Как рассчитать толщину поликарбоната

Обновлено: 02.05.2024

Казалось бы, эка невидаль - поликарбонат. Да прикрутить его саморезами для профнастила и дело с концом! Дешево и сердито, особенно если особенная теплоизоляция на стыках не требуется. Однако срываемые во время сильных ветров листы поликарбоната наводят на мысль, что это не совсем верный подход к решению проблемы и поликарбонатные листы нужно крепить как минимум специально предназначенными для этого креплениями, и даже в этом случае шаг между креплениями следует подбирать не на глаз, а по расчету.

Существует два основных вида креплений для листов поликарбоната - ленточные и точечные. Когда в поликарбонате высверливается отверстие и в обрешетку вкручивается саморез, то это точечное крепление. Крепление поликарбоната с помощью угловых и стыковочных профилей может рассматриваться как ленточное. При креплении листа с помощью разного рода угловых и стыковочных профилей нагрузка на лист передается более равномерно и такие крепления в дополнительном расчете как правило не нуждаются. А вот при использовании точечных креплений в области контакта крепления с поликарбонатом могут возникнуть достаточно большие локальные напряжения.

Как правило проверять надежность точечных креплений для поликарбоната нет необходимости, это давно уже сделали инженеры, разработавшие крепления, но понимать принцип расчета не помешает.

Пример расчета монолитного поликарбоната на прочность при точечных креплениях плоского настила

Для плоского настила расчетной нагрузкой для креплений является как правило только ветровая нагрузка, действующая не сверху, а снизу. Для крепления поликарбоната могут использоваться различные системы точечного закрепления.

Для примера рассмотрим крепление с помощью универсальной термошайбы из поликарбоната, используемой без уплотнительного кольца, при этом саму термошайбу на прочность рассчитывать не будем:

расчетная схема для точечного крепления монолитного поликарбоната

Рисунок 307.1. Расчетная схема для точечного крепления монолитного поликарбоната.

Под действием нагрузки в листе поликарбоната под термошайбой будут возникать сжимающие и срезывающие напряжения. Сжимающие напряжения будут возникать на площади, обозначенной на рисунке 307.1 серым цветом:

Fc = П(D 2 - d 2 )/4 (307.1)

Срезывающие напряжения будут действовать по контуру шайбы, по всей толщине листа, эта площадь показана на рисунке 307.1 красным цветом:

Если шайба имеет наружный диаметр D = 30 мм, внутренний диаметр d = 15 мм, то площадь на которой действуют сжимающие напряжения составит:

Fc = 3.14(3 2 - 1.5 2 )/4 = 5.3 см 2

Однако использовать такое значение для дальнейших расчетов можно лишь в том случае, если шайба идеально примыкает к поверхности монолитного поликарбоната. В реальных условиях просверлить отверстие точно под углом 90 о практически невозможно и хотя конструкция шайбы позволяет обеспечить довольно плотное примыкание при небольшом значении перекоса, тем не менее возможна ситуация, когда ось шайбы будет не перпендикулярной по отношению к листу. А это приводит к тому что шайба примыкает к поликарбонату не по всей площади, а только в одной точке. Чтобы увеличить площадь примыкания, нужно сильнее закрутить саморез и тем самым деформировать лист под шайбой и таким образом создать предварительное сжимающее напряжение. Чем сильнее затянут саморез, тем больше может быть площадь примыкания, но и тем больше значение предварительного напряжения. Делать это крайне не рекомендуется всеми руководствами по монтажу поликарбоната, однако поликарбонат - достаточно пластичный материал и деформации в листе под действием нагрузки могут привести к тому, что даже при перпендикулярном закреплении ситуация будет выглядеть так, как будто лист был закреплен неправильно и потому сжимающие усилия будут распределены не равномерно. При этом на значение напряжений будет влиять не только угол отклонения от вертикали, но и толщина листа. Рассмотрим ситуацию, когда ось термошайбы отклонена от оси листа на 2 о (ухудшающиеся при этом гидроизоляционные и теплоизоляционные свойства мы не рассматриваем):

деформация листа поликарбоната под точечным креплением

Рисунок 307.2. Влияние толщины листа монолитного поликарбоната на распределение сжимающих напряжений.

Как видно из рисунка 307.2, при одинаковой площади опирания (~Fc/2) и при одинаковом угле отклонения от вертикали, что приведет к одинаковой деформации под точечным креплением, значение предельных напряжений будет весьма отличаться в зависимости от толщины листа монолитного поликарбоната. Так и при толщине листа 2 мм и при толщине листа 8 мм и при условии, что модуль упругости термошайбы из поликарбоната такой же, как и у листа, при отклонении от вертикали на 2 о величина деформации составит примерно 0.25 мм. Между тем допустимая величина деформации для листа толщиной 2 мм и толщиной 8 мм - разная. Согласно формуле (148.2.1) максимально допустимая величина деформации для листа толщиной 2 мм составит:

Δtд = Rсt/E = 815·0.2/25500 = 0.0064 см или 0.064 мм

максимальная величина деформации для листа толщиной 8 мм составит:

Δtд = Rсt/E = 815·0.8/25500 = 0.0256 см или 0.256 мм

Это означает, что даже для листа толщиной 8 мм при определенных выше условиях сжимающие напряжения будут действовать не по всей площади опирания, а только на половине этой площади, при этом значение сжимающих напряжений будет не постоянным, а равномерно изменяющимся от 0 до некоего максимального значения и значит значение максимально допустимого напряжения будет еще в 2 раза меньше. Значит, расчетную площадь для надежности следует уменьшить приблизительно в 4 раза.

Конечно же - это очень большая нагрузка, особенно для листа толщиной 2 мм. Однако пока мы только проверили прочность поликарбонатного листа на смятие.

При толщине монолитного листа поликарбоната 2 мм площадь материала, на которую будет действовать поперечная (срезывающая) сила составит:

Fср = П(D + d)t = 3.14·3·0.2 = 2.82 см 2

Тогда с учетом возможного отклонения от вертикали термошайбы или нарушения геометрии листа одно крепление может выдержать нагрузку

Qср = 2.82·815/12 = 191.5 кг

В данном случае использовался понижающий коэффициент 12, так как на значение площади среза изменение угла наклона влияет не так сильно.

Как видим, даже одно точечное крепление термошайбой без уплотняющей прокладки может выдерживать достаточно большую нагрузку, даже в том случае, если в качестве настила используется монолитный поликарбонат минимальной толщины. Поэтому

расстояние между точечными креплениями монолитного поликарбоната можно принимать исходя из конструктивных соображений.

Пример расчета сотового поликарбоната на прочность при точечных креплениях плоского настила

При использовании сотового поликарбоната площадь, на которую будут действовать сжимающие напряжения, формально не изменится. А потому производить расчет на смятие не имеет смысла. А вот расчетная площадь сечения, в котором действуют касательные напряжения, значительно уменьшается, так как напряжения будут действовать только на стенки минибалок, попадающие под кольцо термошайбы и на верхние полки минибалок, да еще и стенки минибалок следует рассчитывать на устойчивость, а полки минибалок рассчитывать как отдельные балки. Поэтому дальнейший расчет будет проведен также очень приближенно.

Для листа сотового поликарбоната толщиной 4 мм площадь сечения составит:

Fср = П(D + d)0.027·0.5/4 + 0.018·8·1.3(0.4 - 0.027) = 0.0477 + 0.0698 = 0.1175 см 2

где 0.5 - коэффициент, приблизительно учитывающий неравномерность распределения напряжений в полках минибалок, 8 - количество сечений, под термошайбу диаметром 30 мм может попасть минимум 4 стенки, 1.3 - коэффициент, учитывающий увеличение сечения балок (чем дальше стенка балки от центра отверстия, тем больше сечение стенки под шайбой.

тогда с учетом возможных отклонений

Qср = 0.1175·815/10 = 7.98 кг

Стенки минибалок под термошайбой можно рассматривать как жестко защемленные колонны с расчетной длиной

lo = 0.5(0.4 - 0.027·2) = 0.173 см

тогда при толщине стенки 0.018 см

λ = 0.173/0.018 = 9.61

Возможно, где-то и есть данные для расчета стержней из поликарбоната на устойчивость, но я о них не знаю, поэтому воспользуюсь данными для древесины по графику φ = 0.92

условная площадь колонн составит

F = 2·4·0.018/12 = 0.012 см 2

где 2 - средняя длина стенок под шайбой, тогда стенки минибалок под термошайбой выдержат нагрузку

Q = N = RcφF = 815·0.92·0.0108 = 8.99 кг

Расчетная ветровая нагрузка для Ставрополя - 60 кг/м 2 , таким образом для крепления листов сотового поликарбоната толщиной 4 мм необходимо
60/7.98 = 7.51
как минимум 8 точечных креплений на 1 м 2 .

Примечание: если допустить необратимые деформации - смятие - на некоторой площади сечения, то это с одной стороны увеличит расчетную площадь сечения и соответственно позволит уменьшить расчетное количество креплений на квадратный метр, но с другой стороны это уменьшит расчетную нагрузку, так как ветровая нагрузка не одноразовая, а многоразовая. После смятия - неупругой деформации между термошайбой и листом появится зазор и дело даже не в том, что через него может протекать вода, а в том, что в дальнейшем при порывах ветра на лист в зоне крепления будет действовать уже не приведенная к статической ветровая нагрузка, но ударная нагрузка, которая при той же силе ветра будет больше, чем приведенная к статической, и чем больше будет область смятия, тем больше будет значение ударной нагрузки.

Для сотового поликарбоната толщиной 8 и 10 мм прочность в местах точечного крепления будет больше, не смотря на то, что у таких листов расстояние между стенками минибалок больше и под опорную шайбу могут попадать минимум 2 стенки. Например, для сотового поликарбоната толщиной 8 мм:

Fср = П(D + d)·0.045·0.5/4 + 0.035·4·1.3(0.8 - 0.045) = 0.0795 + 0.13741 = 0.217 см 2

Тем не менее и для таких листов при использовании термошайб указанной конструкции без уплотнительной прокладки количество креплений желательно рассчитывать.

Для креплений с уплотнительной прокладкой, резиновой или из другого эластичного материала, допустимая нагрузка будет зависеть от наружного и внутреннего диаметров прокладки в момент действия нагрузки. Не смотря на то, что площадь резиновой прокладки может быть значительно меньше площади примыкания рассматриваемой ранее термошайбы, расчетная площадь в зависимости от модуля упругости эластичной прокладки уменьшится максимум в 3-4 раза, так как за счет деформации эластичной прокладки напряжения в поликарбонате будут распределяться более равномерно. К тому же эластичная прокладка значительно снижает силу удара, который может возникнуть при порыве ветра.

Например, используется точечное крепление с эластичной прокладкой, имеющей наружный диаметр D = 32 мм и внутренний диаметр d = 25 мм. Тогда все для того же листа сотового поликарбоната толщиной 4 мм

Fср = П(D + d)·0.027·0.5/4 + 0.018·8·1.3(0.4 - 0.027) = 0.0604 + 0.0698 = 0.13 см 2

Но даже при рассмотренных нами отклонениях от вертикали эластичная прокладка обеспечит примыкание по всей площади и только следует учесть возможную неравномерность распределения нагрузки

Qср = 0.13·815/4 = 26.49 кг

условная площадь колонн составит

F = 1·4·0.018/2 = 0.036 см 2

тогда стенки минибалок под шайбой с уплотнительной прокладкой выдержат нагрузку

Q = N = RcφF = 815·0.92·0.036 = 27 кг

Примечание: часто крепления для поликарбоната с уплотнительной прокладкой имеют ножку определенной длины, чтобы исключить пережимание листа при закручивании самореза. Это означает, что не смотря на наличие эластичной прокладки вкручивать саморезы нужно все равно по возможности вертикально, так как ножка уменьшает возможный люфт отклонения и если вкручивать саморезы совсем уж криво, то никакая прокладка не поможет.

Расчет поликарбоната на прочность при точечных креплениях арочного настила

Для арочного настила необходимо учитывать внутренние напряжения, стремящиеся распрямить лист, при этом чем меньше радиус изгибания листа, т.е. чем ближе радиус гиба к минимально допустимому, тем больше нагрузка на крепления, к тому же к этой постоянной нагрузке добавляется временная ветровая. Если арочный настил имеет 4 и более опор, то рассматривать такой настил следует как многопролетную неразрезную балку, да еще и не прямолинейную. Чтобы максимально упростить решение задачи рассмотрим ситуацию, когда лист поликарбоната опирается только на 3 бруска обрешетки, представляющие собой шарнирные опоры, две крайних и одну промежуточную. При этом лист выгнут по минимально допустимому радиусу и длина листа составляет половину длины окружности. В этом случае лист поликарбоната можно рассматривать как балку, которая прогнулась под действием сосредоточенной силы, а сосредоточенная сила - это наша промежуточная опора. Чтобы еще более упростить решение задачи заменим промежуточную опору и соответственно возникающую на промежуточной опоре опорную реакцию равномерно распределенной нагрузкой, это вполне допустимо, если при действии равномерно распределенной нагрузки опорная реакция на промежуточной опоре равна нулю.

Когда мы рассчитывали поликарбонат на прочность, то выяснили, что благодаря хорошим пластическим свойствам поликарбонат может выгибаться по достаточно малому радиусу и еще множество занятных закономерностей:

определение минимально допустимого радиуса выгибания графическим методом

Рисунок 306.3. Определение минимально допустимого радиуса изгибания поликарбонатного листа графическим методом.

Для того, чтобы лист монолитного поликарбоната толщиной 2 мм прогнулся на величину, показанную на рисунке 306.3, к листу следует приложить нагрузку q = 180 кг/м - это и была наша расчетная нагрузка. А вот чтобы тот же лист прогнулся на величину равную радиусу окружности вписывающейся в расстояние между опорами, т.е. на 21.25 см к листу нужно приложить нагрузку в 51/21.25 = 2.4 раза меньше. Другими словами при равномерно распределенной нагрузке q = 180/2.4 = 75 кг/м лист монолитного поликарбоната прогнется на половину расстояния между опорами. При этом суммарная нагрузка составит 75·0.425 = 31.875 кг, а значит опорные реакции составят 31.875/2 = 15.94 кг. Это означает что на 1 м ширины листа толщиной 2 мм выгнутого приблизительно по радиусу 21.21 см будет действовать нагрузка 15.94 кг на крайних опорах. Именно эту дополнительную нагрузку должны выдерживать точечные крепления. Конечно же для указанного листа толщиной 2 мм, дополнительная нагрузка совсем небольшая, но чем толще лист, тем больше значение пролета и тем больше будет нагрузка.

Например для листа монолитного поликарбоната толщиной 8 мм при соблюдении соотношения прогиба к длине пролета значение длины пролета увеличится в 4 раза, соответственно нагрузка на крайние опоры также увеличится в 4 раза и составит 15.94·4 = 63.75 кг. Но все равно это намного меньше, чем может выдержать 1 точечное крепление. Тем не менее чем больше будет креплений на 1 метре ширины листа тем плотнее лист будет примыкать к опорам, т.е. эстетический вид конструкции будет лучше.

Как видим для листов монолитного поликарбоната расстояние между точечными креплениями можно принимать конструктивно даже при выгибании листов по минимально допустимому радиусу.

Сотовый поликарбонат толщиной 8 мм при действии такой же нагрузки прогнется в 3.1 раза больше, т.е. максимальная нагрузка на крайних опорах для 1 м ширины сотового поликарбоната будет в 3.1 раза меньше и составит

Qп = 63.75/3.1 = 20.56 кг.

Например при 2 пролетах по 0.5 м и при действии ветровой нагрузки q = 60 кг/м2, нагрузка от ветра на крайние опоры (на 1 м ширины листа) составит приблизительно (без учета перераспределения опорных реакций в многопролетной неразрезной балке) 60·0.5/2 = 15 кг. Тогда общая нагрузка на 1 м ширины листа сотового поликарбоната толщиной 8 мм составит 15 + 20.56 = 35.56 кг.

Какие при этом использовать точечные крепления, с эластичной прокладкой или нет, решайте сами.

В общем виде зависимость количества точечных опор от радиуса изгибания можно сформулировать приблизительно так: если количество точечных опор определяется по расчету на ветровую нагрузку и радиус изгибания приближается к минимально допустимому, то количество точечных креплений на крайних опорах для надежности следует увеличить вдвое по сравнению с расчетным количеством. Впрочем, еще раз напомню, в данной статье рассматривались случаи наиболее неудачного закрепления листа. К тому же для закрытых арочных конструкций типа теплиц ветровая нагрузка при расчете точечных креплений почти не имеет значения.

Вот в общем и весь расчет.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье "Записаться на прием к доктору"

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины - номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).

Поликарбонат – это современный полимерный материал, который почти не уступает по прозрачности стеклу, но в 2-6 раз легче него и в 100-250 раз прочнее. Он позволяет создавать конструкции, которые сочетают красоту, функциональность и надежность.

Это прозрачные крыши, теплицы, витрины, остекление зданий и многое другое. Для возведения любой конструкции важно сделать верные расчеты. А для этого нужно знать, какими бывают стандартные габариты поликарбонатных панелей.







Габариты сотовых листов

Сотовый (другие названия – структурный, канальный) поликарбонат – это панели из нескольких тонких слоев пластика, скрепленных внутри вертикальными перемычками (ребрами жесткости). Ребра жесткости и горизонтальные слои образуют пустотелые ячейки. Такое строение в боковом разрезе напоминает соты, из-за чего материал и получил свое название. Именно особая ячеистая структура наделяет панели повышенными шумо- и теплозащитными свойствами. Обычно выпускается в форме прямоугольного листа, размеры которого регламентируются ГОСТ Р 56712-2015. Линейные габариты типовых листов следующие:

  • ширина – 2,1 м;
  • длина – 6 м или 12 м;
  • варианты толщины – 4, 6, 8, 10, 16, 20, 25 и 32 мм.

Допускается отклонение фактических размеров материала от заявленных производителем по длине и ширине не более 2-3 мм на 1 метр. По толщине максимальное отклонение не должно превышать 0,5 мм.



С точки зрения выбора материала важнейшей характеристикой является его толщина. Она тесно связана с несколькими параметрами.

  • Количество слоев пластика (стандартно от 2 до 6). Чем их больше, тем толще и прочнее материал, лучше его звукопоглощающие и теплоизоляционные свойства. Так, показатель звукоизоляции 2-слойного материала составляет около 16 дБ, коэффициент сопротивления теплопередаче – 0,24, а для 6-слойного материала эти показатели равны 22 дБ и 0,68 соответственно.
  • Расположение ребер жесткости и форма ячеек. От этого зависят как прочность материала, так и степень его гибкости (чем толще лист, тем он прочнее, но тем хуже гнется). Ячейки могут быть прямоугольными, крестообразными, треугольными, шестиугольными, в виде пчелиных сот, волнообразными.
  • Толщина ребер жесткости. От этой характеристики зависит устойчивость к механическим нагрузкам.



Исходя из соотношения этих параметров выделяют несколько разновидностей сотового поликарбоната. Каждый из них лучше всего подходит для своих задач и имеет свои типовые стандарты толщины листа. Самыми популярными являются несколько видов.

  • 2H (П2С) – листы из 2-х слоев пластика, соединенных перпендикулярными перемычками (ребрами жесткости), образующими ячейки прямоугольной формы. Перемычки располагаются через каждые 6-10,5 мм и имеют сечение от 0,26 до 0,4 мм. Общая толщина материала обычно составляет 4, 6, 8 или 10 мм, редко – 12 или 16 мм. В зависимости от толщины перемычек, кв. м материала весит от 0,8 до 1,7 кг. То есть при стандартных габаритах 2,1х6 м лист весит от 10 до 21,4 кг.
  • 3Н (П3С) – это 3-слойная панель с прямоугольными ячейками. Выпускается толщиной 10, 12, 16, 20, 25 мм. Стандартная толщина внутренних перемычек – 0, 4-0,54 мм. Вес 1 м2 материала составляет от 2,5 кг.
  • 3X (К3С) – трехслойные панели, внутри которых находятся как прямые, так и дополнительные наклонные ребра жесткости, за счет чего ячейки приобретают треугольную форму, а сам материал – дополнительную устойчивость к механическим нагрузкам по сравнению с листами типа «3Н». Стандартная толщина листа – 16, 20, 25 мм, удельный вес – от 2,7 кг/м2. Толщина основных ребер жесткости составляет около 0,40 мм, дополнительных – 0,08 мм.
  • 5Н (П5С) – панели, состоящие из 5 слоев пластика с прямыми ребрами жесткости. Типовая толщина – 20, 25, 32 мм. Удельный вес – от 3,0 кг/м2. Толщина внутренних перемычек – 0,5-0,7 мм.
  • 5Х (К5С) – 5-слойная панель с перпендикулярными и диагональными внутренними перегородками. Стандартно лист имеет толщину в 25 или 32 мм и удельный вес –3,5-3,6 кг/м2. Толщина основных перемычек – 0,33-0,51 мм, наклонных – 0,05 мм.




Наряду с типовыми марками по ГОСТу, производители часто предлагают собственные разработки, которые могут иметь нестандартную структуру ячеек или особые характеристики. Например, предлагаются панели более высокой ударопрочности, но при этом более легкие по весу, чем стандартные варианты. Кроме премиальных марок есть, наоборот, варианты типа light – с уменьшенной толщиной ребер жесткости. Они стоят дешевле, но их устойчивость к нагрузкам ниже, чем у типовых листов. То есть марки разных производителей даже при одинаковой толщине могут различаться по прочности и эксплуатационным свойствам.

Поэтому при покупке это нужно учитывать, уточняя у производителя не только толщину, а все характеристики конкретного листа (плотность, толщину ребер жесткости, тип ячеек и другое), его назначение и допустимые нагрузки.



Размеры монолитного материала

Монолитный (или литой) поликарбонат выпускается в виде прямоугольных пластиковых листов. В отличие от сотовых они имеют полностью однородную структуру, без пустот внутри. Поэтому показатели плотности монолитных панелей существенно выше, соответственно, выше показатели прочности, материал способен выдерживать существенные механические и весовые нагрузки (стойкость к весовым нагрузкам – до 300 кг на кв. м, ударная стойкость – 900 до 1100 кДж/кв. м). Такую панель не разбить молотком, а усиленные варианты от 11 мм толщиной выдерживают даже попадание пули. При этом данный пластик более гибкий и прозрачный, чем структурный. Единственное, в чем он уступает ячеистому, – это теплоизолирующие свойства.

Листовой монолитный поликарбонат изготавливается согласно ГОСТ 10667-90 и ТУ 6-19-113-87. Производители предлагают листы двух видов.

  • Плоский – с ровной, гладкой поверхностью.
  • Профилированный – имеет гофрированную поверхность. Наличие дополнительных ребер жесткости (гофр) делает материал более прочным, чем плоский лист. Форма профиля может быть волнистой или трапециевидной с высотой профиля (или волны) в диапазоне 14-50 мм, длиной гофры (или волны) от 25 до 94 мм.



По ширине и длине листы и плоского, и профилированного монолитного поликарбоната у большинства производителей соответствуют общему стандарту:

Но также продается материал со следующими габаритными размерами:

  • 1050х2000 мм;
  • 1260×2000 мм;
  • 1260×2500 мм;
  • 1260×6000 мм.

Стандартная толщина листов монолитного поликарбоната по ГОСТу находится в диапазоне от 2 мм до 12 мм (основные размеры – 2, 3, 4, 5, 6, 8, 10 и 12 мм), но многие производители предлагают более широкую линейку – от 0,75 до 40 мм.




Поскольку структура всех листов монолитного пластика одинаковая, без пустот, то именно размер поперечного сечения (то есть, толщина) является главным фактором, влияющим на прочность (тогда как у ячеистого материала прочность сильно зависит от внутреннего строения).

Закономерность здесь стандартная: пропорционально толщине увеличивается плотность панели, соответственно, растут прочность, устойчивость к прогибу, давлению, излому. Однако нужно принимать во внимание, что вместе с этими показателями возрастает и вес (например, если 1 кв. м 2-миллиметровой панели весит 2,4 кг, то 10-миллиметровой – 12,7 кг). Поэтому мощные панели создают большую нагрузку на конструкции (фундамент, стены и другое), что требует установки усиленного каркаса.




Радиус изгиба с учетом толщины

Поликарбонат – единственный кровельный материал, который при отличных показателях прочности легко может формоваться и гнуться в холодном состоянии, принимая дугообразную форму. Чтобы создавать красивые радиусные конструкции (арки, купола), не придется собирать поверхность из множества ровных фрагментов – можно сгибать сами поликарбонатные панели. Для этого не потребуются специальные инструменты или условия – материал можно формовать руками.

Но, конечно, даже при высокой эластичности материала любую панель можно изгибать лишь до определенного предела. У каждой марки поликарбоната степень гибкости своя. Ее характеризует специальный показатель – радиус изгиба. Он зависит от плотности и толщины материала. Для расчета радиуса изгиба листов стандартной плотности можно использовать простые формулы.

  • Для монолитного поликарбоната: R = t x 150, где t – толщина листа.
  • Для сотового листа: R = t x 175.



Так, подставив в формулу значение толщины листа в 10 мм, легко определить, что радиус изгиба монолитного листа данной толщины 1500 мм, структурного – 1750 мм. А взяв толщину в 6 мм, получим значения 900 и 1050 мм. Для удобства можно не считать каждый раз самому, а воспользоваться уже готовыми справочными таблицами. Для марок с нестандартной плотностью радиус изгиба может несколько отличаться, поэтому перед покупкой нужно обязательно уточнять этот момент у производителя.

Но для всех типов материала есть четкая закономерность: чем тоньше лист, тем лучше он гнется. Некоторые виды листов толщиной до 10 мм настолько гибкие, что их можно даже скручивать в рулон, что существенно облегчает транспортировку.

Но важно помнить, что в скрученном виде поликарбонат можно держать небольшое время, при длительном хранении он должен находиться в расправленном листовом виде и в горизонтальном положении.



Какой размер лучше выбрать?

Поликарбонат выбирают исходя из того, для каких задач и в каких условиях планируется эксплуатировать материал. Например, материал для обшивки должен быть легким и обладать хорошими теплоизолирующими свойствами, для кровли – очень прочным, чтобы выдерживать снеговые нагрузки. Для объектов с изогнутой поверхностью необходимо подбирать пластик с нужной гибкостью. Толщину материала выбирают в зависимости от того, какова будет весовая нагрузка (особенно это важно для кровли), а также от того, каков шаг обрешетки (материал требуется класть на каркас). Чем больше предполагаемая весовая нагрузка, тем толще должен быть лист. При этом если сделать обрешетку более частой, то толщину листа можно взять немного меньше.

Например, для условий средней полосы для небольшого навеса оптимальным выбором с учетом снеговых нагрузок является монолитный поликарбонатный лист толщиной 8 мм при шаге обрешетке в 1 м. Но если уменьшить шаг обрешетки до 0,7 м, то можно использовать 6-миллиметровые панели. Для расчетов параметры необходимой обрешетки в зависимости от толщины листа можно узнать из соответствующих таблиц. А чтобы правильно определить снеговую нагрузку для вашего региона, лучше всего воспользоваться рекомендациями СНИП 2.01.07-85.

Вообще, расчет конструкции, особенно нестандартной формы может быть довольно сложным. Иногда его лучше доверить профессионалам, или воспользоваться строительными программами. Это застрахует от ошибок и неоправданного расхода материала.



В общем случае рекомендации по подбору толщины поликарбонатных панелей даются следующие.

В последнее время довольно популярным стало изготовление навесов возле дома. Это специальная несложная конструкция, при помощи которой можно не только спрятаться от палящего солнца и проливного дождя, но и благоустроить придомовую территорию.




Ранее для изготовления навесов использовали массивные материалы, например, шифер или дерево, которые визуально утяжеляли постройку и причиняли немало хлопот в процессе строительства. С появлением на строительном рынке легкого поликарбоната возводить такие конструкции стало значительно проще, быстрее и дешевле. Это современный строительный материал, он прозрачный, но прочный. Относится к группе термопластов, а основным сырьем для его производства является бисфенол. Существует два типа поликарбоната – монолитный и сотовый.

Какую толщину монолитного поликарбоната выбрать?

Литой поликарбонат – это сплошной лист особого пластика, довольно часто используемый для обустройства навесов. Его часто называют «противоударным стеклом». Он обладает рядом положительных качеств. Перечислим основные из них.

  • Прочность. Снег, дождь и сильный ветер ему не страшны.
  • Высокий коэффициент устойчивости к агрессивной среде.
  • Гибкость. Из него можно изготовить навесы в виде арки.
  • Отличные показатели теплопроводности и теплоизоляции.

Лист монолитного поликарбоната характеризуется такими параметрами:

  • ширина – 2050 мм;
  • длина – 3050 мм;
  • вес – 7,2 кг;
  • минимальный радиус изгиба – 0,9 м;
  • срок годности – 25 лет;
  • толщина – от 2-х до 15 мм.

Как видим, показатели толщины довольно разнообразны. Для навеса можно выбрать абсолютно любой размер, главное, учитывать несколько основных критериев и факторов. Среди них важными являются нагрузка и расстояние между опорами, а также величина конструкции. Обычно при выборе толщины листов монолитного поликарбоната для навеса принимают во внимание именно последний фактор, например:

  • от 2-х до 4 мм – используется при возведении небольшого навеса изогнутой формы;
  • 6–8 мм – подойдет для средних по размеру конструкций, которые постоянно подвергаются большой нагрузке и механическим воздействиям;
  • от 10 до 15 мм – применяют довольно редко, использование такого материала актуально только в том случае, если на конструкцию предусмотрено воздействие высоких нагрузок.

Какой толщины должен быть сотовый материал?

Сотовый поликарбонат представляет собой несколько тонких пластиковых листов, соединенных перемычками, играющими роль ребер жесткости. Как и монолитный, он тоже очень часто используется в процессе строительства навесов. Физико-технические параметры сотового поликарбоната, конечно же, отличаются от характеристик монолитного. Для него характерны:

  • ширина – 2100 мм;
  • длина – 6000 и 12000 мм;
  • вес – 1,3 кг;
  • минимальный радиус изгиба – 1,05 м;
  • срок годности – 10 лет;
  • толщина – от 4-х до 12 мм.

Таким образом, сотовый поликарбонат значительно легче монолитного вида, но и срок эксплуатации в 2 раза меньше. Длина панели также значительно отличается, а вот толщина примерно одинаковая.

Из этого следует, что сотовый вариант целесообразно использовать для возведения малогабаритных навесов с минимальным уровнем нагрузки.

  • Листы толщиной 4 мм могут применяться для возведения небольших навесов, для которых характерен значительный радиус закругления. Например, если крыша нужна для беседки или теплицы, лучше сделать выбор в сторону материала именно такой толщины.
  • Лист материала толщиной от 6 до 8 мм применяют только в том случае, если на конструкцию предусмотрена постоянная большая нагрузка. Он подойдет для сооружения навесов для бассейна или автомобиля.

Лист толщиной 10 и 12 мм может применяться только в экстремальных климатических условиях. Такие навесы предназначены для выдерживания сильных порывов ветра, больших нагрузок и постоянных механических воздействий.

Как рассчитать?

Для возведения навеса подойдет как монолитный, так и сотовый поликарбонат. Главное – произвести правильный расчет максимально возможной нагрузки на материал, а также проследить за тем, чтобы технические параметры листа соответствовали требованиям. Так, если известна масса листа, можно рассчитать вес всего кровельного покрытия из поликарбоната. А также для определения толщины листов учитываются площадь, конструктивные особенности навеса, технические расчёты нагрузок.

Какой-либо одной математической формулы для определения необходимой толщины поликарбоната для сооружения навеса не существует. Но для того чтобы максимально близко определить данную величину, необходимо воспользоваться таким нормативным документом, как СНиП 2.01.07-85. Данные строительные нормы и правила помогут выбрать подходящий материал для определенной климатической зоны с учетом структуры листа и особенностей конструкции навеса.

Если же нет возможности самостоятельно это сделать, то можно проконсультироваться со специалистом – продавцом-консультантом.

Изучая статьи касающиеся выбора поликарбоната часто можно встретить фразу «рекомендуемая толщина поликарбоната для региона составляет …».

И тут же возникают вопросы:

№ 1. Как узнать снеговую и ветровую нагрузку в вашем регионе?

№ 2. Как учесть температурный режим региона?

№ 3. Как влияет на толщину поликарбоната угол уклона ската кровли?

№ 4. Будут ли обладать одинаковыми характеристиками листы одной толщины, но разных производителей?

№ 5. Какой материал лучше держит тепло при одинаковой толщине: сотовый поликарбонат или монолитный?

№ 6. Влияет ли размер (объем и площадь) теплицы на толщину листа?

№ 7. Каким образом сказывается вид выращиваемых культур на выбор?

№ 8. Влияет ли шаг обрешетки на качество материала?

№ 9. Можно ли обойтись без применения специальных профилей или герметизирующих лент?

И это только некоторые из вопросов, которые интересуют хозяев.

Рассмотрим их по порядку.

№ 1. Снеговая нагрузка указана в СНиП «Нагрузки и воздействия 2.01.07-85». Общаясь к этому справочнику, следует обратить внимание на год его издания. Издание от 1985 г. не может служить руководством, поскольку содержит не обновленные данные. Следует обратиться к нормам от 2008 г. или изучить документ «Изменения к СНиП 2.01.07-85». Здесь приведены новые карты, а нагрузка от веса снега рассчитывается в соответствии с требованиями Европейских нормативов.

Нижеприведенная карта РФ разбита по районам, а в таблице ниже вы можете посмотреть нагрузку для вашего региона.

карта расчета снеговой нагрузки

Расчетный вес снегового покрова Q на 1 м2 горизонтальной поверхности земли

1

2

3

4

5

6

7

8

Q , кПа (кг/м2)

При этом учтите, что уклон крыши и преобладающее направление ветра также оказывают влияние на снеговую нагрузку.

Скорость ветра также определяется по вышеприведенным нормам и изменениям к ним.

Ниже приведенная карта показывает разбивку по районам.

карта определения скорости ветра

№ 2. Как учесть температурный режим?

Тот же СНиП «Нагрузки и воздействия» содержит информацию о средней температуре в регионе. Этот параметр нужно учесть для того, чтобы правильно выбрать толщину поликарбоната. Ведь, если снег растает и замерзнет, он будет сильнее давить на материал.

Представленная ниже карта содержит информацию о средней температуре за январь, как наиболее холодный месяц.

карта определения средней температуры

№ 3. Как влияет на толщину поликарбоната угол уклона ската кровли?

Чем круче уклон крыши, тем проще с него будет сходить снег. В общем же полная нагрузка на крышу теплицы рассчитывается по формуле

Где Sрасч. определяется по таблице 1., а μ – коэффициент, учитывающий угол наклона скатов крыши. В том случае если

- уклон меньше 25 о μ = 1;

- уклон между 25 о и 60 о μ = 0,7

- больше 60 о – μ не учитывается.

Для двускатной теплицы типа домик угол наклона обычно составляет от 20 до 40 о .

Для арочной формы μ не учитывается.

№ 4. Даже определившись с толщиной листа нужно еще учесть его внутреннюю структуру. Т.к. количество стенок, их форма, шаг расположения и конфигурация ребер отличаются у производителей и непосредственно влияют на способность поликарбоната удерживать тепло. На схеме приведены некоторые виды структур в разрезе.

разновидности сотового поликарбоната

Для теплицы подходит сотовый поликарбонат с одинарным квадратным сечением (рис. а) и монолитный (рис. е).

Вес листа также может быть разным при одинаковой толщине листа.

В таблице 2 приведены некоторые сравнительные характеристики листов при одинаковой толщине материала.

Показатель

4мм

4ммус

6мм

6мм ус

8мм

10мм

16мм

25мм

минимальный радиус изгиба, м

удельный вес, г/кв.м

водопоглощение по массе, %

относительное удлинение, %

звукопоглощение, дБ

коэффициент линейного расширения, mWm*C

плотность, г/куб. см.

прочность при растяжении, Мпа

сопротивление теплопередаче, кв.м*К/Вт

коэффициент теплопроводности, Вт/кв.м*К

модуль упругости при изгибе, МПа

максимальная прочность при изгибе, МПа

остаточная прочность после испытания на морозостойкость, %

максимальное усилие при сжатии, МПа

стойкость к удару при - 20С

долговечность, условных лет

Как видно из таблицы, некоторые характеристики остаются неизменными, а часть меняется.

Для примера в таблице 3 приведены характеристики продукции некоторых торговых марок.

Марка
ПОЛИКАРБОНАТА

GRADAPLAST

Позиционирование

optimal

Срок эксплуатации

15 лет

Производимые
толщины

10, 8, 6, 4, 3,5мм

Ценовой сегмент

средний

Используемое сырье

импортное

Применение

любые архитектурные формы, в том числе самые сложные; наружное и внутренее применение

простые и сложные конструкции; наружное и внутреннее применение, для теплиц и парников

простые и сложные конструкции; наружное и внутреннее применение

простые конструкции; наружное и внутреннее применение

для теплиц и парников

Ультр а ф и ол етов ая защита

UV-защита: соэкструзия с обеих сторон листа и в массе

UV-защита: соэкструзия с верхней стороны листа и в массе

UV-защита: соэкструзия с верхней стороны листа и в массе

UV-защита: соэкструзия с верхней стороны листа и в массе

UV-защита: соэкструзия с верхней стороны листа и в массе

Преимущества

лучшее соотношение цена/ качество

неплохое соотношение цена/ качество

самый легкий вес

Завальцованный край листа

Количество
производимых
цветов

10

№ 5. Сотовый поликарбонат имеет лучший показатель сохранения тепла, нежели монолитный. Это объясняется самой конструкцией листа. Поскольку сотовый поликарбонат это два листа пластика, которые соединены между собой ребрами жесткости, он может удерживать воздух, а значит и тепло, внутри этих камер. Монолитный поликарбонат такой чертой не обладает.

№ 6. Параметры теплицы опосредовано влияют на выбор толщины поликарбоната. Большее влияние оказывают материал каркас, шаг его монтажа, наличие в теплице и вид системы отопления.

№ 7. Выбирая толщину поликарбоната для теплицы, следует учесть, для какого вида культур она предназначена. Так, например, если вы собираетесь выращивать рассаду, следует выбрать материал не меньше 6 мм. А если ранние овощи и зелень – достаточной будет толщина 4 мм.

№ 8. Профессионалы рекомендуют следующий шаг обрешетки для поликарбоната 1050 или 700 мм. Такой шаг равен половине или трети ширине листа. Следование этому условию позволит правильно закрепить лист, снизить расход материала. При этом следует учесть, чем толще лист, тем меньше шаг.

Шаг вертикальных и горизонтальных опор важный момент при выборе толщины поликарбоната. Размер ячейки несущей конструкции приведен в таблице 4. При снеговой нагрузке в 180 кг/м.кв.

Толщина листа, мм

Размер ячейки несущей конструкции, см

В сети есть достаточно много он-лайн калькуляторов для расчета. Полученный результат содержит полезную информацию, но не является руководством к действию, поскольку важно учесть материал каркаса, количество креплений, вид крепежа.

Для арочных теплиц толщина поликарбоната влияет еще на один аспект строительства. А именно, на выбор радиуса кривизны. Каждый производитель оговаривает, на сколько можно согнуть лист. Если не выдержано это требование, то лист может лопнуть под воздействием внутреннего напряжения или снижения прочности материала.

№ 9. Технология крепления листа поликарбоната такова, что обойтись без применения специальных профилей или герметизирующих лент можно, если вы монтируете незначительную площадь и вам не обязательно сохранять характеристики листа. Однако если вы используете поликарбонат как укрывной материал на теплицу или парник без расходных материалов вам не обойтись. При этом желательно чтобы профиль и листы были изготовлены одним производителем. Тогда вы можете рассчитывать на качественное укрытие, сберегающее тепло и пропускающее свет.

Вместо послесловия

Чтобы выбранный материал эксплуатировался дольше гарантийного срока нужно периодически очищать его внутри и снаружи. Учтите, для этого не подходят средства, содержащие абразивные частицы, хлор, растворители. Чтобы восстановить светопускающие свойства поликарбоната достаточно просто помыть его водой и мягкой губкой.

Подробная инструкция по монтажу сотового поликарбоната

С каждым годом поликарбонат приобретает все большую популярность не только в промышленности, но и в частном строительстве. Отличные технические и эксплуатационные характеристики материала делают его лидером для отделки навесов, небольших хозяйственных построек и конструкций сельскохозяйственного назначения. Обеспечить длительный срок службы поликарбоната удается благодаря правильному монтажу.

1. Основные этапы

Монтаж листов поликарбоната различается в зависимости от типа конструкции, способов крепления, вида каркаса. Материал отлично поддается любому типу механического воздействия: резке, сверлению. Правильная установка подразумевает использование специальных комплектующих к числу которых относятся: поликарбонатные и алюминиевые профили, перфорированные и герметизированные ленты, термошайбы.

19.jpg

1.1. Подготовка к монтажу

Панели поликарбоната подходят для установки на вертикальные, горизонтальные и арочные конструкции. Первая задача – изучить технологию монтажа. После чего можно приступить к подготовке материала и инструментов для установки. Отдельное внимание рекомендуется уделить обработке торцов панелей.

На каждом листе панели есть специальная пленка, которая обозначает сторону со специальным слоем для защиты от ультрафиолетового излучения. При монтаже поликарбоната важно, чтобы данная сторона была направлена наружу. В ином случае, материал быстро придет в негодность. Удаление заводской пленки необходимо осуществлять в завершении монтажных работ.

1018186801.JPG

1.2. Инструменты для установки листов

Точный перечень инструментов и комплектующих зависит от каркаса, назначения конструкции и других факторов. Мы перечислим универсальный набор, который подойдет для любого типа крепления:

Листы поликарбоната – определить количество материала позволит заранее разработанный проект, с его помощью удаться рассчитать общую площадь конструкции;

Ножовка – подойдет для панелей толщиной до 10 мм, для более толстых рекомендуется использовать циркулярную пилу;

Разъемные или неразъемные поликарбонатные или алюминиевые профили – их выбор напрямую зависит от назначения конструкции;

В качестве дополнительных комплектующих могут понадобится коньковый, фигурный или угловой профили;

Подготовьте шуруповерт, саморезы, оцинкованные гвозди, молоток;

Для крепления листов к каркасу рекомендуется использовать болты с термошайбами;

Возможно также использование специального атмосферостойкого клея для поликарбоната или его аналога с составом на основе силикона.


1.3. Технология раскроя панелей

Листы поликарбоната продаются со стандартной шириной 6 или 12 м. Для создания навеса или перегородки и в зависимости от каркаса будущей постройки чаще всего приходится прибегать к раскрою панелей. Данная процедура должна проводиться очень аккуратно, в ином случае, существует риск повреждения защитной пленки и торцов листов, что приведет к быстрому их износу.

Для распила листов специалисты рекомендуют использовать высокоскоростную циркулярную пилу с твердосплавными дисками. Мелкие неразведенные зубья обеспечивают максимально ровный срез. В процессе резки панель должна быть крепко зафиксирована. Важно не повредить защитную пленку. После распила очистите внутренние полости от стружки, чтобы избежать в дальнейшем скопления конденсата в этих местах.

1.4. Герметизация

В качестве предварительной подготовки панелей для установки важно обеспечить надежную герметизацию торцов, именно она гарантирует длительный срок эксплуатации материала. Верхний торец рекомендуется закрыть алюминиевой лентой для защиты от воздействий окружающей среды. Нижний торец не герметизируют, поэтому для его защиты используют перфорированную ленту, поверх которой в дальнейшем устанавливается специальный профиль.

montazh.jpg

1.5. Создание отверстий для крепления листов

Важно отметить, что разметка и просверливание отверстий для дальнейшего крепления листов должны проводиться с учетом определенных правил. Отступ от края панели должен составляет около 2 см, в случае если диаметр отверстия не превышает 3 мм. Для создания отверстий рекомендуется использоваться типовые сверла по дереву. Сверление лучше проводить на невысокой скорости, контролируя температуру рабочей зоны. Правильное создание отверстий гарантирует надежное соединение, обеспечивая плотное прилегание листов к каркасу.

1.6. Применение термошайб в процесс монтажа

Установка листов поликарбоната осуществляется с использованием специальных профилей, саморезов и термошайб. Последняя применяются с целью создания надежного крепления листов на каркасе. Тремошайба включает в себя пластиковую шайбу выпуклой формы с ножной или без нее, уплотняющее кольцо из специального эластичного полимера и заглушку. Саморезы приобретаются отдельно.

Термошайба не только обеспечивает надежное крепление, но и не пропускает влагу внутрь материала, сохраняя красивый внешний вид конструкции в целом. Данные элементы изготавливаются из поликарбоната и выпускаются в широкой цветовой гамме, что позволяет выбрать их под цвет листов. Стоит отметить – термошайбы из поликарбоната отличаются длительным сроком службы, в отличии от более дешевых аналогов – полипропиленовых и нержавеющих стальных или оцинкованных шайб.

polikarmi.jpg

2. Ориентация панелей при проектировании

Расположение листов поликарбоната при монтаже играют большую роль. Важно, чтобы при проектировании внутренние ребра жесткости были расположены таким образом, чтобы образующийся в них конденсат выводился наружу по каналам панели.

В случае вертикального остекления, ребра жесткости должны быть расположены вертикально, у скатной конструкции – вдоль ската. Что касается арочных построек, в том числе теплиц – ребра жесткости располагаются по дуге. Обратите внимание, нельзя изгибать листы по меньшему радиусу, чем указывает производитель в технических характеристиках к материалу.

3. Методы установки

В целом процесс установки панелей сотового поликарбоната имеет несколько основных правил, которые незначительно отличаются в зависимости от вида конструкции. Материал устанавливается вертикально, горизонтально и в виде арки. Предлагаем рассмотреть особенности каждого метода установки отдельно.

Besedka_iz_polikarbonata_37.jpg

3.1. Плоская кровля

Плоская кровля представляет собой конструкцию, состоящую в одной плоскости с небольшим уклоном. Поликарбонатные листы, установленные на такие постройки, подвергаются значительным снеговым нагрузкам в холодное время года. Большой популярностью пользуются скатные конструкции, это крыши с уклоном до 40 градусов.

При создании крыши из поликарбоната рекомендуется соблюдать минимальный допустимый уклон около 5%. Если материал вставляется в рамы необходимо заранее рассчитать коэффициент линейного расширения, который рассчитывается согласно толщине листа. Для создания скатной конструкции с использованием поликарбоната рекомендуется использовать профильные элементы из алюминия.

Обратите внимание, пространство между балками не должно превышать стандартной ширины листа поликарбоната – 2,1 м. Промежуток между стропилами должен быть рассчитан так, чтобы место соединения листов располагалось в центральной части бруска.

Верхняя часть каркасной конструкции устанавливается после монтажа поликарбонатных панелей. Швы рекомендуется дополнительно обработать мастикой. Между листами при установке оставляют компенсационное пространство в 5 мм. После монтажа профильных элементов по краям ставят ограничители, фиксирующиеся с помощью заклепок.

DSC_1964.jpg

3.2. Арочные конструкции

Поликарбонат часто используется для создания арочных конструкций – навесов, теплиц. Благодаря отличной гибкости позволяет без труда монтируется на любой каркас.

При установке панелей на арочные конструкции следует учитывать несколько важных моментов:

изгибать листы поликарбоната необходимо только вдоль ребер жесткости;

важно учитывать минимальный радиус изгиба материала, который указывает производитель в технических характеристиках;

лучше всего использовать прижимной поликарбонатный профиль;

в случае применения алюминиевого аналога радиус кривизны должны быть немного меньше радиуса арки в конструкции.

4. Монтаж в зависимости от вида каркаса

Особенности монтажа сотового поликарбоната зависят не только от типа конструкции, но и от того, из чего она изготовлена. Существует несколько важных моментов, на которые стоит обратить внимание в случае крепления панелей на металлических и деревянный каркас.

63bba2b21b9f.jpg

4.1. Металлический

При монтаже листов поликарбоната на металлический каркас панели рекомендуется устанавливать вдоль стропильных конструкций. Карнизные свесы не должны превышать 5 см, чтобы материал не прогнулся. Поперечный стык устанавливается на коньке.

Установку панелей начинают с середины. Вначале монтируются соединительные профили к стропильным элементам (подойдут разъемные или неразъемные). Листы поликарбоната удерживаются на кровле с помощью саморезов с термошайбами, которые устанавливаются на прогонах и промежуточных стропилах с шагом 30 см. Крепление осуществляется со сверлением листа под термошайбу. Для создания красивой конструкции рекомендуется размещать саморезы симметрично.

725292960.jpg

4.2. Деревянный

Деревянный каркас пользуется большой популярностью. Экологически чистый материала удобен в работе, но при этом требует дополнительной обработки. Чаще всего для создания подобных конструкций используется деревянный брус. Для возведения долговечной конструкции важно предварительно обработать материал специальными антисептическими растворами.

Существует еще один момент при использовании деревянного каркаса, на который следует обратить внимание – коэффициент расширения материала в результате воздействия влаги, влияющий на плотность крепления. В качестве крепежных элементов для установки поликарбоната на деревянный каркас специалисты рекомендуют использовать термошайбы.

В отличие от металлической конструкции монтаж следует начинать от края каркаса. При установке край панели должен немного выходить за край бруса. Соединение должно быть достаточно плотным. Стык панелей при монтаже располагают над деревянным брусом.

5. Установка профилей

Отдельное внимание при установке поликарбоната стоит уделить выбору профилей, т.к. именно с их помощью можно создать надежное соединение, которое обеспечит длительный срок эксплуатации конструкции.

furnitura-dlya-polikarbonata.jpg

5.1. Поликарбонатные профили

Неразъемный соединительный профиль предназначен для соединения листов сотового поликарбоната при создании небольших конструкций. Представляет собой планку длиной 6 м, по краям которой расположены специальные пазы, в которые вставляются панели поликарбоната. Профиль легко устанавливается на листы толщиной до 10 мм. При креплении необходимо оставить небольшой зазор на случай расширения материала при воздействии температуры. При выборе профиля важно, чтобы его размеры соответствовали толщине листов поликарбоната.

Разъемный соединительный профиль прост в установке. Он представляет собой базу и крышку, которые позволяют полностью закрыть соединение. При монтаже разъемного профиля сначала фиксируется база, после чего к ней крепят листы поликарбоната и защелкиваются крышкой. В собранном виде не скручивается.

shema-montazha-polikarbonata.jpg

5.3. Алюминиевые профили

Алюминиевый профиль довольно часто используется для монтажа сотового поликарбоната. Он отлично подходит для панелей различной толщины. Включает в себя специальные резиновые уплотнители, обеспечивающие надежную герметизацию стыков. Алюминиевые детали прекрасно сочетаются с пластиком, дополнительно придавая конструкции высокие несущие характеристики. Обладает длительным сроком службы, который составляет 20 лет.

navesy-dlya-bassejna-iz-polikarbonata-2.jpg

6. Монтаж сотового поликарбоната от КИНПЛАСТ

Компания КИНПЛАСТ (входит в КИН-холдинг) является ведущим производителем сотового поликарбоната на отечественном рынке. О высоком качестве материала говорят многочисленные отзывы покупателей. Отличные технические характеристики, обеспечивающие длительный срок эксплуатации, являются надежной гарантией при покупке материала высокого качества.

В линейке сотового поликарбоната от компании КИНПЛАСТ представлены несколько марок:

KINPLAST – марка премиум-класса, отличается длительным сроком эксплуатации, лучшими техническими характеристиками, занимает надежные позиции по количеству продаж в течение многих лет;

WOGGEL – поликарбонат европейского качества, отличный аналог импортному материалу, отличается длительным сроком службы и высокими техническими характеристиками;

SKYGLASS – универсальный строительный материал ничем не уступающий по качеству своим аналогам, прекрасно подходит для создания различных конструкций, пользуется популярностью при строительстве в частном секторе;

АгроТИТАН специально разработанный материал, предназначенный для создания конструкций сельскохозяйственного назначения, способствует созданию оптимального микроклимата для роста и развития растений в теплицах, парниках, оранжереях.

Покупка материала отличного качества не дает 100%-ой гарантии на создание долговечной конструкции. Важно не просто купить хороший сотовый поликарбонат, но и правильно установить его. А для этого необходимо использовать качественные комплектующие, которые также представлены в широком ассортименте на сайте КИНПЛАСТ. Приобрести профили из сотового убрать поликарбоната или алюминия, перфорированные и герметизирующие ленты, термошайбы Вы можете филиалах компании.

Читайте также: