Как посчитать сопротивление теплопередачи окна

Обновлено: 01.05.2024

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОНСТРУКЦИИ ФАСАДНЫЕ СВЕТОПРОЗРАЧНЫЕ

Метод определения приведенного сопротивления теплопередаче

Translucent facade constructions. Method for determination of thermal transmission resistance

Дата введения 2012-07-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 ПОДГОТОВЛЕН Учреждением Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук (НИИСФ РААСН)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

4 В настоящем стандарте учтены основные нормативные положения следующих международного и европейского стандартов*:

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

- ИСО 15099 "Теплотехнические свойства окон, дверей и солнцезащитных устройств. Процедуры подробного расчета" (ISO 15099 "Thermal performance of windows, doors and shading devices - Detailed calculations, NEQ")

- EH ИСО 13947:2006 "Теплотехнические характеристики фасадных конструкций. Расчет теплопропускания " (EN ISO 13947:2006 "Thermal performance of curtain walling - Calculation of thermal transmittance, NEQ")

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на светопрозрачные фасадные конструкции, а также на различные типы оконных и дверных блоков и устанавливает процедуры расчета их теплотехнических характеристик.

Установленные настоящим стандартом процедуры расчета теплотехнических характеристик предназначены для использования с помощью компьютерных программ на стадии проектирования строительных объектов, сопоставления различных вариантов конструкций и при анализе энергопотребления здания.

Отдельные разделы настоящего стандарта могут быть использованы для оценки применения различных ограждающих фасадных конструкций в зданиях.

Настоящий стандарт не предназначен для расчета теплотехнических характеристик светопрозрачных конструкций с целью их сертификации.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 26602.1-99 Блоки оконные и дверные. Методы определения сопротивления теплопередаче

ГОСТ 30494-96 Здания жилые и общественные. Параметры микроклимата в помещениях

ГОСТ 30971-2002 Швы монтажные узлов примыканий оконных блоков к стеновым проемам. Общие технические условия

ГОСТ 22233-2001 Профили прессованные из алюминиевых сплавов для светопрозрачных ограждающих конструкций. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 светопрозрачная ограждающая конструкция: Ограждающая конструкция, предназначенная для освещения естественным светом помещений зданий.

3.2 расчетные зоны светопрозрачной ограждающей конструкции: Участки конструкции (коробка, рама, створка, разделительные элементы: импосты, горбыльки, бруски переплета, центральные и краевые зоны остекления), являющиеся или принимаемые за однородные температурные зоны.

3.3 типоразмерный ряд: Ряд ограждающих конструкций, характеризующихся единым конструктивным решением и отличающихся габаритными размерами, архитектурным рисунком, а также относительной площадью и вариантами остекления.

3.4 навесной фасад: Конструкция, состоящая из вертикальных и горизонтальных профилей, заполнения или деталей, соединенных между собой и закрепленных на каркасе здания при помощи кронштейнов. Конструкция образует наружную оболочку здания, которая самостоятельно или в сочетании с каркасом здания выполняет функции наружной стены, но не участвует в восприятии нагрузок каркаса здания.

3.5 стоечно-ригельный фасад: Навесная фасадная конструкция, включающая стойки, ригели, кронштейны, анкерные крепления, прозрачные (непрозрачные) заполнения, другие элементы, изготовленные заранее и собираемые непосредственно на фасаде здания.

3.6 модульный (элементный фасад): Навесной фасад, состоящий из предварительно изготовленных, включая заполнение, модулей (элементов) высотой в один или несколько этажей и соединенных между собой.

3.7 двойной (двухслойный) фасад: Система, состоящая из наружного и внутреннего слоев остекления и воздушной прослойки. Наружный и внутренний слои остекления могут иметь в своем составе как стекла, так и стеклопакеты. Оба слоя остекления могут быть снабжены открывающимися элементами. Одной из функций воздушной прослойки является расположение в ней систем солнцезащиты - поворачивающихся ламелей. Глубина воздушной прослойки и тип вентиляции в ней определяются исходя из климатических характеристик региона строительства, требуемых теплотехнических характеристик наружного ограждения и общих принципов проектирования здания, включая его инженерные системы.

3.8 фасад с рамным остеклением: Навесной фасад, состоящий из горизонтальных и вертикальных элементов, соединенных между собой в рамы, закрепленных на каркасе здания и оснащенных заполнениями. Фасад с рамным остеклением имеет визуальную разбивку по вертикали и горизонтали.

3.9 фасад со структурным остеклением: Конструкция навесного фасада, в которой профили не выступают за наружную плоскость заполнений, а вертикальные и горизонтальные швы герметизируются наружными герметиками и/или уплотнительными прокладками. Фиксация заполнений осуществляется путем их вклеивания на внутреннюю поверхность несущей конструкции при минимальном или отсутствующем механическом креплении.

3.10 фасад с полуструктурным остеклением: Разновидность фасада со структурным остеклением с видимыми рамными элементами крепления с наружной стороны в одном из направлений - вертикальном или горизонтальном.

3.11 теплый фасад: Тип конструкции навесного фасада с накладной или закатанной в профиль термоизоляционной вставкой, обеспечивающий защиту внутренних помещений от внешних воздействий отрицательной температуры, шума, воздуха и атмосферных осадков.

3.12 глухое остекление: Часть фасадной конструкции, жестко закрепленная в рамной коробке, не имеющая механизма открывания.

3.13 открывающийся элемент: Рамная конструкция, в т.ч. оконный или дверной блок, обеспечивающая функцию открывания в навесной фасадной конструкции здания.

3.14 светопрозрачное заполнение: Заполнение из прозрачного листового материала (стекла) и/ или стеклопакета.

3.15 непрозрачное заполнение: Заполнение из стекла, стеклопакета, листового облицовочного материала, однослойной или многослойной панели, изготовленной из непрозрачных материалов.

3.16 стойка: Вертикальный несущий элемент для крепления заполнений, который, как правило, воспринимает нагрузки от всей навесной фасадной конструкции и передает их через кронштейны на несущее основание.

3.17 ригель: Горизонтальный несущий элемент для крепления заполнения навесного фасада. Ригель может быть верхний, нижний и центральный.

3.18 кронштейн: Крепежное приспособление, рассчитанное для передачи на несущее основание всех действующих на навесной фасад нагрузок.

3.19 модуль (элемент): Отдельно собранный готовый рамный элемент с заполнением. Поле модуля может иметь светопрозрачное или непрозрачное заполнение; конструктивно и визуально разделено шпроссами, ригелями и стойками на более мелкие поля заполнения.

4 Определение теплотехнических характеристик светопрозрачных ограждающих (фасадных) конструкций, оконных и дверных блоков

Теплотехнические характеристики всей светопрозрачной конструкции рассчитывают путем объединения свойств всех компонентов системы, используя соответствующие площади проекций этих компонентов либо периметр прозрачной зоны конструкции. Свойства всей конструкции определяют на основе общей площади проекции всей конструкции. Площади проекций компонентов и периметр прозрачной зоны показаны на рисунке 1а.


Рисунок 1а - Схема, показывающая площади проекций и периметр прозрачной зоны

Сопротивление теплопередаче светопрозрачной конструкции вычисляют по формуле


, (1)

где - коэффициент теплопередачи светопозрачной ограждающей конструкции;

- площадь проекции светопозрачной ограждающей конструкции;

, - площади проекций светопрозрачной и непрозрачной зон конструкции соответственно;

, - сопротивления теплопередаче центральной части светопрозрачной и непрозрачной зон конструкции соответственно;

- коэффициент линейной теплопередачи, который учитывает взаимодействие между рамой и остеклением или взаимодействие между рамой и непрозрачной панелью;

- длина периметра светопрозрачной зоны.

Знак суммирования , включенный в уравнение (1), используется для подсчета вкладов различных частей одного типа компонента. Например, несколько значений должны быть использованы для сложения вкладов различных значений.

Альтернативный метод использования краевых зон также применим для вычисления сопротивления теплопередаче конструкции . При использовании этого метода нет необходимости определять линейный коэффициент теплопередачи . Вместо этого зону остекления разделяют на центральную зону остекления , краевую зону остекления и сопротивление теплопередаче , которые используют для выражения теплопередачи через краевую зону остекления. Если в остеклении присутствуют разделительные элементы, то зону разделителя и сопротивление теплопередаче разделителя вычисляют так же, как и соответствующую краевую зону остекления, примыкающую к разделителю, и сопротивление теплопередаче краевой зоны разделителя . В качестве разделителя могут выступать стойки и ригели фасадной конструкции.

Общее сопротивление теплопередаче светопрозрачной ограждающей (фасадной конструкции) определяют по выражению (2):


, (2)

где , - коэффициенты теплоотдачи у внутренней и наружной поверхностей, соответственно.

При отсутствии разделителя выражение (2) преобразуют в


, (2.1)

Устройство стеклопакета.

Практически все рекламные компании посвященные окнам, описывают преимущества материалов, из которых выполнены рамы (дерево, пластик, алюминий), различные виды оконных профилей имеющих от трех до восьми камер обладающих отличными теплоизоляционными свойствами.

Но окно состоит не только из рамы, основная площадь окна приходится на остекленную поверхность, выполненную из различных видов стекол либо стеклопакетов, при этом обладающим совершено другим сопротивлением теплопередаче. Давайте рассмотрим, как самостоятельно определить общее сопротивление теплопередаче всего окна Rопр окна.

Расчет сопротивления теплопередаче.

Напомним, что сопротивление теплопередаче, является основным параметром, определяющим теплоизоляционные свойство материала и показывает способность материала, площадью один квадратный метр, препятствовать потерям тепла. Чем выше Rопр, тем материал имеет лучшую теплоизоляцию.

Окно является неоднородной конструкцией, в состав которого входят материалы с разным Rопр. Для определения общего сопротивления теплопередачи всего окна Rопр окна необходимо знать Rопр и площадь каждой однородной зоны.

В качестве примера возьмем одностворчатое окно шириной W=1400 мм., высотой H=1000 мм., выполненного с трехкамерного профиля VEKO EUROLINE, имеющего общую ширину рама-створка Wр=113 мм. и сопротивление теплопередаче R опр=0,64 м2С/Вт, с использованием однокамерного стеклопакета с воздушным заполнением, листовыми стеклами толщиной 4 мм., толщиной камеры 16 мм., 4М1-16-4М1 имеющего сопротивление теплопередаче Rопр=0,32м2С/Вт.

Подробней с характеристиками стеклопакетов можно познакомиться в нашей статье Стеклопакеты.

Приведенное сопротивление теплопередаче неоднородной ограждающей конструкции можно вычислить по формуле.

Т. е. для расчета приведенного сопротивления теплопередаче всего окна Rопр окна мы должны знать сопротивление каждой однородной зоны и вычислить площади всех однородных зон.

В нашем случае мы имеем две однородные зоны:

1. Зона рама-створка

2. Зона стеклопакета.

1. Рассчитаем площадь рама-створка.

2. Рассчитаем площадь стеклопакета.

Используя значенияF1, F2, Ro1, Ro2 вычисляем Rопр окна

Rопр окна = (F1 + F2) / (F1 / Ro1 + F2 / Ro2)

Rопр окна=(0,491324 +0,908676)/(0,491324/0,64+0,908676/0,32)=0,3881?0,39 м2С/Вт

Таким образом, не смотря на то, что профиль VEKO EUROLINE имеет Rопр=0,64 м2С/Вт, общее сопротивление теплопередаче всего окна получилось значительно ниже

R опр окна=0,39 м2С/Вт

Для второго примера возьмем самый теплый профиль VEKASOFTLINE 82 имеющий Rопр=1,06 м2С/Вт, и общую ширину рама-створка Wр=124 мм но при этом применив тот, же стеклопакет 4М1-16-4М1 имеющего сопротивление теплопередаче Rопр=0,32м2С/Вт.

F1=1,4 x0,124+1,4×0,124+(1-0,124*2)*0,124+(1-0,124*2)*0,124=0,503487 м2

R опр окна=(0,503487 +0,866304)/(0,503487 /1,06 +0,866304 /0,32)=0,436?0,44 м2С/Вт

Для третьего примера применим тот же, теплый профиль VEKASOFTLINE 82 имеющий Rопр=1,06 м2С/Вт, и общую ширину рама-створка Wр=124 мм применив двухкамерный стеклопакет с заполнением аргоном и одним энергосберегающим стеклом с мягким покрытием 4М1-Ar16-4М1-Ar16-И4 имеющего сопротивление теплопередаче Rопр=0,8м2С/Вт.

F1=1,4 x0,124+1,4×0,124+(1-0,124*2)*0,124+(1-0,124*2)*0,124=0,503487 м2

R опр окна=(0,503487+ 0,866304)/(0,503487 /1,06 +0,866304 /0,8)=0,8825?0,88 м2С/Вт

На основании проведенных расчетов, можно сделать однозначный вывод —

Теплосберегающие свойства окон в большей степени зависят от тепловых свойств применяемого стеклопакета.

Методика расчета достаточно проста, при необходимости Вы можете самостоятельно определить площади однородных зон для ваших конкретных условий. Теплотехнические свойства материалов и оконных профилей рамы, а так же стеклопакетов, вы можете найти в соответствующих разделах нашего сайта либо на сайтах предприятий производителей.

Расчет общего сопротивления теплопередаче всего окна можно выполнить на специальных калькуляторах, перейдя по следующим ссылкам:

Сопротивление теплопередаче – важная характеристика окна

Высокая теплопроводность окон – основная причина ощутимого увеличения расходов на обогрев помещений и возникновения проблем с поддержанием комфортной температуры в сильные морозы. Эта характеристика зависит сразу от нескольких факторов. На энергоэффективность окон в разной степени влияют стеклопакеты, профили, фурнитура и даже качество монтажа. Чтобы сократить потери энергии, власти РФ ввели специальные стандарты. С 2015 года минимальное сопротивление теплопередаче окон согласно специальному указу правительства увеличилось сразу на 50%. Цель такого решения - простимулировать строителей и население активнее внедрять энергоэффективные технологии.

Более строгие требования к профильным конструкциям повлекли за собой увеличение расходов на изготовление теплосберегающих моделей. Однако в дальнейшем владельцы энергоэффективных окон получают возможность хорошо сэкономить на обогреве помещений и быстро вернуть потраченные средства. Чтобы покупка оказалась максимально выгодной, необходимо еще на этапе заказа правильно определить приведенное сопротивление теплопередаче окон. Эта статья расскажет, на что нужно обращать внимание при выборе комплектующих и как правильно рассчитать возможные теплопотери.

От чего зависят тепловые потери в доме

Снижение температуры в помещениях провоцируют разные причины. Утечки тепла в большей или меньшей степени происходят через стены, потолок, пол. Это непрерывный и неизбежный процесс. Однако больше всего тепла теряется через оконные проемы. Если в холодный день приложить руку к обычному тонкому стеклопакету, можно почувствовать холод. Чем ниже температура стекла, тем выше теплопроводность пластиковых окон и интенсивнее процесс энергообмена между улицей и внутренними помещениями. В среднем через проемы теряется до 44% выработанного тепла.

Источники теплопотерь в частном доме


Именно поэтому огромное значение имеют виды комплектующих для сборки оконных и дверных блоков. От них зависит класс сопротивления теплопередаче окон, напрямую влияющий на потери энергии. Поддерживать температуру в комнатах в диапазоне 20-24°C будет значительно проще и дешевле, если правильно выбрать профили, фурнитуру и стеклопакеты. Упрощают задачу строительные нормативы. С 2003 года в процессе составления проектов и при возведении жилых объектов требуется придерживаться положений из СНиП 23-02-2003 «Тепловая защита зданий». Эти положения дополнены законом № 261-ФЗ, который ужесточил требования к энергосбережению блоков из профильных систем.

Климатические условия

На выбор профилей и стеклопакетов также прямо влияют погодные условия. Сопротивление теплопередаче окон ПВХ, которое на юге позволяет поддерживать в комнатах температуру 20-24°C, не подходит для северных регионов. Для эксплуатации в этих климатических зонах потребуются другие конструкции. Если в центральных или западных регионах установить «южные окна», при морозе -20-25 °C температура во внутренних помещениях может опуститься до 15-16 °C. Значит, для этих зон нужны модели с улучшенными теплотехническими характеристиками.

Также имеет значение среднегодовая скорость ветра в регионах. Этот фактор не всегда учитывают, что прогнозируемо приводит к проблемам. Ведь в районах с одинаковой средней температурой зимой теплопотери окажутся выше там, где больше скорость ветра. Воздушные потоки со стороны улицы быстрее снижают температуру стеклопакетов. Вследствие этого в помещениях возрастают потери тепла.

Согласно СП 50.13330.2012 для каждого региона России определен свой коэффициент теплопроводности окон. Эти требования основаны на результатах испытаний, проведенных в реальных и лабораторных условиях. Причем коэффициенты в разных районах российских регионов могут отличаться. Это объясняет большая площадь областей и республик РФ. В таблице приведены средние значения коэффициентов теплопередачи окон, на которые рекомендуется ориентироваться при выборе профильных систем и моделей стеклопакетов.

Допустимая энергоэффективность окна (м²×°C/Вт)

В таблице выборочно взяты регионы с мягкими, умеренными и суровыми зимами. Эта информация поможет правильно выполнить расчеты и свести к минимуму возможные теплопотери.

Что такое теплопроводность окна и от чего она зависит?

  • 30% потерь энергии происходит за счет конвекции внутри стеклопакетов и воздушных камер и теплопередачи через твердые компоненты оконных или дверных блоков;
  • 70% тепла уходит за пределы помещения вместе и инфракрасными волнами.

При этом нельзя оставлять без внимания ПВХ-системы, так как коэффициент сопротивления теплопередаче стеклопакетов в определенной мере зависит от их особенностей. Например, форма сечения профилей влияет на глубину посадки и максимальную толщину стеклопакетов. От упомянутых размеров зависит суммарная энергоэффективность окон. Кроме этого, хорошие профили замедляют процесс теплообмена по периметру световых проемов и распространение холода от остывших стен. Эти процессы взаимосвязаны и становятся причиной снижения температуры во внутренних помещениях.

Последний фактор, который оказывает влияние на уровень теплопроводность окон – герметичность. Однако этот параметр достаточно сложно рассчитать математически. Поэтому заказчику окон достаточно знать, что для обеспечения герметичности требуются качественная фурнитура и армирование профиля. Также нужно уделить внимание качеству установки. Если монтаж выполнен не по правилам, возможна разгерметизация конструкции по периметру рам. Подробнее о требованиях к установке читайте на ОкнаТрейд.

Разгерметизация стеклопакета

Как вычислить общую теплопроводность окна

  1. R sp – коэффициент стеклопакета.
  2. R p – коэффициент оконного переплета.
  3. β – отношение площади светопрозрачной части конструкции к общей площади окна.

Теплопроводность окна с учетом этих данных вычисляется по формуле:

R= R sp×R p/((1- β)×Rsp + β×R p)


У разных профилей и стеклопакетов коэффициенты отличаются. Не существует среднего значения. Ведь в таком случае все окна имели бы одинаковую способность удерживать тепло. Точные значения коэффициентов приведены в этой статье в разделах о ПВХ-системах и стеклопакетах. Чтобы вычислить площадь переплета, нужно умножить длину составных элементов створок и рам на ширину профилей, а затем суммировать полученные значения. Площадь остекления равна площади световых проемов.

Теплопередача ПВХ-профиля

Требования к энергоэффективности пластиковых систем регламентируют положения из ГОСТ 30673-99. Поскольку рамы и створки занимают примерно 30% площади проема, коэффициент сопротивления теплопередаче окна на треть зависит от свойств ПВХ-профилей. На характеристики пластиковых систем влияют количество камер, толщина внешних и внутренних стенок, наличие армирующего вкладыша и монтажная глубина. Также нужно учитывать расположение внутренних камер относительно друг друга.

Сравнительная таблица характеристик популярных ПВХ-профилей

Около 10 лет назад покупатели чаще всего выбирали 3-камерные системы. Сегодня собранные из таких профилей оконные и дверные блоки используют в основном для эксплуатации в южных регионах и остекления неотапливаемых помещений. Это связано с тем, что на российском рынке стали продавать значительно больше 5-камерных профилей разных торговых марок и потребители отдают предпочтение энергоэффективным технологиям. Лучше всего сможет продемонстрировать, как разные системы влияют на общее сопротивление теплопередаче окон, таблица сравнения нескольких брендов 3- и 5-камерных профилей.

Монтажная глубина 58 мм

При изучении факторов, оказывающих влияние на коэффициент теплопроводности окон ПВХ, таблица показывает, что эта величина зависит даже от бренда. Если сравнить системы с одинаковыми параметрами, более энергоэффективными окажутся профили от авторитетных торговых марок. Такая особенность объясняется составом ПВХ-смеси, удачным расположением камер и толщиной стенок, а также количеством дополнительных внутренних перемычек. При этом не рекомендуется преждевременно навешивать на все 3-камерные профили ярлык холодных систем. Из той же таблицы видно, что некоторые конструкции практически не уступают по уровню теплосбережения 5-камерным окнам.

Некоторые производители идут на хитрость и указывают коэффициент теплопроводности пластиковых окон, которые собраны из профилей без армирования. Это некорректная информация, поскольку стальные вкладыши примерно на 10% уменьшают энергоэффективность створок и рам. Ведь металл – отличный теплопроводник. Поскольку окна без армирования подвержены температурным и ветровым деформациям, рассматривать вариант заказа таких моделей нельзя. Поэтому всегда нужно изучать только характеристики профилей с внутренними металлическими вкладышами.

Теплопередача стеклопакета

Так как световые проемы занимают до 70% общей площади профильной конструкции, они больше всего влияют на энергоэффективность. Сопротивление теплопередаче стеклопакетов можно считать ключевым параметром при поиске подходящих окон. Этот показатель помогает оценить возможные теплопотери. Если створки и рамы собрать из 6-камерных энергоэффективных профилей нового поколения, а в световых проемах установить базовые однокамерные стеклопакеты толщиной 16-20 мм, окна будут пропускать холод и окажутся непригодными для эксплуатации в центральных, западных и северных регионах.

  1. Закачка во внутренние камеры инертного газа – этот метод помогает снизить конвекцию.
  2. Нанесение на внутреннюю сторону одного из стекол специального металлизированного слоя, который пропускает свет и отражает инфракрасные окна.
  3. Оснащение стеклопакетов невидимыми нагревательными элементами, выполняющими функцию тепловой завесы.

Коэффициент сопротивления теплопередачи стеклопакетов

Чем выше приведенное сопротивление теплопередаче стеклопакета, тем теплее окно. Эту физическую величину рассчитывают по формуле:

Ro=1/k, где k – коэффициент теплопроводности, которым пользуются в странах со стандартами DIN.

В России выбрали обратную величину, поскольку она интуитивно понятна нашим гражданам. Ведь с ростом Ro увеличивается энергоэффективность окна - от значения коэффициента зависит, сколько тепла пройдет при определенной разнице температур через 1 м² стеклопакета. Производители при изготовлении продукции должны ориентироваться на сопротивление теплопередачи стеклопакета, ГОСТ допускает диапазон Ro от 0,3 до 0,8 м²×°C/Вт.

Расчет коэффициента теплопроводности

  • дистанционная рамка;
  • воздух или инертный газ;
  • селективный слой;
  • стекло.

T – разница температур в комнате и на улице;
S – площадь стеклопакета;
W – количество тепловой энергии, проходящей через световой проем.

Для заказчиков эта формула исчерпывающе характеризует теплозащитные свойства стеклопакета. Кроме того, ее вполне достаточно, чтобы самостоятельно определить расходы на отопление зимой. С помощью такой формулы можно рассчитать, какое количество энергии покинет внутренние помещения через световой проем.

Сопротивление теплопередачи оконного стеклопакета (таблица)

При заказе окон покупателю не требуется самостоятельно проводить расчеты или обращаться за помощью к менеджерам. Производители предоставили все необходимые теплотехнические характеристики востребованных в нашей стране моделей стеклопакетов. В подавляющем большинстве случаев эта информация соответствует реальным данным и ее можно смело использовать. Когда изучается сопротивление теплопередаче стеклопакетов, таблица помогает быстрее всего помогает найти подходящую модель. Ведь в ней максимально просто и понятно систематизирована информация.

Формулу стеклопакета нужно расшифровывать в такой последовательности: стекло – внутренняя камера – стекло. Латинская буква «a» означает, что в камеру закачан инертный газ аргон, а «k» - на стекло нанесено металлизированное покрытие с энергосберегающим эффектом. Таблица показывает, что самые теплые - стеклопакеты с селективным слоем и газом в 2 камерах. Для сравнения специально были взяты модели с одинаковыми размерами и параметрами, чтобы продемонстрировать преимущества использования низкоэмиссионного покрытия и аргона.

В процессе выбора не рекомендуется ориентироваться только на коэффициент теплопередачи стеклопакетов - таблица содержит сведения о звукоизоляции, которую тоже нужно учитывать. Особенно это актуально при заказе пластиковых окон для эксплуатации в шумных районах.

  • 5 или 6-камерным профилям класса «A» с системной глубиной от 70 мм (приветствуется увеличение числа внутренних камер и количества контуров уплотнения);
  • селективным стеклопакетам с толщиной от 32 мм.

При выборе стеклопакета важно учитывать площадь световых проемов. Ведь с увеличением этого параметра растут теплопотери. Значит, в таком случае потребуются максимально эффективные стеклопакеты. У маленьких окон, наоборот, площадь профильной конструкции сопоставима с площадью остекления, поэтому можно выбрать модель с меньшей энергоэффективностью.

БЛОКИ ОКОННЫЕ И ДВЕРНЫЕ

Методы определения сопротивления теплопередаче

Windows and doors. Methods of determination of resistance of thermal transmission

ОКСТУ 5309, 5209, 2209

Дата введения 2000-01-01

1 РАЗРАБОТАН Научно-исследовательским институтом строительной физики Российской Академии архитектуры и строительных наук с участием Управления стандартизации, технического нормирования и сертификации Госстроя России, Федерального научно-технического центра по сертификации в строительстве Госстроя России и Ассоциации производителей энергоэффективных окон Российской Федерации

ВНЕСЕН Госстроем России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) 20 мая 1999 г.

За принятие проголосовали

Наименование органа государственного управления строительством

Министерство градостроительства Республики Армения

Комитет по делам строительства Министерства энергетики, индустрии и торговли Республики Казахстан

Государственная инспекция по архитектуре и строительству при Правительстве Кыргызской Республики

Министерство развития территорий, строительства и коммунального хозяйства Республики Молдова

Комитет по делам архитектуры и строительства Республики Таджикистан

Государственный комитет строительства, архитектуры и жилищной политики Украины

4 ВВЕДЕН В ДЕЙСТВИЕ с 1 января 2000 г. в качестве государственного стандарта Российской Федерации постановлением Госстроя России от 17 ноября 1999 г. N 60

ВНЕСЕНА поправка, опубликованная в ИУС N 7, 2016 год

Поправка внесена изготовителем базы данных

1 Область применения

Настоящий стандарт устанавливает методы определения сопротивления теплопередаче оконных и дверных остекленных блоков и их элементов (далее - оконных блоков), изготавливаемых из различных материалов, для отапливаемых зданий и сооружений различного назначения.

Методы, установленные в настоящем стандарте, применяют при проведении типовых, сертификационных и других периодических лабораторных испытаний.

Допускается использование методов настоящего стандарта для определения сопротивления теплопередаче глухих дверных блоков, зенитных фонарей, витражей и их фрагментов, а также стеклопакетов и профильных систем.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 112-78 Термометры метеорологические стеклянные. Технические условия

ГОСТ 1790-77 Проволока из сплавов хромель Т, алюмель, копель и константан для термоэлектродов термоэлектрических преобразователей. Технические условия

ГОСТ 5774-76 Вазелин конденсаторный. Технические условия

ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия

ГОСТ 8711-93 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам

ГОСТ 9736-91 Приборы электрические прямого преобразования для измерения неэлектрических величин. Общие технические требования и методы испытаний

ГОСТ 9871-75 Термометры стеклянные ртутные электроконтактные и терморегуляторы. Технические условия

ГОСТ 10616-90 Вентиляторы радиальные и осевые. Размеры и параметры

ГОСТ 13646-68 Термометры стеклянные ртутные для точных измерений. Технические условия

ГОСТ 14791-79 Мастика герметизирующая нетвердеющая строительная. Технические условия

ГОСТ 20477-86 Лента полиэтиленовая с липким слоем. Технические условия

ГОСТ 25380-82 Здания и сооружения. Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции

ГОСТ 26254-84 Здания и сооружения. Метод определения сопротивления теплопередаче ограждающих конструкций

ГОСТ 27382-87 Переключатели поворотные. Общие технические условия

3 Термины, обозначения и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями.

Светопрозрачная ограждающая конструкция - ограждающая конструкция, предназначенная для освещения естественным светом помещений зданий.

Теплопередача - перенос теплоты через ограждающую конструкцию от среды с более высокой температурой к среде с более низкой температурой.

Тепловой поток , Вт - количество теплоты, проходящее через ограждающую конструкцию в единицу времени.

Плотность теплового потока , Вт/м - количество теплоты, проходящее через ограждающую конструкцию в единицу времени, отнесенное к площади расчетной поверхности размером 1 м.

Термическое сопротивление однородной ограждающей конструкции , м·°С/Вт - отношение разности температур внутренней и внешней поверхностей однородной ограждающей конструкции к плотности теплового потока через конструкцию в условиях стационарной теплопередачи, вычисляемое по формуле


,* (1)

где ,* - температура внутренней и внешней поверхностей ограждающей конструкции, °С;

- плотность теплового потока через ограждающую конструкцию, Вт/м.

* Формула и экспликация соответствуют оригиналу. - Примечание изготовителя базы данных.

Сопротивление теплопередаче однородной ограждающей конструкции , м·°С/Вт - отношение разности температур окружающей среды по обе стороны однородной ограждающей конструкции к плотности теплового потока через конструкцию в условиях стационарной теплопередачи, вычисляемое по формуле


, (2)

где , - температура окружающей среды по обе стороны ограждающей конструкции, °С.

Приведенное термическое сопротивление неоднородной ограждающей конструкции , м·°С/Вт - усредненное по площади расчетной поверхности неоднородной ограждающей конструкции значение термического сопротивления, вычисляемое по формуле


, (3)

где - площадь -й однородной зоны ограждающей конструкции, м;

- термическое сопротивление -й однородной зоны ограждающей конструкции, м·°C/Bт.

Приведенное сопротивление теплопередаче неоднородной ограждающей конструкции , м·°С/Вт - усредненное по площади расчетной поверхности неоднородной ограждающей конструкции значение сопротивления теплопередаче, вычисляемое по формуле


, (4)

где - площадь -й однородной зоны ограждающей конструкции, м;

- сопротивление теплопередаче -й однородной зоны ограждающей конструкции, м·°С/Вт.

Расчетные зоны светопрозрачной ограждающей конструкции - участки конструкции (коробка, рама, створка, разделительные элементы: импосты, горбыльки, бруски переплета, центральные и краевые зоны остекления), являющиеся или принимаемые за однородные температурные зоны.

Серия изделий, типоразмерный ряд - ряд ограждающих конструкций, характеризующихся единым конструктивным решением и отличающихся габаритными размерами, архитектурным рисунком, а также относительной площадью и вариантами остекления.

4 Сущность методов

Лабораторные методы определения сопротивления теплопередаче оконных блоков заключаются в создании постоянного во времени перепада температур по обеим сторонам испытываемого образца, измерении температур воздуха и поверхностей участков образца, а также теплового потока (или тепловой мощности на его создание), проходящего через образец при стационарных условиях испытания, и последующем вычислении значений термического сопротивления и сопротивления теплопередаче.

5 Испытательное оборудование и средства контроля

5.1 Для проведения испытаний применяют:

- климатическую камеру по ГОСТ 26254, имеющую теплое и холодное отделения, а также перегородку с проемом (рисунок 1), в которую устанавливают испытываемый образец;

- термоэлектрические преобразователи (термопары) по ГОСТ 1790, градуированные в установленном порядке, с диапазоном измерения температуры от минус 50 до +50 °С;

ГОСТ Р 54851-2011

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОНСТРУКЦИИ СТРОИТЕЛЬНЫЕ ОГРАЖДАЮЩИЕ НЕОДНОРОДНЫЕ

Расчет приведенного сопротивления теплопередаче

Dissimilar building envelopes. Calculation of reduced total thermal resistance

Дата введения 2012-05-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН Учреждением "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

4 Настоящий стандарт разработан с учетом основных нормативных положений международного стандарта ИСО 14683:2007* "Тепловые мостики при строительстве зданий - Линейная теплопередача - Упрощенные методы и стандартные значения" (ISO 14683:2007 "Thermal bridges in building construction - Linear thermal transmittance - Simplified methods and default values, NEQ")

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Настоящий стандарт устанавливает методы определения теплозащитных характеристик ограждающих конструкций зданий и сооружений в соответствии с требованиями Федерального закона N 384-ФЗ от 30 декабря 2009 г. "Технический регламент о безопасности зданий и сооружений", согласно которому здания и сооружения, с одной стороны, должны исключать в процессе эксплуатации нерациональный расход энергетических ресурсов, а с другой - не создавать условия для недопустимого ухудшения параметров среды обитания людей и условий осуществления различных технологических процессов.

Настоящий стандарт разработан с целью подтверждения соответствия теплотехнических характеристик наружных ограждений зданий и сооружений нормативным значениям и требованиям контроля этих показателей согласно [1] с учетом требований ГОСТ Р 51380 и ГОСТ Р 51387. Настоящий стандарт позволяет оценить уровень теплозащиты ограждающих конструкций при приемке зданий и последующей эксплуатации, наметить мероприятия по повышению уровня теплозащиты зданий в случае отклонения энергопотребления от действующих нормативных требований.

В рамках реализации Федерального закона N 261-ФЗ от 23 ноября 2009 г. "Об энергосбережении и повышении энергетической эффективности" настоящий стандарт является одним из базовых стандартов, обеспечивающих теплотехническими параметрами энергетический паспорт и энергоаудит эксплуатируемых зданий.

1 Область применения

Настоящий стандарт устанавливает методы расчета приведенного сопротивления теплопередаче неоднородных ограждающих конструкций помещений жилых, общественных, административных, бытовых, сельскохозяйственных, производственных зданий и сооружений, а также совокупности ограждающих конструкций, отделяющих внутренний объем здания от наружной среды.

В зависимости от типа ограждающей конструкции и теплотехнических неоднородностей, входящих в структуру ограждения, настоящий стандарт предлагает методы теплотехнического расчета обобщенной теплозащитной характеристики теплотехнически неоднородного ограждения, разделяющего пространства с различными температурно-влажностными средами (в пределах одного помещения, группы соседних помещений, этажа, всего фасада здания, ограждений, контактирующих снаружи с грунтом, и т.д.). Настоящий стандарт также учитывает в теплотехнических расчетах наружных ограждений такие виды теплотехнических неоднородностей, как примыкания элементов ограждения здания (наружные и внутренние углы, примыкания стен к покрытиям и перекрытиям первого этажа над холодным подвалом или уложенным по грунту, примыкание наружных ограждений к внутренним), и отдельных элементов наружных ограждений (стыки между соседними панелями, откосы проемов, связи между облицовочными слоями ограждений).

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 51263-99 Полистиролбетон. Технические условия

ГОСТ Р 51380-99 Энергосбережение. Методы подтверждения соответствия показателей энергетической эффективности энергопотребляющей продукции их нормативным значениям

ГОСТ Р 51387-99 Энергосбережение. Нормативно-методическое обеспечение. Основные положения

ГОСТ 11024-84 Панели стеновые наружные бетонные и железобетонные для жилых и общественных зданий. Общие технические условия

ГОСТ 19010-82 Блоки стеновые бетонные и железобетонные для зданий. Общие технические условия

ГОСТ 21562-76 Панели металлические с утеплителем из пенопласта. Общие технические условия

ГОСТ 23486-79 Панели металлические трехслойные стеновые с утеплителем из пенополиуретана. Технические условия

ГОСТ 24594-81 Панели и блоки стеновые из кирпича и керамических камней. Общие технические условия

ГОСТ 25485-89 Бетоны ячеистые. Технические условия

ГОСТ 25820-2000 Бетоны легкие. Технические условия

ГОСТ 26254-84 Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций

ГОСТ 26602.1-99 Блоки оконные и дверные. Методы определения сопротивления теплопередаче

ГОСТ 30494-96 Здания жилые и общественные. Параметры микроклимата в помещениях

ГОСТ 31310-2005 Панели стеновые трехслойные железобетонные с эффективным утеплителем. Общие технические условия

ГОСТ 31359-2007 Бетоны ячеистые автоклавного твердения. Технические условия

ГОСТ 31360-2007 Изделия стеновые неармированные из ячеистого бетона автоклавного твердения. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 теплопередача: Перенос теплоты от одной окружающей среды через ограждающую конструкцию к другой окружающей среде.

3.2 наружная ограждающая конструкция здания: Конструктивный элемент здания, защищающий внутреннее пространство, в котором поддерживаются требуемые параметры микроклимата, от воздействий наружной среды.

3.3 линейная теплотехническая неоднородность: Линейная зона примыкания двух ограждающих конструкций, влияющего на изменение теплового потока, проходящего через наружное ограждение (стык между соседними панелями, угол, образованный из двух наружных ограждений или наружного ограждения с внутренним, откос проема, соединительное ребро внутри ограждения и др.).

3.4 точечная теплотехническая неоднородность: Локальный соединительный элемент многослойного наружного ограждения, обеспечивающий его конструктивную целостность и повышающий теплопотери в зоне его прохождения (гибкие связи, дюбели, шпонки и другие точечные соединения, проходящие через теплоизоляционные слои ограждения),

3.5 условное сопротивление теплопередаче ограждающей конструкции , м·°С/Вт: Величина, характеризующая уровень сопротивления прохождению теплоты через однородную часть наружного ограждения при разности температур воздушных сред, расположенных по обе его стороны.

3.6 приведенное сопротивление теплопередаче ограждения , м·°С/Вт: Средневзвешенное по площади сопротивление теплопередаче совокупности видов ограждающих фрагментов и их элементов, образующих теплотехнически неоднородную конструкцию (панель, окно, витраж, светпропускающий фонарь, наружную дверь, ворота), часть здания (стену, фасад, покрытие, перекрытие над холодным подвалом или подпольем, ограждение, контактирующее с грунтом, ограждение, разделяющее помещения с различными температурами внутреннего воздуха) или наружное ограждение здания в целом.

3.7 коэффициент теплотехнической однородности : Безразмерный показатель, оценивающий снижение уровня теплозащиты ограждения вследствие наличия в нем различного вида теплотехнических неоднородностей (соединительных элементов облицовок ограждения, пронзающих теплоизоляционные слои, стыков между элементами ограждающих конструкций с примыканием к ним внутренних ограждений, откосов, угловых соединений, в том числе примыканий стен к покрытиям, перекрытиям над холодными пространствами, мест закрепления в стенах балконных плит и т.п.) и численно выражаемый отношением приведенного сопротивления теплопередаче ограждения к сопротивлению теплопередаче его зоны, удаленной от теплопроводных включений.

4 Методы расчета приведенного сопротивления теплопередаче наружных ограждающих конструкций

4.1 Общие положения

4.1.1 Приведенное сопротивление теплопередаче наружной неоднородной ограждающей конструкции здания , м·°С/Вт, представляет собой основную теплозащитную характеристику наружного ограждения, в основу расчета которого положена усредненная по площади плотность теплового потока , Вт/м, проходящего через ограждение в расчетных условиях эксплуатации

Численные значения теплового потока, проходящего через неоднородное ограждение, определяют на основе расчета одно-, двух- и трехмерных температурных полей. Участки многослойного ограждения, имеющие однородные теплоизоляционные, конструкционные и прочие слои, расположенные перпендикулярно к направлению теплового потока, возникающего при эксплуатации здания, и удаленные от всякого рода теплотехнических неоднородностей и теплопроводных включений, обеспечивают равномерную по площади теплопередачу и характеризуются условным (по глади) сопротивлением теплопередаче.

При проектировании наружных ограждающих конструкций здания в силу конструктивных особенностей оболочки здания и видов наружных ограждений возникают различного рода теплотехнические неоднородности: они в силу конструктивных особенностей примыкания наружных и внутренних ограждений имеют преимущественно линейный характер (наружные и внутренние углы наружных стен, примыкания наружных стен к внутренним стенам и перекрытиям, примыкания наружных стен к покрытиям и перекрытиям первого этажа над холодным подвалом или уложенным по грунту, стыки между соседними панелями, откосы проемов). Теплопотери через эти виды теплотехнических неоднородностей определяют расчетом на ЭВМ двухмерных стационарных температурных полей фрагментов наружных ограждений при расчетных значениях температур разделяемых воздушных сред и условиях теплообмена на поверхностях расчетного фрагмента.

В многослойных ограждающих конструкциях для обеспечения конструктивной целостности и устойчивости в эксплуатационных условиях вводят различные типы связей между облицовочными слоями (соединительные ребра, в т.ч. перфорированные, гибкие стержневые связи, шпонки). К этой категории неоднородностей относятся угловые примыкания откосов проемов, примыкания угла наружных стен к покрытию или перекрытию первого этажа. Теплопотери через эти виды теплопроводных включений или примыканий определяют расчетом на ЭВМ двухмерных (в цилиндрических координатах) или трехмерных стационарных температурных полей фрагментов при расчетных значениях температур и условиях теплообмена.

4.1.2 Таким образом, теплотехнический расчет неоднородных наружных ограждающих конструкций, содержащих углы, проемы с заполнениями (оконными и дверными блоками, воротами), соединительные элементы между наружными облицовочными слоями (ребра, шпонки, стержневые связи), сквозные и несквозные теплопроводные включения, выполняют на основе расчета температурных полей. Приведенное сопротивление теплопередаче , м·°С/Вт, неоднородной ограждающей конструкции или ее участка (фрагмента) вычисляют по формуле

где - площадь неоднородной ограждающей конструкции (стены, окна, двери, ворот) или ее фрагмента, м, по размерам с внутренней стороны, включая откосы оконных и дверных проемов (для стен);

- суммарный тепловой поток через конструкцию или ее фрагмент площадью , Вт, определяемый на основе расчета температурного поля на ЭВМ либо экспериментально по ГОСТ 26254 или ГОСТ 26602.1 с внутренней стороны;

- коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, принимаемый в соответствии с таблицей 6 [1] с учетом примечания к этой таблице;

- расчетная температура внутреннего воздуха, °С, принимаемая по ГОСТ 30494;

- расчетная температура наружного воздуха, °С, принимаемая по средней температуре наиболее холодной пятидневки с обеспеченностью 0,92, см. [1].

4.1.3 На основе расчета на ЭВМ температурных полей ограждающей конструкции определяют также температуры на их поверхностях . По полученным значениям устанавливают соответствие требуемым температурным характеристикам наружных ограждений:

- расчетному перепаду температур между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, определяемому по формуле (4) [1]; при этом расчетный перепад температур не должен превышать нормируемых значений , установленных в таблице 5 [1];

Читайте также: