Искусственное основание под фундаменты

Обновлено: 28.03.2024

Toggle navigation

Ремонт в регионах

Все здания и сооружения основываются на грунте. Слой грунта, на который передаются нагрузки от здания или сооружения, называется основанием. Грунт как основание здания или сооружения должен быть однородным и обладать достаточной несущей способностью.

Несущая способность грунта характеризуется его расчетным сопротивлением; учитывая, что практически все грунты (кроме скальных) под действием нагрузки дают со временем осадки, расчетное сопротивление выбирают исходя из величины безопасных для зданий и сооружений многолетних осадок. Поэтому расчетное сопротивление зависит не только от качества грунта непосредственно под подошвой фундамента, но и от напластования грунтов в пределах всей сжимаемой толщи и определяется по результатам бурения скважин (рис. 1) при изысканиях на площадке.

Однородность в пределах площади, занимаемой зданием или сооружением, важна для обеспечения равномерных осадок. Неравномерные осадки особенно опасны.

схема разреза земли

Рис. 1. Разрез по скважинам

Грунт, используемый в качестве основания без каких-либо мероприятий по изменению его свойств, называется естественным основанием. Применяя мероприятия, повышающие несущую способность грунта, получают искусственное основание.

В СНиПе предусмотрена разработанная специально для строительных целей следующая классификация грунтов как естественных оснований:

  • а) скальные, представляющие собой напластование горных пород в виде сплошных невыветрившихся массивов при толщине слоя не менее 3—4 м; отличаются особо высокой несущей способностью;
  • б) обломочные — напластование обломков горных пород в виде бутового камня, булыжного камня, гравия; обладают высокой несущей способностью и малой водоудерживающей способностью;
  • в) песчаные, также обладающие достаточно высокими строительными свойствами; чем крупнее и чище песок, тем лучше качество основания; мелкие пески, подстилаемые водоупорным слоем, встречаются иногда в виде водонасыщенной, неустойчивой массы (плывун);
  • г) глинистые — наиболее распространенные грунты, содержащие большее или меньшее количество глинистых частиц (крупностью менее 0,005 мм); сюда относятся, кроме собственно глин, суглинки и супеси. Этот вид грунтов отличается тем более высокой водоудерживающей способностью, чем больше содержание глинистых частиц, и весьма неодинаковой несущей способностью. Высокая водоудерживающая способность глинистых грунтов приводит к заметному расширению их при замерзании (пучение грунта). Некоторые виды глин расширяются при увлажнении (набухание грунта). Особой разновидностью глинистых грунтов являются широко распространенные на территории России лёссовидные суглинки — сухие, пористые и прочные в своем природном состоянии, но теряющие свою несущую способность и дающие подчас катастрофические осадки при замачивании;
  • д) болотистые, иловатые и торфяные грунты представляют собой очень слабые основания, которых следует избегать при выборе строительных площадок;
  • е) вечномерзлые грунты характеризуются наличием в их толще круглогодично отрицательных температур (независимо от их геолого-минералогического состава и водонасыщенности).

Вечномерзлые грунты распространены в России в основном за полярным кругом, но встречаются (в виде островной вечной мерзлоты) даже южнее 50-й параллели (южнее Иркутска, Читы и др.).

В своем природном состоянии все виды вечномерзлых грунтов обладают высокой несущей способностью. Однако при оттаивании (размораживании) водонасыщенных вечномерзлых грунтов их несущая способность может снизиться до нуля, например при наличии в толще грунта масс ископаемого льда.

фундамент в разрезе

Основными видами искусственных оснований промышленных зданий и сооружений являются следующие:

1. Песчаные подушки (рис. 2, а) заменяют природный слабый грунт под фундаментом (слоем более качественного искусственного песчаного грунта). Размеры песчаной подушки определяются расчетом так, чтобы давление от подушки на нижележащий природный слой грунта не превышало его несущей способности.

2. Свайное основание. В зависимости от способа передачи нагрузки сваями на грунт различают сваи-стойки (рис. 2, б), опирающиеся концами на плотный, глубоко залегающий слой грунта (материк), и висячие (рис. 2, в), держащиеся в грунте трением или зацеплением.

В зависимости от способа опускания в грунт сваи делят на забивные (железобетонные) и набивные (бетонные, железобетонные), бетонируемые непосредственно в скважинах, предварительно получаемых вращательным или ударным бурением.

схема заглубленного основания здания

Рис. 2. Искусственные основания;

а - песчаная подушка; б — свайное основание со сваями-стойками; в то же, с висячими сваями;1 — песчаная подушка; 2 — изобары

Из перечисленных наиболее распространены железобетонные забивные сваи квадратного сечения со стороной 200-400 мм. В последние годы в практике строительства крупных сооружений (мостов, башенных копров и др.) все чаще применяются сваи-оболочки в виде железобетонных труб диаметром до 3 м. Такие сваи опускаются в грунт (до материка) при помощи вибропогружателей, затем грунт из полости сваи удаляется и свая (в нижней части) заполняется бетоном.

Применение свайных фундаментов в промышленном строительстве до сих пор ограничивалось случаями наличия на строительной площадке слабых грунтов. Исследования, проведенные в последние годы, показали, что свайные фундаменты можно успешно применять и при нормальных грунтовых условиях, при глубине заложения фундаментов 3—4 м, так как, несмотря на сравнительно высокую стоимость забивки свай, уменьшение объема земляных работ и объема бетона в фундаментах делается свайные фундаменты более экономичными.

3. Различные способы закрепления или уплотнения грунтов. Сюда относятся:

  1. цементация слабых песчаных грунтов путем нагнетания в грунт жидкого цементного теста;
  2. силикатизация грунтов путем нагнетания в грунт жидкого стекла и раствора хлористого кальция;
  3. уплотнение лёссовидных грунтов грунтовыми сваями, т. е. набивкой местного грунта в скважины, предварительно пробитые в грунте;
  4. уплотнение грунта тяжелыми механическими трамбовками; при диаметре трамбовок 1,3 м и весе 2 г достигается уплотнение грунта в глубину на 1,5—2,5 м;
  5. поверхностное уплотнение грунта гладкими или кулачковыми катками (применяется при устройстве полов).

Для закрепления водонасыщенных грунтов и во избежание затопления котлована на время постройки сооружений глубокого заложения используют также замораживание мелкозернистых грунтов и битумизацию трещиноватых скальных грунтов.

В связи с бесконечным разнообразием местных грунтовых условий выбор основания и его расчетного сопротивления может быть сделан только на основании инженерно-геологических изысканий на местности. Конкретной целью таких изысканий является выявление напластования грунтов, их влажности, уровня и химического состава грунтовых вод и др.

Глубина заложения фундаментов

Глубина заложения фундаментов, основываемых на скальных и крупнообломочных грунтах и на песках гравелистых крупных и средней крупности, принимается независимо от глубины промерзания и уровня грунтовых вод.

Глубина заложения фундаментов, основываемых на песках мелких и пылеватых, а также на супесях, суглинках и глинах малой и средней влажности, определяется в зависимости от взаимного расположения уровня промерзания и уровня грунтовых вод (рис. 1). При тех же грунтах, но высокой влажности, глубина заложения фундаментов принимается во всех случаях не менее глубины промерзания, во избежание повреждения зданий при пучении грунта.

схема уровней заложения фундамента

Рис. 1. Глубина заложения фундаментов в глинистых грунтах

Глубина заложения фундаментов внутренних стен и колонн отапливаемых зданий принимается независимо от глубины промерзания, поскольку грунт промерзает только по периметру такого здания.

Верх фундаментов сборных железобетонных колонн располагают на уровне планировки грунта, так как это дает возможность полностью закончить работы нулевого цикла (устройство фундаментов, прокладку подземных коммуникаций, обратную засыпку всех котлованов и траншей и планировку поверхности грунта) до начала работ по монтажу каркаса, покрытия и других надземных частей здания.

Верх фундаментов стальных колонн приходится располагать на 0,8—1,0 м ниже с таким расчетом, чтобы башмак колонны был закрыт полом.

Если при этом подошвы фундаментов не достигают необходимой глубины заложения, то под фундамент закладывают подушку из тощего бетона, плотно утрамбованного песка или шлака и прочее (рис. 2, а) или делают фундамент с удлиненным подколонником (рис. 2, б).

Заглубленные фундаменты монолитных железобетонных колонн из тех же соображений бетонируют совместно с подколенником (рис. 2,в).

схема подошовы фундаменты

Рис. 2. Способы заглубления подошвы фундаментов: а — фундамент сборной железобетонной колонны с подушкой; б — то же, с железобетонным подколонником; в — фундамент монолитной железобетонной колонны: 1 — фундамент; 2—подушка; 3 — подколонник

В тех случаях, когда в здании имеются туннели, приямки или подвалы, фундаменты, непосредственно примыкающие к таким сооружениям, закладывают на такую глубину, чтобы при вскрытии котлована с соблюдением углов естественного откоса грунта все фундаменты основывались на нетронутом грунте (рис. 3,а). С этим требованием необходимо также считаться, когда проектируемое здание пристраивается к существующему.

разрез заглубленного фундамента


Рис. 3. Уступчатое заглубление фундаментов:

а — фундаменты колонн; б — ленточный фундамент стены
В фундаментах под стены переход от более заглубленных частей к менее заглубленным делают уступами (рис. 3, б).

Выбор основных размеров фундамента

Расчетное сопротивление основания зависит от многих причин — вида грунта, его пористости, влажности, напластования слоев и обычно лежит в пределах от 1 до 2—2,5 кГ/см2.

Площадь подошвы F центрально нагруженного фундамента определяется по формуле центрального сжатия.

При внецентренном расположении колонны на фундаменте, при наличии в нижнем сечении колонны изгибающего момента или поперечной силы основание под подошвой фундамента работает на внецентренное сжатие. При этом отрицательные (растягивающие) напряжения под подошвой фундамента не допускаются.

Конструкции фундаментов

Фундаменты под несущие стены располагаются по всему их периметру и называются ленточными (рис. 4, а).

Сборный ленточный фундамент выкладывается на растворе, из блоков двух видов: стеновых бетонных (неармированных) пустотелых блоков и железобетонных блоков-подушек. При малой нагрузке на фундамент и высоком расчетном сопротивлении основания блоки-подушки могут отсутствовать.

Бутовые ленточные фундаменты — раньше очень широко распространенные — имеют по сравнению со сборнымиными-
го больший объем (рис. 4, б, в), совершенно не индустриальны, трудоемки и, кроме того, требуют высококвалифицированной рабочей силы. По этим причинам они в промышленном строительстве теперь не применяются.

Фундаменты сборных железобетонных колонн (рис. 5, а) делают в виде ступенчатого массива, армированного понизу, с выемкой (называемой стаканом) для колонны. После установки колонны остающийся объем стакана заполняется бетоном. После его отвердения колонна и фундамент превращаются в единое целое.


Рис. 4. Ленточные фундаменты:
а — план; б — сечение сборного ленточного фундамента; в — сечение бутового ленточного фундамента; 1 — продольная стена; 2 — поперечная стена; 3 — прямоугольный блок; 4 — блок-подушка

Рис. 5. Конструкции фундаментов колонн:
а — ступенчатый фундамент сборной железобетонной колонны; б — фундамент стальной колонны; 1 — железобетонная колонна; 2 — башмак стальной колонны

Фундаменты сборных колонн, имеющие небольшой вес, делают сборными, т. е. изготовляют на заводе (или полигоне) и устанавливают на место кранами на слой песка или гравия. Крупные фундаменты колонн бетонируются на месте.

Фундамент монолитной колонны отличается от фундамента сборной колонны отсутствием стакана. Для связи колонны с фундаментом ее арматура доводится до низа фундамента.

Фундамент стальной колонны (рис. 5, б) делают с тщательно выравненной поверхностью, из которой выступают анкерные болты, закладываемые в фундамент при его бетонировании. Стальную колонну устанавливают башмаком на фундамент так, чтобы анкерные болты прошли в вырезы (или отверстия) башмака, и закрепляют гайками.

При проектировании многоэтажных зданий с тяжелыми нагрузками на слабых грунтах иногда приходится от отдельно стоящих фундаментов переходить к ленточным железобетонным (монолитным) фундаментам (рис. 6). При значительной ширине лент (приближающейся к расстоянию между осями колонн) они сливаются, превращаясь в сплошную плиту с выступающими вверх ребрами.

ленточный фундамент

Рис. 6. Фундамент в виде пересекающихся железобетонных лент

При резко различающейся высоте соседних частей здания, при расширении и в других случаях во избежание повреждения конструкций в результате неравномерных осадок фундаментов, здание разрезают до грунта осадочными швами, которые в надземной части совмещают с температурными.

Фундаментные балки

заменяют собой фундаменты для самонесущих и нижней части ненесущих стен. Эти балки всегда делают сборные железобетонные. Ширина фундаментной балки поверху определяется толщиной опирающейся на нее стены; ширина понизу, определяемая расчетом прочности балки и необходимостью размещения арматуры, обычно бывает меньше. Поэтому фундаментные балки имеют тавровое поперечное сечение.

схема фундаментной балки

Рис. 7. Фундаментные балки, 1 - бетонные столбики

Фундаментные балки укладывают концами на уступы фундаментов колонн так, чтобы верх балок располагался на 30 мм ниже уровня пола. С этой целью под концами фундаментных балок делают бетонные столбики необходимой высоты.

К искусственному основанию прибегают в случаях, когда грунт слабый и проектировать фундамент на естественном основании не представляется возможным, а применять сваи или фундаменты глубокого заложения нецелесообразно по технико-экономическим соображениям.

Работу грунтов улучшают конструктивными методами, а их свойства - уплотнением и закреплением.

Улучшение свойств слабых грунтов достигается: уплотнением - путём сближения частиц механическими или физическими воздействиями, то есть увеличение массы грунта в единице объёма. закреплением, когда различными физико-химическими средствами повышают структурную прочность на контактах частиц грунта природного сложения или заполняют паровое прострунство между ними каким либо вяжущим материалом; переработкой с уплотнением или с укреплением.

В соответствии с этим все методы устройства искусственных оснований можно разбить на три группы:

1) механическое изменение свойств грунтов основания (укатка, трамбование, гидровиброуплотнение и т д );

2) полная или частичная замена грунтов основания или их переработка (грунтовые подушки, грунтовые сваи, грунтовые покрытия под дороги, аэродромы и т д);

3) физико-химическое улучшение свойств грунтов основания (уплотнениение водопонижением, замачивание лёссовых грунтов, силикатизация, цементация, электроукрепление и т д )

Выбор метода устройства искусственного основания решают в каждом конкретном случае на основе технико-экономического сравнения в зависимости от следующих факторов: физико-механических свойств грунтов; конструкции сооружения; наличия специализированного технологического оборудования.

К методам устройства искусственно улучшенных оснований с уплотнением грунта относят также сооружение фундаментов в вытрамбованных котлованах.

Выбор метода улучшения работы и свойств грунтов в основании в значительной степени зависит от характера напластования и свойств грунтов, интенсивности передаваемых нагрузок, особенностей сооружения и возможностей строительной организации.


Устройство грунтовых подушек. При действии на грунт внешней местной равномерно распределенной нагрузки наибольшие нормальные напряжения возникают в нем непосредственно под местом ее приложения. С глубиной и в стороны от площади загружения напряжения быстро уменьшаются вслед­ствие рассеяния в окружающем грунте. Зоны сдвигов возникают под краями фундаментов и затем развиваются в глубину и частично в стороны. Если в пределах области возможных значительных уплотнений и зон сдвигов заменить слабый грунт на малосжимаемый с относительно высоким сопротивлением сдвигу, можно существенно улучшить ра­боту грунтов в основании. Примером такого решения является устройство под фундаментами подушек (рис.) песчаных или из иного материала (гравия, щебня, шлака, отходов различ­ных производств), К материалу, применяемому для подушек, предъявляются следующие требования: удобоукладываемость с заданной плотностью, малая сжимаемость, относительно высо­кое сопротивление сдвигу, устойчивость его скелета при движе­нии грунтовых вод.

Песок в подушке должен быть уплотнен, так как, если он будет находиться в рыхлом или близком к рыхлому состоянию, возможна его осадка в результате динамических воздействий, а также замачивания. По этой причине не допускается укладка в подушку мерзлого песка, не поддающегося уплотнению. При большой стоимости пески для устройства подушек иног­да используют местные грунты, поддающиеся уплотнению. Выше уровня подземных вод можно применять супеси, суглинки и даже глины. В подушку эти грунты укладывают при оптималь­ной влажности с тщательным контролем за однородностью их состава и степенью их уплотнения.

Поверхностное уплотнение грунтов. Производя удары трамбовкой по дну котлована, можно уплотнить грунты некоторых видов и тем самым существенно улучшить их качество. К таким грунтам относятся ненасыщен­ные водой пылевато-глинистые грунты (с коэффициентом водонасыщенности Sr - по СНиПу со степенью влажности - менее 0,7> и независимо от степени насыщения водой крупнообломочные и песчаные грунты. Толщина слоя уплотняемого грунта за­висит от интенсивности воздействия применяемой трамбовки или катка и свойств грунта. Грунты уплотняются до плотности сложения, при которой они обладают деформативностью не выше заданной и требуемой прочностью. Уплотнение грунта достигается многократной про­ходкой катков (обычно 6. 8 раз) или ударами трамбовки до 8 раз по одному месту.




Глубинное уплотнение грунтов динамическими воздействиями. Для уплотнения насыщенных водой песчаных грунтов применяют глубинное вибрирование. Виброуплотнение песков можно производить двумя способами: погружением вибратора (вибробулавы) в песок аналогично погружению вибробулавы в бетонную смесь или погружением в грунт стерж­ня с прикрепленным к его голове вибропогружателем. В этом и другом случае колебательные движения передаются песку, который сначала частично или полностью разжижается, а затем постепенно уплотняется.


Вибробулавы обычно используют для уплотнения слоя песка толщиной от 1 до 10 м. В целях ускорения работ на специаль­ной раме укрепляют куст вибраторов, погружая и извлекая его из грунта с помощью крапа. При необходимости уплотнения слоя песка толщиной 5. 20 м можно применять вибропогружатель, который крепится к труб­чатому стержню.

Взрывами уплотняют толщи просадочных лёссовых грунтов. Для этого грунты предварительно замачивают через фильтрующие или сов­мещенные скважины. Затем в скважины устанавливают заряды в трубках и производят ряд взрывов, следующих один за дру­гим через несколько секунд. Уплотненный таким образом лёссо­вый грунт теряет просадочные свойства и может быть использован в качестве естественного основания сооружении.

Уплотнение грунта статической нагрузкой. Рассмотренными выше способами невозможно эффективно уплотнить слабые, насыщенные водой пылевато-глинистые грунты (илы, очень пористые глины и суглинки, находя­щиеся в текучем и текучепластичном состоянии) и торфы, так как они обладают малой водопроницаемостью, а их уплотнение связано с выдавливанием поды из пор грунта. Для уплотнения таких грунтов используют статическую нагрузку в виде насыпи. При этом для ускорения процесса уплотнения устраивают дрены (рис.а). Давление по подошве насыпи должно быть больше давления от проектируемого сооружения в пределах площади застройки. Обычно насыпь отсыпают послойно, так как выполнение се сразу на необходимую высоту может привести к потере устой­чивости слабых грунтов в ее основании.


Вертикальные дрены делают песчаными, из специального пористого картона или из пластмассовой ленты в бумажном кожухе (рис.6). Песчаные дрены изготовляют аналогично песчаным сваям, но располагают значительно реже - обычно че­рез 2. 4 м. Картонные и пластмассовые дрены обычно вдавливают в грунт.

Уплотнение грунта водопонижением. Слабые пылевато-глинистые грунты, которые способны отдавать воду из пор (илы, ленточные глины, заторфованные супеси и др.), можно уплотнить, понижая уровень подземных вод, например, путем откачки воды из скважин-фильтров. Пони­жение уровня подземных вод приводит к снятию выталкиваю­щего давления воды, что вызывает в скелете грунта значитель­ное повышение напряжений, действие которых на грунт будет аналогичным действию внешней нагрузки. Отжимаемая в про­цессе уплотнения вода откачивается из скважин-фильтров.

Слабо фильтрующие пылевато-глинистые грунты во многих случаях не отдают воду. Тогда для их уплотнения прибегают к использованию электроосмоса. Для этого в грунт погружают электроды и пропускают через них постоянный электрический ток. По мере прохождения тока поровая вода концентрируется у катода. Катод делается в виде иглофильтра (рис). Из группы иглофильтров вода откачивается вихревыми насосами. Таким образом, пылевато-глинистый грунт уплотняется как вследствие понижения уровня подземных вод и увеличения на­пряжений в скелете грунта, так и благодаря уменьшению влаж­ности грунта в результате движения поровой воды к катодам. При использовании электроосмоса грунт уплотняется доста­точно быстро и только в пределах необходимой площади. Кроме того, увеличивается прочность этого грунта, т. е. он закрепляется, при этом улучшаются его строительные качества.

Электрохимическое закрепление. Однорастворный метод силикатизации, применим только в грунтах е коэффициентом фильтрации более 0,1. 0,2 м/сут. Слабые грунты (илы, глины и суглинки, находящиеся в текучем и текучепластичном состоянии), как правило, имеют коэффи­циент фильтрации меньше указанных величин. Чтобы ввести растворы силиката натрия и хлористого кальция, через такие грунты пропускают постоянный электрический ток. При пропу­скании тока в грунтах развивается электроосмос - движение воды, находящейся в порах, от анода к катоду. Используя это явление, через перфорированный анод вводят в грунты химиче­ские вещества, в т. ч. последовательно раствор силиката нат­рия и хлористого кальция. Введение этих химических веществ позволяет закрепить грунты с коэффициентом фильтрации 0,1. 0,005 м/сут (пылеватые пески, супеси и легкие суглинки).

Смолизация. Растворы синтетических смол, способных твердеть в грунтах, можно нагнетать в поры грунта. После твердения смол грунт превращается в достаточно твердое тело. В качестве вяжущего вещества в настоящее время широко применяют карбамидную смолу с отвердителями.

Карбамидную смолу используют для омоноличивания мелких и пылеватых песков с коэффициентом фильтрации 0,5. 5 м/сут, а также для закрепления лёссовых грунтов. В качестве отвердителя используют, в частности, раствор соляной кислоты, соединяя с ним раствор корбамидной смолы непосредственно перед инъецированном. Иногда в грунт предварительно нагнетают раствор соляной кислоты 3. 5 %-ной концентрации.

К настоящее время известно несколько видов синтетических смол (фенолъные, фурановые и др.), которые можно использовать, для закрепления грунтов, в т. ч. получаемые из отходов производства. Для закрепления супесей и суглинков начинают также применять электросмолизацию.

Битумизация и глинизация. Оба эти метода используются для уменьшения водопро­ницаемости грунтов.

Битумизацию применяют для снижения водопроницаемости трещиноватой скальной породы. При этом в скважины нагне­тают расплавленный битум или битумную эмульсию с коагулян­том. Битум тампонирует полости и трещины в грунте, фильтра­ция воды прекращается или сильно снижается.

Глинизацию применяют для уменьшения водопроницаемости песков. Нагнетание глинистой суспензии в сравнительно тонкие поры песков приводит к выпадению в них глинистых частиц - к заилению песков. В результате коэффициент фильтрации песков уменьшается на несколько порядков.

Toggle navigation

Ремонт в регионах

При устройстве искусственных оснований, необходимо обеспечить уплотнение грунта и песчаную подушку

Искусственные основания

Искусственные основания устраиваются при слабых грунтах с расчетным сопротивлением R= 0,75 — 1,25 кг/см% или при больших нагрузках на подошву фундамента. В малоэтажном и гражданском строительстве при слабых грунтах и небольших нагрузках обычно ограничиваются уплотнением грунта на глубину 1,5—2,0 м или устройством песчаной подушки, размеры которой определяются расчетом. При больших нагрузках на подошву фундамента применяются свайные основания, опусктные колодцы, цементация и силикатизация грунтов основания.

Механическое уплотнение грунта

Механическое уплотнение состоит в том, что в грунт на расстоянии 0,8 — 1,0 м друг от друга и на глубину 1,5 — 2,0 м забиваются конические деревянные сваи. При забивке сваи раскачиваются, а затем извлекаются из грунта. В образовавшиеся в грунте скважины затрамбовывается местный увлажненный грунт, песок или тощий бетон. При этом, в зависимости от степени уплотнения грунта, увеличивается расчетное сопротивление на основание. Забиваются сваи сначала по периметру площадки.

искусственные основания фундаментов

Песчаные подушки

Когда залегающие непосредственно под подошвой фундамента грунты слабые, рыхлые с малым расчетным сопротивлением (1,0 — 1,2 кг/см2) не могут служить естественным основанием под фундамент, в качестве основания применяются песчаные подушки. В этом случае слабые грунты под. подошвой удаляются на глубину, определяемую расчетом, а образовавшийся котлован заполняют крупно- или среднезернистым песком или гравелистым грунтом, обладающими малой сжимаемостью и допускающими давление в 2 — 2,5 кг 1см2 (в зависимости от крупности зерен и степени уплотнения).

Песчаные подушки работают так же, как и рассмотренные выше грунты основания

  1. Давление в грунтах основания быстро уменьшается по мере удаления от подошвы (источника сжатия), достигая в ленточных фундаментах 55% от среднего давления под подошвой на глубине, равной ширине фундамента, и 30% на глубине, равной двойной ширине подошвы.
    В прямоугольных в плане фундаментах падение давления происходит еще интенсивнее.
  2. Частицы грунта под подошвой, испытывающие одинаковое давление, лежат на плавных кривых — изобарах

Пользуясь указанными свойствами грунтов, поперечное сечение песчаных подушек может быть принято по кривой изобар. Размеры подушек должны быть такими, чтобы давления, возникающие по кривой, были равны или меньше расчетного сопротивления на слабый (заменяемый) грунт.

устройство искусственного основания

Свойство уменьшения давления в грунтах по мере удаления от источника сжатия используется также при определении ширины подошвы Фундамента в тех случаях, когда подстилающий слой слабее несущего. На практике для упрощения формы очертание подушки (в разрезе) принимается не по кривой равных давлений, а по объемлющей ломаной, как показано на рис. 1 справа.

Отсыпка песчаной подушки производится слоями толщиной 15 — 20 см с тщательной трамбовкой и поливкой водой. Ширина подушки понизу обычно принимается равной ширине подошвы фундамента с небольшим уширением (на 20—25 см) вверху подушки, учитывая, что изобары давлений, соответствующие 50 — 55% от средних давлений под подошвой, обычно не выходят из пределов ширины подошвы фундаментов.

Грунтовым основанием называют массив грунта, расположенный под фундаментом и воспринимающий нагрузку от всего здания. Нагрузка, передаваемая фундаментом, вызывает в основании напряженное состояние и деформирует его. Прочность и устойчивость любого здания зависит, прежде всего, от надежности основания.

От того, какое основание находится под фундаментом, зависит, насколько прочным и долговечным будет фундамент и впоследствии здание.

Виды грунтовых оснований

Грунтовые основания бывают:

Естественные основания

Грунты, находящиеся в условиях природного залегания, называют естественным основанием.


Искусственные основания

Искусственным основанием называют предварительно укрепленные различными способами слабые грунты (силикатизация, цементация, смолизация, битуминизация и др.).


В связи с существованием разных типов грунтовых оснований проектированию и строительству зданий и сооружений предшествуют инженерно-геологические и гидрогеологические изыскания. Они заключаются в определении типов грунтов оснований, их прочности и деформативных характеристик, уровня грунтовых вод, их химического состава для установления степени агрессивности по отношению к материалу фундаментов.

Критерии, определяющие характеристики основания

Критериями качества основания служат:

  • несущая способность основания;
  • плотность и равномерность геологического строения, обеспечивающие допустимые деформации основания и нормативную величину его осадки под зданием;
  • устойчивость к воздействию грунтовых вод;
  • неподверженность «пучению» – увеличению в объеме при замерзации воды в порах и прослойках грунта;
  • неподверженность грунтов основания оползням.

Виды грунтов

Грунты представляют собой горные породы минеральных частиц зернистой и чешуйчатой структуры, пространство между которыми образуют поры.

Различают следующие виды грунтов:

  • скальные;
  • крупнообломочные;
  • песчаные;
  • глинистые;
  • насыпные.

Скальные грунты

Скальные грунты залегают сплошными массивами и являются наиболее прочным естественным основанием. Однако они залегают на значительной глубине под слоями нескольких пород и поэтому редко служат непосредственным основанием фундаментов жилых и сельскохозяйственных зданий. К скальным грунтам относят граниты, кварциты, известняки и им подобные.


Крупнообломочные грунты

Крупнообломочные грунты содержат более 50% по весу кристаллических или осадочных пород крупностью частиц более 2 мм. В структуре этого вида грунтов щебень, галька, гравий находятся в связном состоянии.

Крупнообломочные грунты мало-сжимаемы, дают небольшие и, как правило, равномерные осадки и не пучинисты. По своим природным качествам они служат хорошим основанием.


Песчаные грунты

Песчаные грунты содержат менее 50% по весу частиц крупнее 2 мм, сыпучие и в сухом состоянии не обладают свойством пластичности.

Пески в зависимости от размеров зерен могут быть:

  • крупные;
  • средние;
  • мелкие;
  • пылеватые.

С увеличением содержания пылеватых и глинистых частиц прочность песчаного грунта уменьшается. Равномерно залегаемые пески значительной мощности представляют хорошее основание – не пучинистое и обладающее быстро прекращающимися равномерными осадками.


Глинистые грунты

Глинистые грунты состоят из мелких чешуйчатых связанных между собой частиц. Они различаются по количеству глинистых частиц:

  • суглинки содержат глинистых частиц от 10 до 30%;
  • супеси – от 3 до 10%.

Следовательно, глинистые грунты, содержащие глинистых частиц меньше 30%, относятся к суглинкам или супесям и, по существу, являются промежуточными видами между песком и глиной. При замерзании влажные глинистые грунты вспучиваются, а при оттаивании дают просадку. В результате подъема пучинистых грунтов зимой и опускания весной в здании появляются трещины и нередко создается опасность дальнейшей эксплуатации строения.


Насыпные грунты

Насыпные грунты состоят из разнообразных пород, а часто и из бытовых отходов.

Они не однородны по составу и структуре, обладают большими и неравномерными осадками, вследствие чего пригодность их в качестве оснований ограничена.

Таким образом, грунт, который служит основанием для фундамента, должен иметь достаточную несущую способность, малую и равномерную сжимаемость, трудно размываться, не подвергаться выветриванию, обладать достаточной мощностью.


Основания и фундаменты

М.: Агропромиздат, 1987, - 284с., ил.; 2-е изд., перераб. и доп.

Изложены сведения о физических, физико-механических и физико-химических свойствах грунтов как оснований фундаментов и сооружений. Приведены основные положения и методы проектирования естественных и искусственных оснований, различного вида фундаментов и способы их устройства. Второе издание (1-е - в 1981 г.) доработано с учетом новых СНиП, ГОСТов, Стандартов СЭВ и других материалов. Для студентов высших сельскохозяйственных учебных заведений по специальности "Гидромелиорация".

Оглавление

Основания и фундаменты1

Основания и фундаменты2

Основания и фундаменты3

Часть I. ОСНОВЫ ГРУНТОВЕДЕНИЯ И МЕХАНИКИ ГРУНТОВ

Глава 1. Состав и строение грунтов . 7
1. Природа и составные компоненты грунтов . 7
2. Твердые частицы грунтов . 8
3. Вода в грунтах, ее виды и свойства . 13
4. Газы в грунтах . 16
5. Структура и текстура грунтов . 17

Глава 2. Физические свойства грунтов и их показатели . 23
6. Основные показатели физических свойств грунтов . 24
7. Производные показатели физических свойств грунтов . 26

Глава 3. Физико-химические свойства грунтов и их показатели . 29
8. Консистентностъ грунтов . 29
9. Просадочность грунтов . 30
10. Набухаемость и усадочность грунтов . 33
11. Плывунность и тиксотропность грунтов . 36
12. Размягчаемость, размокаемость и растворимость грунтов . 37
13. Пучинистость грунтов . 38

Глава 4. Физико-механические свойства грунтов и их показатели . 39
14. Водопроницаемость грунтов . 40
15. Деформируемость грунтов . 43
16. Прочность грунтов . 68
17. Классификационные показатели и классификация грунтов . 80

Глава 5. Характеристика различных видов грунтов . 84
18. Скальные грунты . 85
19. Нескальные грунты . 87

Глава 6. Напряжения в грунтовом массиве . 108
20. Природные напряжения . 109
21. Напряжения от внешних нагрузок в однородном полупространстве . 111
22. Напряжения от внешних нагрузок в неоднородном полупространстве . 128
23. Напряжения в грунте по подошве нагруженных площадок — контактные напряжения . 131
24. Критические нагрузки на грунт основания . 134

Часть II. ОСНОВАНИЯ И ФУНДАМЕНТЫ

Глава 7. Основные положения проектирования оснований и фундаментов . 139
25. Виды оснований и фундаментов . 139
26. Совместные деформации сооружений и оснований . 142
27. Выбор основания, фундаментов и методов их устройства . 143
28. Основные положения проектирования оснований и фундаментов по предельным состояниям . 149

Глава 8. Фундаменты неглубокого наложения . 16З
29. Конструкции фундаментов неглубокого наложения . 163
30. Проектирование фундаментов . 167
31. Проектирование гибких железобетонных фундаментов . 165

Глава 9. Расчет естественных оснований . 166
32. Определение конечных осадок . 166
33. Расчет осадок во времени . 173
34. Определение неравномерных осадок . 175
35. Проектирование оснований по первой группе предельных состояний . 177
36. Расчет нескальных оснований гидротехнических сооружений . 183

Глава 10. Искусственные основания . 188
37. Принципы расчета искусственных оснований . 188
38. Поверхностное к глубинное уплотнение грунтов механическими способами . 190
39. Замена слабых грунтов (грунтовые подушки) . 196
40. Физико-химические методы укрепления и улучшения грунтов . 197
41. Улучшение свойств лёссовых просадочных грунтов . 202
42. Искусственные основания при строительстве на заторфованных грунтах и торфах . 207

Глава 11. Свайные фундаменты . 209
43. Виды свайных фундаментов, типы и конструкции свай . 209
44. Принципы проектирования свайных фундаментов . 216
45. Расчет свай и ростверков по первому предельному состоянию . 220
46. Определение несущей способности свай испытанием статической и динамической нагрузками . 222
47. Расчет свайных фундаментов и их оснований по второму предельному состоянию . 224
48. Особенности расчета свайных фундаментов в просадочных лёссовых грунтах . 226

Глава 12. Фундаменты глубокого заложения . 228
49. Принципы проектирования фундаментов глубокого заложения . 228
50. Опускные колодцы . 229
51. Колодцы-оболочки и буровые опоры-столбы . 232
52. Кессонные фундаменты . 236

Глава 13. Устройство котлованов под фундаменты и сооружения . 238
53. Назначение размеров котлованов и разбивка их на местности . 238
54. Крепление стенок траншей и котлованов . 240
55. Осушение котлованов . 247
56. Устройство котлованов и фундаментов на местности, покрытой водой . 249

Глава 14. Проектирование и устройство оснований и фундаментов на лёссовых просадочных грунтах . 250
57. Проектирование оснований в фундаментов зданий в промышленных сооружений на просадочных грунтах . 251
58. Методы устройства оснований в гидросооружений оросительных систем на просадочных грунтах . 257
59. Проектирование оснований гидросооружений на лёссовых просадочных грунтах . 260

Глава 15. Устройство фундаментов в особых условиях . 263
60. Основные принципы устройства фундаментов и сооружений в особых грунтовых условиях . 263
61. Устройство фундаментов зданий и гидромелиоративных сооружений на водонасыщенных биогенных грунтах . 264
62. Устройство фундаментов на вечномерзлых и набухающих грунтах . 265
63. Устройство фундаментов в других сложных грунтовых условиях . 270
64. Фундаменты при динамических нагрузках . 273

Приложение . 278
Указатель литературы . 280
Предметный указатель . 281

Читайте также: