К какому виду простых механизмов относится входная дверь

Обновлено: 01.05.2024

Простые механизмы – это механические агрегаты, применяемые для направления силы либо её величины. Их называют дающими выигрыш в силе устройствами. Рассмотрим распространённые виды простых механизмов. Кратко коснёмся принципов их функционирования, приносимой пользы, целей применения.

Определение и разновидности

Из уроков истории известны факты применения приспособлений для метания снарядов, перемещения строительных материалов, передачи механической энергии. Они вызывали движения, преодолевающие большие силы, особенно противодействующие им в начале процесса, например, сдвигание тяжелого камня с места. Из предыдущих уроков вы знаете, что такое механическая работа. Она вычисляется как произведение приложенной к телу силы на преодолённое под её действием расстояние: A = F*s.

Природа создана так, что в замкнутой системе получить выигрыш в работе нельзя. Во сколько раз меньшую силу приложите, во столько проиграете в расстоянии – тело придётся перемещать дальше и наоборот. Простые механизмы применяют для того, чтобы развивать силы, равные по модулю и противоположные по значению противодействующим движению силам.

При расчётах величиной сил трения могут пренебрегать.

Простые механизмы в физике

Самый распространённый простой механизм в технике и быту – рычаг. Его равновесие наступает, когда отношение приложенных к обоим концам сил, действующих параллельно, обратно пропорционально длине плеч. Моменты сил – противоположно направленные векторы. Значит: приложенное к длинному концу усилие уравновешивает рычаг, к короткому концу которого приложена большая сила.


Рычаг, как любой простой механизм, – преобразователь сил.

Блок – равноплечий рычаг. Представлен вращающимся колесом с желобком для верёвки по всей длине окружности. Неподвижный блок не даёт выигрыша в силе, а направляет её. Ось подвижного блока располагается в обоймах, двигается с ними, поэтому позволяет управлять силой. Для получения выигрыша также применяются сдвоенные блоки разного диаметра, насаженные на одну ось.


Ворот – модифицированный двойной блок, ранее применяемый для перетаскивания и подъёма грузов на небольшие расстояния либо высоты. В вороток вставляются длинные спицы, играющие роль большего блока, с радиусом большим, чем у меньшего блока.


В технике также применяют:

  • полиспасты – сложные комбинации из двух групп блоков: одни – подвижные, вторые – неподвижные;
  • дифференциальные блоки – двойной и одинарный, где применяется бесконечная цепь.

Распространены простые механизмы, такие как винт и клин. Пример клина – лезвие колуна. По тыльной стороне инструмента наносятся удары, например, кувалдой, и устройство погружается в древесину, раскалывая её. Чем меньше угол заточки лезвия, тем проще оно входит в дерево.


Клин применяется и для подъёма грузов. Особенность обоих видов клина – значительная сила трения, действующая между телом и боковыми гранями приспособления.

Винт работает по принципу клина, где вместо ударов совершается вращение крупного болта с малым шагом резьбы. Применяется в прессах, колунах, домкратах, при завинчивании крепежей (саморезов).


Примеры простых механизмов в повседневной жизни:

  • винт – пресс для выжимки сока, подъёмные механизмы, домкрат;
  • рычаг – ножницы, плоскогубцы, клещи;
  • ворот – вороток для резьбонарезных метчиков, средства управления транспортом (руль автомобиля), колесо;
  • блок – подъём песка из ямы или на второй этаж на небольшой стройплощадке;
  • клин – колун для раскалывания поленьев, наклонная поверхность для качения бочек или цилиндрических предметов (огромных тюков сена) наверх.

Какие простые механизмы вы знаете и используете в быту кроме названных? К какой категории отнести дверь в автомобиле, тиски, лебёдку?

Простейшие механизмы — устройства, служащие для преобразования силы. Представляют собой элементы более сложных механизмов. Некоторые из простейших механизмов появились в глубокой древности.
Принято выделять шесть простейших механизмов, из которых четыре являются разновидностью двух основных:
Виды простейших механизмов
Наклонная плоскость — простой механизм в виде плоскости, установленной под острым углом к горизонтальной поверхности.
Клин — позволяет увеличить давление за счёт концентрации силы на малой площади. Используется в копье, лопате, пуле и др.
Винт — используется в шурупах, для подъёма воды (Архимедов винт), в качестве сверла в дрелях, отбойных молотках и др.
Рычаг — описан Архимедом. Используется для подъёма тяжестей, в качестве выключателей и спусковых крючков (шатун-кривошип — используется в ткацком станке, паровой машине, двигателях внутреннего сгорания).
Ворот — используется для подъёма воды в колодцах, для ременной передачи и др.
Блок это колесо с желобом, по которому пропускают верёвку, трос или цепь.
Колесо — используется в транспорте и в системе зубчатой передачи. Изобретено шумерами в III тыс. до н. э.
Поршень — позволяет использовать энергию расширяющихся нагретых газов или пара. Применяется в огнестрельном оружии и паровой машине.

Простейшие механизмы — устройства, служащие для преобразования силы. Представляют собой элементы более сложных механизмов. Некоторые из простейших механизмов появились в глубокой древности.
Принято выделять шесть простейших механизмов, из которых четыре являются разновидностью двух основных:
Виды простейших механизмов
Наклонная плоскость — простой механизм в виде плоскости, установленной под острым углом к горизонтальной поверхности.
Клин — позволяет увеличить давление за счёт концентрации силы на малой площади. Используется в копье, лопате, пуле и др.
Винт — используется в шурупах, для подъёма воды (Архимедов винт), в качестве сверла в дрелях, отбойных молотках и др.
Рычаг — описан Архимедом. Используется для подъёма тяжестей, в качестве выключателей и спусковых крючков (шатун-кривошип — используется в ткацком станке, паровой машине, двигателях внутреннего сгорания).
Ворот — используется для подъёма воды в колодцах, для ременной передачи и др.
Блок это колесо с желобом, по которому пропускают верёвку, трос или цепь.
Колесо — используется в транспорте и в системе зубчатой передачи. Изобретено шумерами в III тыс. до н. э.
Поршень — позволяет использовать энергию расширяющихся нагретых газов или пара. Применяется в огнестрельном оружии и паровой машине.

Наклонная плоскость - плоскость установленная под острым углом к горизонту. Пандус - это наклонная плоскость.

Клин - разновидность наклонной плоскости. Острие ножниц, наконечник стрелы, острие ножа, зубило, топор.

Рычаг - стержень поворачивающийся вокруг оси. Лом, ножницы - это рычаги.

Винт - разновидность наклонной плоскости, спирально накрученной вокруг цилиндрического тела. Шурупы, сверла, болты, его используют даже для подъема воды - Архимедов винт.

Ворот - разновидность рычага, цилиндрическое тело с рукояткой. В колодцах для подъема воды используют ворот. Отвертка - ворот.

Блок - видоизмененный рычаг, колесо с желобом, через который пропускают трос или веревку. Или меняет направление силы (неподвижный), или дает выигрыш в силе (подвижный)

Колесо - видимо тоже разновидность рычага. Используется в зубчатых передачах, транспорте.

С самой древности человек пытается облегчить свой труд. Для этого он применяет различные приспособления. Что собой представляют простейшие механизмы? Какие существуют разновидности этих приспособлений? Чем отличаются простые и сложные механизмы? Об этом и многом другом – далее в статье.

подъемный механизм

Общая информация

Простые механизмы (от греч. "машина, орудие") – устройства, дающие выигрыш в силе. Некоторые из этих приспособлений появились в самой древности. Простые механизмы могут являться самостоятельными устройствами либо быть элементами более сложных агрегатов. В зависимости от типа конструкции определяется и сфера применения того или иного приспособления. Использование простых механизмов существенно облегчает человеческую деятельность. Такие устройства дают выигрыш в силе. К примеру, клин, который вбивается в полено, обладает большей силой, чем сам удар по приспособлению. Поэтому дерево быстро распирает в разные стороны. Вместе с этим, удар на клин приходится сверху вниз, а части полена раздвигаются в стороны. То есть в данном случае происходит еще и преобразование в направлении движения.

простые механизмы

Простые механизмы. Примеры

Существует несколько видов приспособлений:

а) винт применяется в шурупах, как сверло в отбойных молотках, дрелях; может служить и как подъемный механизм (Архимедов винт);

б) клин способствует увеличению давления за счет концентрирования массы на небольшой площади. Применяется в пуле, лопате, копье.

Рычаг – приспособление, описанное Архимедом. Может выступать как спусковой крючок, выключатель.

а) ворот применяется для ременной передачи и поднятия воды из колодца.

Колесо (изобретено в 3 тыс. до н. э. шумерами) является составной частью системы зубчатой передачи, применяется в транспорте.

Поршень способствует использованию энергии нагретых расширяющихся газов либо пара. Применяется данное приспособление в паровых машинах и огнестрельном оружии.

Ворот

Это приспособление представляет собой барабан (цилиндр), к которому прикрепляется рукоятка. Как правило, его применяли как подъемный механизм для поднятия воды из колодца. Тот выигрыш в силе, какой получается при использовании ворота, определяется отношением радиуса той окружности, по которой совершается движение рукоятки, к радиусу цилиндра (барабана), на который наматывается веревка. К современному типу ворота относится лебедка. Это приспособление представляет собой систему, включающую цилиндр и два зубчатых колеса разного радиуса. Выигрыш в силе, который в общем дает лебедка, определяют совокупным действием двух воротов. Современные устройства дают выигрыш в сорок-сто раз.

простые и сложные механизмы

Наклонная плоскость

Этот простой механизм также часто применяют при подъеме тяжелых тел. Выигрыш в силе определяют отношением длины самого приспособления к его высоте при условии малого трения. Зачастую, для создания большой силы (например, для работы ледокола или для колки дров) используют вид наклонной плоскости – клин. Его действие основывается на том, что при большом усилии в направлении обуха формируются большие силы, перпендикулярные боковым поверхностям устройства. Еще одной разновидностью наклонной плоскости является винт. Так же как и клин, это устройство способно менять направление либо числовое значение прилагаемой силы.

простые механизмы примеры

Простые механизмы. Рычаг

Это твердое тело, способное вращаться вокруг опоры (неподвижной). Наименьшее расстояние, которое разделяет точку опоры и прямую, вдоль которой воздействует сила на рычаг, называется плечом силы. Чтобы его найти, следует опустить перпендикуляр из точки опоры на линию действия усилия. Длина данного перпендикуляра и будет являться плечом. F1 и F2 – действующие на рычаг силы. Плечи, действующие на устройство – L1 и L2. Рычаг тогда находится в равновесии, когда действующие на него силы обратно пропорциональны плечам. Данное правило можно представить в виде формулы: F1 / F2 = L1 / L2. Этот принцип был установлен Архимедом. Данное правило показывает, что большую силу при помощи рычага можно уравновесить меньшей. Сила, приложенная к одному плечу, во столько раз больше той, что приложена к другому, во сколько одно плечо больше второго.

Как применяет приспособления человек сегодня?

Весьма распространены простые механизмы в быту. Так, достаточно сложно было бы открыть водопроводный кран, если бы не было у него небольшой ручки, которая представляет собой достаточно эффективный рычаг. То же можно сказать и о гаечном ключе, при помощи которого осуществляется откручивание или закручивание гаек или болтов. Чем длиннее рукоятка, тем легче будет осуществляться действие. Так, при работе с тяжелыми либо крупными гайками и болтами при ремонте сложных механизмов, станков, автомобилей, применяют ключи с рукоятками до одного метра в длину. Самая обычная дверь также является одним из видов рассматриваемых приспособлений.

простые механизмы рычаг

Если пробовать открывать дверь возле ее крепления, то это будет весьма затруднительно. Однако чем дальше от петель располагается ручка, тем легче открыть дверь. Достаточно наглядным примером является прыжок с шестом. Его длина порядка пяти метров. При помощи этого рычага и правильно приложенного усилия спортсмену удается взлететь на высоту до шести метров. Длинное плечо составляет при этом примерно три метра. Рычаги встречаются и в разных частях человеческого тела и тела животного. Это, в частности, челюсти, конечности. Бытовыми примерами рычага являются кусачки, ножницы для резки металла или бумаги. Машины различного вида имеют в своей конструкции также приспособления, позволяющие получить выигрыш в силе. Например, педали либо ручной тормоз на велосипеде, ручки швейных машин, клавиши в пианино.

Комплексное применение приспособлений

Простые механизмы встречаются в самых разных сочетаниях. Комбинированные устройства включают в себя две и более детали. Не обязательно это будет сложным механизмом – многие простые приспособления можно считать комплексными. Так, в мясорубке присутствует ручка (ворот), проталкивающий мясо винт и нож-резак (клин). В наручных часах стрелки поворачиваются при помощи системы зубчатых колес, имеющих разный диаметр и находящихся друг с другом в сцеплении. Одним из известных комбинированных несложных механизмов является домкрат. В нем использовано сочетание ворота и винта.

использование простых механизмов

Заключение

Как стало ясно, простые механизмы существенно облегчают труд человека. Они могут состоять из одной или нескольких деталей. При этом даже при наличии двух и более элементов могут оставаться простыми, но могут являться и достаточно сложными. Различные агрегаты, печатные прессы, двигатели включают в себя несколько деталей. Среди элементов есть и рычаги, блоки, винты, колеса на осях, наклонные плоскости, клин. Все эти приспособления работают в комплексе. Благодаря им человек существенно облегчает труд. Передача механической энергии от одной части устройства к другой может осуществляться по-разному. Цепи, ремни, шестерни или зубчатые колеса считаются наиболее распространенными устройствами, способствующими передаче усилия и заставляющими отдельные элементы двигаться медленнее или быстрее, в том или ином направлении. Сложными и высокоскоростными устройствами управляют, как правило, электронные приборы. Электрические датчики благодаря особой настройке показывают, когда необходимо включать тот или иной механизм, следят также за корректной и стабильной работой системы.

простые механизмы в быту

Многие устройства пришли в современную жизнь человека из самой древности. Люди постоянно совершенствуют сложные механизмы, расширяя таким образом сферу их применения. Несомненно, в повседневной жизни человека различные устройства занимают очень важное место. Многое невозможно представить без использования простых и сложных механизмов. Приспособления широко применяются в строительстве, сельском хозяйстве, при добыче полезных ископаемых и в прочих областях деятельности человека.

Что такое простые механизмы? А не задумывались вообще, в чем их «простота»? Вот вам небольшой спойлер: всевозможные виды простых механизмов окружают нас повсюду — от кухни до подъезда. А еще каждый из нас тем или иным образом пользовался связанным с механизмами важным принципом под кодовым названием «механический выигрыш». Что же, все это занимательно и требует скорейшего пояснения.

Простейшие механизмы: экскурс в доисторическое

Представьте себе трехтысячный год до нашей эры. Действие разворачивается на территории современного графства Уилтшир в Англии. На живописных равнинах, разумеется.

Шумная ватага людей решительно тащит громадный тридцатитонный кремнистый песчаник, в то время как рядом кипит основная работа. Туда-сюда то и дело снуют крепкие ребята с бревнами. Они оперативно перекатывают и подкладывают спереди округлые деревяшки, выкатившиеся из-под камня сзади.


Одна из древнейших стройплощадок человечества — неолитический Стоунхендж.

Короче говоря, транспортировочная суета. Вот так, в нескольких словах можно описать процесс самой загадочной стройки и мистической человечества — процесс сооружения мегалитического Стоунхенджа. И никому доподлинно неизвестно, кто возвел это чудо света.

Были ли это кельтские жрецы или древние бритты, свидетели Мерлиновой бороды… Может, инопланетяне? Неизвестно даже и то, какую цель преследовали возводившие.

Археологи, историки и ученые всего мира до сих пор бьются над разгадками тайн постройки этого сооружения каменного века. Однако одно все же известно. Наши предки, еще задолго до изобретения колеса, кое-что понимали в физике. Иначе как бы им удавалось в двадцать рук перемещать на огромные расстояния объекты массой более $30~т$?

Тридцать тонн — невероятная масса. К примеру, профессиональные пауэрлифтеры способны поднимать штанги порядка массой 300-400 килограммов за подход.

Что такое простой механизм?

История стара как мир: при меньшем получить больше .

Таков закон нашего существования в природе. Ресурсы человека ограничены, условия жизни — быстротечны и непредсказуемы, потребности — велики. А чтобы процветать и выживать необходимо умение не только подстраиваться, но и использовать с умом то, что дано. В конце концов, умение облегчить себе труд — это то, что выделяет нас на фоне других животных.

Именно поэтому технологические решения всегда развивались параллельно с человеком. Мы всегда были, есть и будем в поиске. В поиске того, что могло бы помочь нам выгадывать больше, вкладываясь меньше. И практически все, что мы придумывали во имя этой цели на протяжении тысячелетий, можно отнести к понятию «простой механизм».

Механизм — это устройство, повышающее производительность труда и облегчающее его выполнение.

Задача его проста — преобразовывать энергию и передавать движение. К механизму прикладывается сила, которую он в свою очередь «перерабатывает» и передает телу, совершая работу. Обычно наименьший неделимый элемент механизма называется простым или простейшим.

Ему можно дать следующее краткое определение:

Простой механизм — устройство, служащее для преобразования силы.

Механизмы помогают нам везде. Начать с того, что в скелете человека все кости, имеющие свободный ход, являются «простыми механизмами» — рычагами. Продолжить можно чем угодно. Например, хоть содержимым кухонного шкафчика: ножи, топорики для рубки мяса, открывашки, штопоры, ножницы и прочее.

Еще примеры простейших механизмов!

Даже гитарные колки. Двери, окна, тележки в супермаркетах, качели, пандусы. Пинцеты, ручки смесителя в ванной, колодца, велосипеды, внутренности ремонтного ящика, от гвоздодера до кусачек. Простые механизмы — основа нашей жизни.

Основы простых механизмов

Для того чтобы понять, за счет чего простой механизм облегчает работу, вспомним формулу с прошлых уроков и проанализируем входящие в ее состав величины:

Механическая работа всегда связана с двумя переменными: силой $F$ и перемещением $s$.

По математике формулы очевидно следующее: с увеличением расстояния перемещения, сила, необходимая для совершения того же объема работы, уменьшается. К тому же, так как сила — вектор, с помощью механизма мы можем изменять не только ее величину, но и направление.

Механизм и изменение расстояние применения силы

Вам в руки дают перевязанную стопку книг и просят поднять ее на второй этаж. Варианта два. Первый, для любителей погорячее: попробовать стопку закинуть.

Второй, вменяемый: поднять ее постепенно по лестнице. Лестница увеличивает расстояние применения силы $s$, поскольку длина траектории гипотенузы больше, чем у любого из катетов. Однако сил при этом прикладывать придется меньше. Иными словами, идти дольше, но проще.

Упрощенный расчет длин траекторий лестницы на примере прямоугольного треугольника. Принцип: пройти два лишних метра, затратив при этом меньше мышечных сил.

Простой механизм и прикладываемая сила

Вернемся к разговорам о содержимом кухонного ящика и подумаем о лежащей там открывашке. Прикладывая небольшую силу к концу ручки открывашки, вы легко откупорите любую бутылку. Ведь на крышку будет действовать бóльшая сила на другом конце.

Попробуйте отпилить от открывашки половину ручки, но проделать наряду с этим те же действия. Теперь вы сразу почувствуете, что открывать бутылку стало в разы сложнее. Почему? Потому что изменилась величина значения силы $F$. Не в нашу пользу.

Простой механизм и направление вектора силы

Флаг тридцать тонн не весит, но с помощью механизма мы задали силе противоположное направление и немного выиграли. Теперь лезть забираться не придется.

Механический выигрыш

«Немного выиграли» — вся суть механизмов. Благодаря простым механическим устройствам мы меняем направление силы, расстояние ее применения, непосредственно значение силы и все ради того, чтобы получить выигрыш в силе.

Определить механический выигрыш с точки зрения физики можно так:

Механический выигрыш — величина увеличения силы, получаемая в результате работы простого механизма.

Когда говорят «выигрыш в силе в пять раз», имеется в виду, что для совершения такой же работы $A$, вместо силы $F$ достаточно приложить силу $\frac,$ то есть в пять раз меньше.

Величина работы никогда не меняется. Меняется либо сила, либо расстояние. Выигрыш рассчитывается отношением двух сил:
$$\frac,$$
где $F_1$ — сила, с которой механизм действует на тело, $F_2$ — сила, с которой механизм приводится в действие.

Виды простых механизмов

Простые механизмы по тому, какой выигрыш в силе предоставляют, делятся на два типа: рычаг и наклонная плоскость. У рычага встречается две разновидности: блок и ворот. Наклонная плоскость так же встречается с двумя разновидностями: винтом и клином.

Чисто технически вы будете правы, если скажете, что мир устроен и построен на шести простых механизмах.

Рычаг

Рычаг представляет собой перекладину, которая вращается вокруг неподвижной точки опоры. Этот простой механизм помогает поднимать тяжелые предметы, уравновешивать их. Пример простого рычага — качели-балансиры.

Блок — еще один представитель класса «виды простых механизмов», хоть не выглядит он на первый взгляд просто. В житейском понимании можно сказать, что блок представляет собой веревку, намотанную на колесо.

Механический выигрыш задает тем, что меняет направление силы. К тому же, тянут веревку обычно вниз, поднимая тем самым груз наверх. А это значит что? Правильно: нам еще и помогает сила тяжести.

Ворот

Ворот — тоже разновидность рычага, дающий отличный выигрыш в силе. Простой механизм принципа «ось-колесо». Ось — цилиндр, который фиксирует колесо на месте, а колесо на этой оси вращается.

Наклонная плоскость

Наклонная плоскость изображена на рисунке ниже. Ранее упомянутый нами в примере лестничный проем — яркий пример того, как выглядит механизм по типу наклонной плоскости.

Это поверхность, у которой один край расположен выше другого. Кстати, именно в наклонных плоскостях кроется секрет постройки древних пирамид Египта. А как подобное можно было соорудить, не имея выигрыш в силе?

Если взять наклонную плоскость, обернуть ее вокруг цилиндра, то мы получим винт — простой механизм, который используется для того, чтобы что-то опускать, поднимать или обычно дабы удерживать два тела вместе.

Типичная крышка от банки или бутылки — показательный пример винта. А вот вкрутить даже маленький винтик — задача посложнее, поскольку винтовые механизмы значительно увеличивают расстояние применения силы. Чтобы сравнить, можно взять два винта и кусок поролона. Один винт в него вдавить, другой вкрутить. А теперь попробуйте вдавить винт в стену… Вот вам и выигрыш в силе.

Если представить две наклонные плоскости, сходящиеся в одной точке, выйдет то, что называется клином.

Он помогает удерживать предметы на месте, а также раскалывать тела или отделять от них части. Ножи, мечи, топоры и прочие режущие предметы по механике действия классифицируются как клинья. Кстати, на корпусе самолета они тоже есть: самолетные клинья помогают рассекать при движении воздух подобно тому, как кухонный нож прорезает свежий огурчик.

Это интересно: почему говорят «клин клином вышибают»?

Ни клин не достать обратно, ни дров не нарубить. Поэтому рядом с забитым клином вбивали рядом другой — так, чтобы второй заходил глубже и вышибал первый. И так до тех пор, пока деревянный брусок не расколется напополам.

Вот и выходит, что клин клином вышибают в прямом смысле. Один клин вышибают вторым. И откуда только взялась распространенная речевая ошибка «клин клином вышибает»?

Итоги

Так что же, простые механизмы насколько эффективны, что знаменитая архимедова «угроза» про переворот Земли — правда?

А давайте забежим немного вперед и посчитаем. Допустим, среднестатистический человек способен поднять предмет весом около $60~кг$. Масса нашей планеты составляет примерно $6\cdot>~кг$. Какое же расстояние Архимеду пришлось бы преодолеть, чтобы поднять Землю?


Немного математической магии рычагов, о которой вы узнаете совсем скоро, и… выходит один миллион триллионов километров, он же квинтиллион.

Миллион триллионов выглядит неутешительно: 1 000 000 000 000 000 000. Даже из расчета скорости движения $1\frac$ не то что жизни не хватит — не хватит и миллиарда жизней. Можете посчитать самостоятельно.

Подсказка: возраст Земли — четыре с половиной миллиарда лет. Так вот, пока Архимед будет двигать свой рычаг, Земля успеет пережить более 6000 циклов идущих друг за другом Больших взрывов и апокалипсисов. Да и дали бы мы Архимеду точку опоры, пусть так. Вопрос в другом: как сконструировать рычаг такой неимоверной длины в земных условиях?

По традиции, сложившейся ещё со времен Возрождения, к простым механизмам относятся:

  • наклонная плоскость и её разновидности – клин и винт;
  • рычаг и его разновидности – блок и ворот;
  • колесо;
  • поршень.

Примеры физических систем в механике

Наклонная плоскость - плоская поверхность, установленная под углом к горизонтали. Виды простых механизмов
Позволяет поднимать груз вверх, прикладывая меньшую силу \(F\lt F_\text\)
Клин – устройство в виде призмы, боковые поверхности которой находятся под острым углом. Виды простых механизмов
Действие силы \(f\) на основание призмы приводит к возникновению двух составляющих \(F\gt f\) перпендикулярных рабочим поверхностям.
Винт – деталь цилиндрической или конической формы с резьбой (наклонной плоскостью). Виды простых механизмов
Выигрыш в силе при закручивании винта равен отношению длины окружности к шагу резьбы.
Рычаг – балка, вращающаяся вокруг точки опоры. Виды простых механизмов
Выигрыш в силе равен отношению плеч рычага. $$ \frac=\frac $$
Блок – колесо с желобом по окружности, вращающееся вокруг своей оси. Виды простых механизмов
Неподвижный блок меняет направление силы.
Подвижный блок дает выигрыш в силе в 2 раза.
Ворот – горизонтальный цилиндр с рукояткой на конце. Виды простых механизмов
Выигрыш в силе равен отношению радиуса хода рукоятки к радиусу барабана.
Колесо – свободно вращающийся или закрепленный на оси диск, позволяющий телу катиться, а не скользить. Виды простых механизмов
Трение качения существенно меньше трения скольжения.
Поршень – деталь машин и механизмов, служащая для преобразования энергии сжатого газа или жидкости в энергию поступательного движения. Виды простых механизмов

п.2. Принцип действия рычага

Подробно рычаги и условия равновесия были рассмотрены в §26 данного справочника.

Принцип действия рычага

Там же было получено правило моментов $$ F_1L_1=F_2L_2. $$

Если \(F_2\) – это нагрузка, а \(F_1\) - приложенная сила, то выигрыш в силе: $$ i=\frac=\frac $$

В этом разделе мы рассмотрим принцип работы рычага с точки зрения закона сохранения энергии.

Пусть действие приложенной силы \(F_1\) приводит к перемещению \(h_1\) левого плеча вниз.

Работа приложенной силы равна \(A_1=F_1h_1\).

Тогда правое плечо при этом переместится вверх на расстояние \(h_2\).

Работа нагрузки \(A_2=-F_2h_2\). Работа нагрузки отрицательна, т.к. направления вектора нагрузки \(F_2\) и вектора перемещения \(h_2\) противоположны. Для замкнутой системы выполняется закон сохранения энергии, а значит, сумма работ должна быть равна нулю: $$ A_1+A_2=F_1h_1-F_2h_2=0 $$

Получаем, что \(F_1h_1=F_2h_2\).

Равнобедренный треугольник с основанием \(h_1\) и боковыми сторонами \(L_1\) слева подобен равнобедренному треугольнику с основанием \(h_2\) и боковыми сторонами \(L_2\) справа (по двум пропорциональным сторонам и углу между ними). Следовательно, выигрыш в силе: $$ i=\frac=\frac=\frac $$

Что соответствует результату, полученному ранее.

п.3. «Золотое правило» механики

«Золотое правило» механики
Ни один механизм не дает выигрыша в работе.
Во сколько раз мы выигрываем в силе, во столько же раз мы проигрываем в расстоянии.

Выигрыш в силе для рычага $$ i=\frac=\frac $$ показывает, что перемещение \(h_1\) левого плеча с приложенной силой \(F_1\) обязательно должно быть в разы больше перемещения \(h_2\) правого плеча с нагрузкой.

Допустим, мы нашли «точку опоры» и можем приложить к рычагу силу, равную собственному весу \(F_1=720\ \text\). Сила, удерживающая Землю на орбите вокруг Солнца равна \(F_2=3,6\cdot 10^\ \text\). Получаем, что нам нужно со своей стороны переместить рычаг на $$ h_1\frach_2=\frac<3,6\cdot 10^>\cdot 10^=5\cdot 10^\ (\text)=5\cdot 10^\ (\text) $$ т.е. 50 миллиардов километров.

Расстояние от Солнца до Земли – 1 астрономическая единица – это «всего лишь» 150 миллионов километров:\(1\ \text\approx 1,5\cdot 10^\ \text\).

Радиус всей Солнечной системы – около 100 астрономических единиц, т.е. около \(1,5\cdot 10^\ \text\). Тогда \(5\cdot 10^\ \text\) - это чуть больше полутора диаметров Солнечных систем.

Значит, если на одной стороне рычага мы сдвигаем Землю на 1 микрон, то на другой стороне – прикладывая весь свой вес – должны преодолеть расстояние в полторы Солнечных системы. Вот что такое – «проигрыш в расстоянии».

п.4. Блоки и полиспасты

Блок — это колесо с желобом, по которому пропущена веревка или трос.

В технике используют неподвижные и подвижные блоки.

В реальных ситуациях выигрыш в силе при использовании подвижного блока получается меньшим, т.к. часть работы уходит на подъем самой веревки и блока (они тоже имеют вес) и преодоление трения.

На практике используют комбинации из неподвижных и подвижных блоков – полиспасты.

Они позволяют получить выигрыш в силе и менять её направление.

Чем больше в полиспасте подвижных блоков, тем большим будет выигрыш в силе.

Полиспасты

Характеристики полиспастов представлены в таблице.

К-во неподвижных блоков К-во подвижных блоков Изменение направления силы, раз Выигрыш в силе, раз Проигрыш в расстоянии, раз
1 1 0 1 1 1
2 1 1 1 2 2
3 1 2 1 3 3
4 1 3 1 4 4
5 1 4 1 5 5
6 1 5 1 6 6

п.5. «Золотое правило» механики для гидравлического пресса

Подробней о гидравлическом прессе – см. §30 данного справочника.

«Золотое правило» механики для гидравлического пресса
Когда малый поршень под действием силы \(F_1\), опускается вниз на расстояние \(h_1\), он вытесняет некоторый объём жидкости.
На столько же увеличивается объём жидкости под большим поршнем, который при этом поднимается на высоту \(h_2\).
При опускании малого поршня слева сила \(F_1\) совершает работу \(A_1=F_1h_1\), где \(h_1\) - длина хода. При этом из левого сосуда в правый вытесняется объем воды $$ V=S_1h_1=S_2h_2 $$

В правом сосуде при подъёме поршня совершается работа $$ A_2=F_2h_2. $$

Давление на одном уровне в обоих сообщающихся сосудах равно $$ p=\frac=\frac. $$

Получаем: $$ \left. \begin p=\frac=\frac\Rightarrow \frac=\frac\\ V=S_1h_1=S_2h_2\Rightarrow \frac=\frac \end \right\> \Rightarrow \frac=\frac\Rightarrow F_1h_1=F_2h_2\Rightarrow A_1=A_2 $$

Работы малого и большого поршня равны.

Таким образом, «золотое правило» для гидравлического пресса также выполняется.

Гидравлический пресс не дает выигрыша в работе.

Выигрыш в силе равен проигрышу в расстоянии: $$ i=\frac=\frac $$

п.6. «Золотое правило» механики для наклонной плоскости

«Золотое правило» механики для наклонной плоскости

Если груз поднимать равномерно вертикально вверх на высоту \(h\) (из точки C в точку B), необходимо прикладывать силу, равную весу \(P\). При этом работа по подъему груза равна произведению веса на высоту: $$ A_=Ph $$

Если груз поднимать равномерно по наклонной плоскости вверх на высоту \(h\) (из точки A в точку B), работа по подъему груза равна произведению приложенной силы на длину: $$ A_=FL $$

В любом случае тело, оказавшись в точке B, приобретает потенциальную энергию \begin E_p=mgh,\\[7pt] \Delta E_p=E_p-E_=mgh-0=mgh \end

Работа внешних сил при этом $$ A_=A_=\Delta E_p $$

Получаем \begin Ph=FL\\[7pt] i=\frac PF=\frac Lh \end

Наклонная плоскость не дает выигрыша в работе.

Выигрыш в силе компенсируется проигрышем в расстоянии.

Выигрыш в силе равен отношению длины наклонной плоскости к высоте.

«Золотое правило» механики для наклонной плоскости

Например, из пяти наклонных плоскостей, представленных на рисунке, наибольший выигрыш в силе даст плоскость 5, т.к. у нее отношение \(\frac Lh\) максимально (угол наклона минимален).

В реальности, если учесть силу трения, этот выигрыш уменьшается, т.к. с уменьшением угла наклона сила трения растет.

п.7. Задачи

Задача 1. Груз весом 200 Н равномерно поднимают по наклонной плоскости на высоту 5 м, прикладывая силу 100 Н. Найдите длину наклонной плоскости. Трением можно пренебречь.

Задача 1


Работы при подъеме тела вверх и при перемещении вдоль наклонной плоскости равны: \(A=Ph=FL\). Получаем \begin L=\frac PF h \end Подставляем \begin L=\frac\cdot 5=10\ (\text) \end Ответ: 10 м

Задача 2. При штамповке детали больший поршень гидравлического пресса поднялся на 1 см, а меньший поршень опустился на 20 см. Какая сила действовала на деталь, если на малый поршень действовала сила 500 Н.

Работы по перемещению поршней равны: \begin A=F_1h_1=F_2h_2 \end Сила, действующая на деталь \begin F_2=\fracF_1,\\[6pt] F_2=\frac\cdot 500=10000\ (\text)=10\ (\text) \end Ответ: 10 кН

Задача 3. К концам рычага длиной 1 м подвешены грузы массой 8 кг и 12 кг. На каком расстоянии от середины рычага должна быть точка опоры, чтобы рычаг находился в равновесии? Ответ запишите в сантиметрах.

Задача 3


Плечо для груза 1: \begin L_1=\frac d2+x \end Плечо для груза 2: \begin L_2=\frac d2-x \end Условие равновесия: \begin F_1L_1=F_2L_2\\[6pt] F_1\left(\frac d2+x\right)=F_2\left(\frac d2-x\right)\\[6pt] (F_1+F_2)x=(F_2-F_1)\frac d2 \end Учитывая, что \(F_1=m_1g\) и \(F_2=m_2g\): \begin x=\left(\frac\right)\frac d2 \end Получаем \begin x=\left(\frac\right)\cdot \frac 12=\frac 15\cdot \frac 12=0,1\ (\text)=10\ (\text) \end Ответ: 10 см

Задача 4. Если груз лежит на левой чашке неравноплечих весов, его уравновешивают гири массой \(m_1=2\ \text\) на правой чашке. Если же груз положить на правую чашку, его уравновесит только одна гиря массой \(m_2=0,5\ \text\) на левой чашке. Какова масса \(m\) груза? Во сколько раз одно плечо весов длиннее другого?

Пусть длина правого плеча \(L_1\), левого плеча – \(L_2\).
По условию задачи \begin \left\< \begin mL_1=m_1L_2\\ m_2L_1=mL_2 \end \right. \end Разделим верхнее равенство на нижнее \begin \frac=\frac\Rightarrow \frac=\frac\Rightarrow m^2=m_1m_2 \end Масса груза \begin m=\sqrt\\[7pt] m=\sqrt=1\ \text \end Отношение плечей \begin \frac=\frac=\frac 21=2 \end Левое плечо длиннее правого в 2 раза.
Ответ: 1 кг; левое плечо длиннее правого в 2 раза

Задача 5*

Задача 5*. Прямолинейный кусок проволоки массой \(m=40\ \text\) подвешен за середину. Левую половину куска согнули, как показано на рисунке. Какой массы груз надо подвесить в точке A, чтобы восстановить равновесие.

Пусть длина всей проволоки \(L\).
Тогда расстояние от центра тяжести проволоки слева до точки подвеса \(OK=L/4\), а расстояние от центра тяжести проволоки справа до точки подвеса \(OE=L/2\).
Груз массой \(M\) подвешен на расстоянии \(OA=L/2\).
Из ПРАВИЛА моментов получаем: \begin Mg\cdot\frac L2+\frac\cdot \frac L4=\frac\cdot \frac L2 \end Справа в равенстве – моменты, поворачивающие проволоку вокруг точки подвеса O против часовой стрелки, слева – по часовой стрелке.
Сокращаем на \(gL\) \begin \frac M2+\frac m8=\frac m4\Rightarrow \frac m4-\frac m8=\frac m8\Rightarrow M=\frac m4\\[6pt] M=\frac=10\ (\text) \end Ответ: 10 г

Задача 6*

Задача 6*. Балка массой 1200 кг и длиной 3 м лежит на опорах, равноудаленных от ее концов. Расстояние между опорами 2 м.
Какую силу, перпендикулярную балке и направленную вертикально вверх нужно приложить, чтобы приподнять балку за один из её краёв?

По условию \begin AC=BD=\frac 12(CD-AB)=\frac 12(3-2)=0,5\ \text \end Если приподнять балку за левый край с силой \(F\), то останется только одна опора \(B\). Балка превращается в рычаг с осью вращения, проходящей через точку \(B\). Точка \(K\) - центр тяжести отрезка балки \(CB\).
Точка \(E\) - центр тяжести отрезка балки \(BD\).
По правилу моментов \begin F\cdot CB+m_2g\cdot BE=m_1g\cdot KB \end Слева – моменты, поворачивающие балку вокруг точки \(B\) по часовой стрелке, справа – против часовой стрелки.
Искомая сила: \begin F=\frac \end Плечи сил: \begin CB=CD-BD=3-0,5=2,5\ \text\\[6pt] KB=\frac 12 CB=1,25\ \text\\[6pt] BE=\frac 12 BD=0,25\ \text \end Распределение масс: \begin m_1+m_2=M\\[6pt] \frac=\frac=\frac=5\Rightarrow 1+5=6\ \text\\[6pt] m_1=\frac 56 M=\frac 56\cdot 1200=1000\ \text,\\[6pt] m_2=\frac 16 M=\frac 16\cdot 1200=200\ \text \end Подставляем: \begin F=\frac=\frac=4800\ (\text)=4,8\ (\text) \end Ответ: 4,8 кН

Читайте также: