процент армирования;
  • нагрузка на конструкции;
  • вид крупнофракционного заполнителя;
  • размер сечения под прямым углом относительно продольной оси;
  • толщина слоя защиты на арматуре.

В процессе заливки колонн следует обязательно придерживаться инструкции. Колонны разрушаются в результате открытого огненного пламени при снижении прочностных характеристик бетонного раствора и арматурной конструкции.

Огнестойкость ячеистых бетонов


Ячеистый бетон представляет собой пористый искусственный материал, который используется в строительстве различных зданий и сооружений. В его состав входят минеральные вяжущие и кремнеземистые заполнители. Применяют ячеистый строительный материал из смеси цемента, песка, щебня и воды для теплоизоляции помещений, им утепляют железобетонные плиты и перекрытия, используют легкий бетон для теплозащиты поверхности различных оборудований, трубопроводов, которые используются при температурных режимах свыше четырехсот и даже семисот градусов по Цельсию.

Огнестойкость ячеистого бетона выше, если плотность строительного материала минимальна, таким образом, предельные показатели огнестойкости газоблоков и других изделий из пористого стройматериала повышены.

По исследованиям и опытам, которые проводили в шведском и финском учебном заведении, определена прочность ячеистого бетонного состава, которая изменяется при нагревании следующим образом:

  • происходит увеличение прочностных характеристик до восьмидесяти пяти процентов, если температурные показатели не выше четырехсот градусов по Цельсию;
  • понижение прочностных характеристик до изначальных происходит при разогреве материала до семисот градусов по Цельсию;
  • снижение прочности ячеистого бетонного состава на восемьдесят шесть процентов осуществляется при разогреве строительного материала до тысячи градусов и не более при этом прочностной показатель принимает стабильность.

Можно сделать вывод, что предельные значения огнестойкости ячеистых блоков достигают девятисот градусов по Цельсию, когда обычный бетонный состав начинает терять свои основные части прочности при значении от четырехсот до семисот градусов. Таким образом, ячеистый бетон наиболее популярен при возведении зданий и сооружений, где требуются повышенные показатели пожаробезопасности.

Заключение

Бетон представляет собой строительный материал, который обладает отличными прочностными характеристиками, имеет повышенные показатели огнестойкости и при добавлении в состав бетонного раствора специальных наполнителей, приобретает жаростойкость. На огнестойкость и жаростойкость бетонного раствора влияют различные показатели и факторы, например, материал, который используется в качестве наполнителя, или же конструкции, которые возводят из строительного материала на основе песка, цемента, щебня и воды.

Различия между огнестойкостью и жаростойкостью очевидны. В первом случае бетонные конструкции имеют возможность противостоять повышенным температурным показателям в течение непродолжительного времени, а при жаростойкости строительного материала, бетонные конструкции сохраняют прочностные характеристики долговременно.

Внимание!
Вы находитесь на странице эксклюзивного перевода американского руководства по бетонированию «Бетон на практике».
Опыт нашей компании и практика применения российских стандартов изложены на других страницах раздела «Вопросы и ответы»: «Противоморозные добавки» и «Уход за бетоном».

Резюме. Правила бетонирования в холодную погоду (в зимнее время)

  1. Используйте воздухововлеченный бетон, когда предполагается контакт с влагой, замерзанием и оттаиванием.
  2. Заливаемые поверхности должны быть без снега и льда и выше температуры замерзания перед заливкой.
  3. Заливайте бетон рекомендуемой температуры и поддерживайте эту температуру в дальнейшем.
  4. Заливайте бетон с минимальной допустимой подвижностью.
  5. Защитите бетон от замерзания и высушивания при схватывании.
  6. Исключите замерзание и оттаивание бетона до набора им минимальной прочности.
  7. Ограничьте резкие изменения температур после прекращения мер по защите бетона.

ЧТО такое холодная погода?

О холодной погоде говорят, когда средняя температура опускается ниже 4 °C. Эти условия требуют специальных мер предосторожности при заливке, выравнивании, выдерживании бетона и защите его от эффектов холода. Поскольку в зимние месяцы погодные условия могут изменяться резко и быстро, требуются наработанные практики и надлежащее планирование.

ЗАЧЕМ рассматривать холодную погоду?

Успешное бетонирование в холодную погоду требует понимания различных факторов, влияющих на конечные свойства бетона.

В пластичном состоянии бетон замерзнет, если температура опустится ниже -4 °C. Если бетон замерзнет, его прочность может упасть более чем на 50%, замерзание разрушительно повлияет и на его долговечность. Бетон должен защищаться от замерзания до набора минимальной прочности в 3,5 МПа, которая для большинства бетонов достигается в течение 2 дней твердения при температуре 10 °C.

Низкая температура бетона имеет критический эффект на скорость гидратации цемента, что выливается в более медленные застывание и скорость набора прочности. Можно использовать правило, что падение температуры на 10 °C снизит скорость твердения примерно в 2 раза. Более медленные скорости твердения и набора прочности должны учитываться при планировании времени начала строительных работ, например, снятия опалубки.

Если бетон может контактировать с (дождевой - прим. перев. ) водой и подвергается циклам замораживания и оттаивания (в том числе только на период строительства), должно использоваться воздухововлечение. Свежезалитый бетон насыщен водой и должен быть защищен от циклов размораживания и оттаивания до того, как наберет прочность на сжатие в 24 МПа (но остается не понятным, что делать бетону низких марок, который не наберет такой прочности никогда - прим. перев. ).

Гидратация цемента - это химическая реакция, в процессе которой выделяется тепло. Свежезалитый бетон должен быть подобающим образом накрыт, чтобы это тепло осталось в бетоне и обеспечило надлежащие температуры выдерживания. Большие разницы в температуре на поверхности и внутри бетона должны избегаться, так как если они превысят 20 °C, могут быть температурные разломы. Теплоизоляция или защитные меры должны постепенно снижаться, чтобы избежать температурных разломов.

КАК бетонировать в холодную погоду?

Рекомендованные температуры бетонной смеси приведены в таблице ниже. Производитель может контролировать температуру подогревом воды и/или заполнителей и предъявлять требования стандарта ASTM C 94.

Минимальный размер секции, мм
Температура заливаемого бетона, °C
менее 300
13 °C
от 300 до 900
10 °C
от 900 до 1800
7 °C

Температура бетона в холодную погоду не должна превышать эти вышеперечисленные более чем на 10 °C. При большей температуре у бетона больше потребность в воде, большая скорость потери растекаемости, и большая склонность к разломам. Заливка в холодную погоду дает шанс получить лучшее качество, поскольку меньшие исходные температуры в итоге дают большую прочность.

Более медленное время схватывания и набор прочности в холодную температуру обычно откладывает время проведентия операций по выравниванию и снятию опалубки. Химические добавки и другие модификаторы для бетона могут ускорить время твердения и набора прочности. Добавки типа С, согласно ASTM C 494 (ускорители твердения) и типа Е (водозамещающие ускорители) повсеместно используются в зимнее время. Распространенным и эффективным ускорителем является хлорид кальция, но его доза не должна превышать 2% от массы цемента. Для преднапреженного железобетона, или когда важным является коррозия арматуры или другого металла в контакте с бетоном, должны использоваться некоррозионные добавки без содержания хлоридов (остается непонятным, когда по мнению составителей рекомендации и при каких случаях коррозия арматуры не является существенной - прим. перев. ). Ускорители твердения не предохраняют бетон от замерзания, и их использование не отменяет требования к температуре бетона и меры по выдерживанию бетона и защите от замерзания.

Бетон должен заливаться с минимально необходимым расплывом конуса, поскольку это снижает объем выделения воды и время схватывания. Добавление от 5 до 10 литров на кубометр увеличивает время схватывания от получаса до 2 часов. Увеличенное время схватывания увеличит продолжительность выделения воды. Не начинайте операции по выравниванию до тех пор, пока вода продолжает выделяться, иначе это грозит получением слабой поверхности.

Следует предпринимать должные меры перед заливкой. Снег и лёд должны быть убраны, температуры поверхностей и арматуры должны быть выше точки замерзания. Это может потребовать теплоизоляции или подогрева подземных помещений и заливаемых поверхностей перед заливкой.

На площадке должны быть материалы и оборудование для защиты бетона, чтобы защитить бетон, как во время, так и после заливки, от раннего замерзания и чтобы удержать тепло от гидратации цемента. Распространенными средствами являются теплоизолированные листы и брезент, а также солома, накрытая пластиковыми листами. В зависимости от внешних условий, могут потребоваться покрывала и теплоизолированная опалубка. На углах и стыках теряется больше всего тепла, и им требуется особенное внимание. Дизельные обогреватели в закрытых помещениях должны быть выведены наружу для предотвращения карбонизации свежезалитых поверхностей, что вызывает пыление бетона, а также из соображений безопасности.

Бетонные поверхности не должны высыхать до затвердевания, потому что это вызывает разломы. Соответственно, бетон должен надлежащим образом выдерживаться. Не рекомендуется использовать водное выдерживание бетона при околонулевых температурах. Используйте мембранообразующие структуры или непроницаемую бумагу с пластиковыми листами для бетонных плит.

Опалубочные материалы, за исключение металлов, поддерживают и равномерно распределяют тепло, таким образом предоставляя надлежащую защиту в умеренно холодную температуру. При сверххолодных температурах должны использоваться изоляционные листы или теплоизолированная опалубка, особенно для тонких секций. Опалубка должна оставаться на месте от 1 до 7 дней после заливки, в зависимости от погодных условий, характеристик схватывания и предполагаемой нагрузки на структуру. Для оценки прочности бетона перед снятием опалубки или применением нагрузки должны использоваться неразрушающие методы или выдержанные на площадке цилиндры. Цилиндры не должны использоваться для приемки по качеству.

Особенное внимание надо уделять тестовым образцам, используемым при приемке бетона. Цилиндры должны храниться в теплоизолированном помещении, который потребует контроль температуры для удостоверения, что бетон выдерживается при температуре от 16 до 27 °C в период от первых 24 до 48 часов (после твердения - прим. перев. ). Термометры минимальной и максимальной температуры должны быть помещены в камеру твердения для записи температуры.

Читайте также: