Гашение колебаний фундамента достигается

Обновлено: 19.04.2024

Д.А. Кривошеин, Л.А. Муравей, Н.Н. Роева, О.С. Шорина, Н.Д. Эриашвили, Ю.Г. Юровицкий, В.А. Яковлев
Экология и безопасность жизнедеятельности
Учебное пособие для вузов / Под ред. Л.А. Муравья. – М.: ЮНИТИ-ДАНА, 2000. — 447 с.

Глава 17. Защита от шума, ультра- и инфразвука, вибрации

17.2. Основные методы борьбы с шумом, инфра- и ультразвуком и вибрацией

Рассмотрим основные методы борьбы с шумом, инфра- и ультразвуком, а также с вибрацией.

Различные механические, аэродинамические и электромагнитные явления являются причиной возникновения шумов. Механические шумы возникают при работе различных машин и механизмов и вызваны трением и соударениями составляющих их деталей, ударными процессами, используемыми в производстве (ковка, штамповка) и рядом других факторов. Аэродинамические и гидродинамические шумы возникают при течении газов и жидкостей. Электромагнитные шумы обычно сопровождают работу различных электрических установок. Перечислим основные способы, используемые для снижения шума в производственных помещениях.

Наиболее рациональный способ уменьшения шума – снижение звуковой мощности его источника (машины, установки, агрегата и т.д.). Уровень звуковой мощности (Lp) рассчитывается по следующей формуле:

где Р – звуковая мощность, Вт;

P0 пороговая звуковая мощность, равная 10 -12 Вт;

Lp уровень звуковой мощности, дБ.

Этот способ борьбы с шумом носит название уменьшения шума в источнике его возникновения. Снижение механических шумов достигается: улучшением конструкции машин и механизмов, заменой деталей из металлических материалов на пластмассовые, заменой ударных технологических процессов на безударные (например, клепку рекомендуется заменять сваркой, штамповку – прессованием и т.д.), применением вместо зубчатых передач в машинах и механизмах других видов передач (например, клиноременных) или использованием зубчатых передач, не издающих громких звуков (например, при использовании не прямозубых, а косозубых или шевронных шестерен), нанесением смазки на трущиеся детали и рядом других мероприятий.

Эффективность некоторых из перечисленных мероприятий по снижению уровня шума представлена ниже:

Замена прямозубых шестерен шевронными

Замена зубчатой передачи на клиноременную

Замена металлических корпусов машин на пластмассовые:

в области высоких частот

в области средних частот

Снижение уровня шума, дБ

Как уже сказано выше, аэродинамические и гидродинамические шумы сопровождают течение жидкости или газа. Эти шумы также возникают при работе вентиляторов, компрессоров, газовых турбин, двигателей внутреннего сгорания, при выпуске пара или воздуха в атмосферу, при вращении винтов самолета, при работе насосов для перекачки жидкостей и др.

Для уменьшения аэродинамических и гидродинамических шумов рекомендуются снижение скорости обтекания газовыми или воздушными потоками препятствий, улучшение аэродинамики тел, работающих в контакте с потоками; снижение скорости истечения газовой струи и уменьшение диаметра отверстия, из которого эта струя истекает; выбор оптимальных режимов работы насосов для перекачивания жидкостей; правильное проектирование и эксплуатация гидросистем и ряд других мероприятий. Часто не удается уменьшить аэродинамические шумы в источнике их возникновения, поэтому приходится использовать другие методы борьбы с этими шумами (использование звукоизоляции источника, установка глушителей).

Для борьбы с шумами электромагнитного происхождения рекомендуется тщательно уравновешивать вращающиеся детали электромашин (ротор, подшипники), осуществлять тщательную притирку щеток электродвигателей, применять плотную прессовку пакетов трансформаторов и т.д.

Следующим способом снижения шума является изменение направленности его излучения. Этот способ применяется в том случае, когда работающее устройство (машина, агрегат, установка) направленно излучает шум. Примером такого устройства может служить труба для сброса в атмосферу сжатого воздуха. Правильное расположение этой трубы представлено на рис. 17.3. Направленная звуковая волна должна быть ориентирована в противоположную от рабочего места или жилого строения сторону.

Если на территории предприятия расположен один или несколько шумных цехов, то их рекомендуется сосредоточить в одном-двух местах, максимально удаленных от остальных производств. При расположении предприятия на территории города шумные производства должны находиться на значительном удалении от жилых домов. Это мероприятие по борьбе с шумом называется рациональной планировкой предприятий и цехов.

Следующий способ борьбы с шумом связан с уменьшением звуковой мощности по пути распространения шума (звукоизоляция). Практически это достигается использованием звукоизолирующих ограждений, звукоизолирующих кабин и пультов управления, звукоизолирующих кожухов и акустических экранов.


К звукоизолирующим ограждениям относятся стены, перекрытия, перегородки, остекленные проемы, окна, двери. Основная количественная характеристика эффективности звукоизолирующих свойств ограждений – коэффициент звукопроницаемости τ (безразмерная величина), который может быть рассчитан по следующей формуле:


(17.16)

где и – интенсивности прошедшего через ограждение и падающего звука, Вт/м 2 );

и – звуковое давление прошедшего через ограждение и падающего звука, Па.

Используется и другая величина, называемая звукоизолирующей способностью ограждения (R, дБ). Она находится из следующего выражения:


(17.17)

Для практических расчетов звукоизолирующей способности однослойных ограждений применяется формула:

R = 20 Lg (m0f) — 47,5, (17.18)

где m0 – масса 1 м 2 ограждения, кг;

f – частота звука, Гц.

Из формулы (17.18) следует, что звукоизолирующая способность конструкции тем выше, чем больше ее поверхностная плотность (чем тяжелее материал, из которого изготовлена конструкция). Кроме того, звукоизолирующие свойства ограждения возрастают с повышением частоты звука. Однако пользоваться формулой (17.18) для расчета R следует со значительной долей осторожности, так как в ней не учтено влияние жесткости и размеров ограждения. Для корректного расчета R необходимо пользоваться методиками, изложенными в специальной литературе[17].

В качестве материалов для звукоизолирующих ограждений рекомендуется использовать бетон, железобетон, кирпич, керамические блоки, деревянные полотна (для изготовления дверей), стекло и т.д.

Звукоизолирующими кожухами обычно полностью закрывают издающее шум устройство (машину, агрегат, установку и т.д.). Кожухи изготавливают из листового металла (сталь, дюралюминий и т.д.) или пластмассы. Как и в случае звукоизолирующих ограждений, кожухи более эффективно снижают уровень шума на высоких частотах, чем на низких. Так, например, стальной кожух с размером стенки 4х4 м и толщиной стенки 1,5–2 мм обеспечивает снижение шума на частоте f = 63 Гц на 21 дБ, а на частоте f = 4000 Гц – на 50 дБ.

Звукоизолирующие кабины применяют для размещения пультов управления и рабочих мест в шумных цехах. Их изготавливают из кирпича, бетона и подобных материалов или из металлических панелей.

Акустические экраны представляют собой конструкцию, изготовленную из сплошных твердых листов (металлических и т.п.) толщиной 1,5–2 мм, с покрытой звукопоглощающим материалом поверхностью. Эти экраны устанавливаются на пути распространения звука. За ними возникает зона звуковой тени. Основной акустический эффект (снижение уровня шума) достигается в результате отражения звука от этих конструкций.

В производственных помещениях уровень звука существенно повышается из-за отражения шума от строительных конструкций и оборудования. Для снижения уровня отраженного звука применяют специальную акустическую обработку помещения с использованием средств звукопоглощения, к которым относятся звукопоглощающие облицовки и штучные звукопоглотители. Как следует из названия этих материалов, они не отражают шум, а поглощают его. При этом колебательная энергия звуковой волны переходит в тепловую (диссипирует) вследствие потерь на трение в звукопоглотителе. Для звукопоглощения используют пористые материалы (т. е. материалы, обладающие несплошной структурой), так как потери на трение в них наиболее значительны. (И наоборот, звукоизолирующие конструкции, отражающие шум, изготавливают из массивных, твердых и плотных материалов).

Количественной характеристикой звукопоглощающих материалов является коэффициент звукопоглощения а, который определяется выражением:


(17.19)


где — падающая звуковая энергия;


— поглощенная звуковая энергия;


— отраженная звуковая энергия.

Звукопоглощающими называют материалы, у которых величина α превышает 0,2. Примером этих материалов могут служить плиты и маты из минеральной ваты, базальтового и стеклянного волокна, акустические плиты с зернистой или волокнистой структурой типа «Акмигран», «Акминит», «Силак-пор» и др.

Штучные звукопоглотители представляют собой объемные звукопоглощающие тела, изготовленные в виде конуса, куба, параллелепипеда и подвешенные к потолку помещения.

Остановимся на способах борьбы с аэродинамическим шумом. Для этого используют устройства, называемые глушителями шума. Различают абсорбционные, реактивные и комбинированные глушители. В первом из них затухание аэродинамического шума происходит в порах звукопоглощающих материалов, заполняющих глушитель.

Реактивные глушители отражают звуковую энергию обратно к источнику. В комбинированных глушителях снижение шума достигается за счет сочетания поглощения и отражения звука.

Некоторые способы защиты от инфразвука аналогичны способам защиты от шума. К ним следует отнести снижение уровня инфразвука в его источнике, увеличение жесткости колеблющихся конструкций, применение глушителей реактивного типа. Вместе с тем такие известные методы борьбы с шумом, как звукоизоляция и звукопоглощение, малоэффективны при инфразвуке. Значительно более эффективный подход – борьба с инфразвуком в источнике его возникновения.

Как известно, одним из основных промышленных источников инфразвука являются различные тихоходные машины, число рабочих циклов которых не превышает 20 в секунду (двигатели внутреннего сгорания, компрессоры, вентиляторы и т.д.). Если существует техническая возможность повышения быстроходности этих машин, то возможно обеспечить перевод максимума их звуковой мощности в диапазон слышимых частот, после чего применяют описанные выше методы борьбы с шумом.

Для снижения или исключения вредного воздействия ультразвука, передающегося воздушным путем, ультразвуковые установки рекомендуется размещать в специальных помещениях, используя для проведения технологических процессов на них системы дистанционного управления. Большой эффект дает автоматизация этих установок.

Более экономичный способ защиты от воздействия ультразвука заключается в использовании звукоизолирующих кожухов, которыми закрываются ультразвуковые установки, или экранов, располагающихся на пути распространения ультразвука. Эти экраны изготавливают из листовой стали или дюралюминия, пластмассы (гетинакса) либо из специальной резины. Например, применение кожухов на некоторых ультразвуковых установках позволяет снизить уровень ультразвука на 60–80 дБ.

Основные методы защиты от вибрации делятся на две большие группы:

§ снижение вибрации в источнике ее возникновения;

§ уменьшение параметров вибрации по пути ее распространения от источника.

Для того чтобы снизить вибрацию в источнике ее возникновения, необходимо уменьшить действующие в системе переменные силы. Это достигается заменой динамических технологических процессов статическими (например, ковку и штамповку рекомендуется заменять прессованием, операцию ударной правки – вальцовкой, пневматическую клепку – сваркой и т.д.). Рекомендуется также тщательно выбирать режимы работы оборудования, чтобы вибрация была минимальной. Большой эффект дает тщательная балансировка вращающихся механизмов, применение специальных редукторов с низким уровнем вибрации и другие мероприятия.

Важно, чтобы собственные частоты вибрации агрегата или установки не совпадали с частотами переменных сил, вызывающих вибрацию. В противном случае может возникнуть резонанс, в результате чего резко увеличится амплитуда колебаний (виброперемещение) устройства, что может привести к его поломке или разрушению. Исключить резонансные режимы работы оборудования и тем самым снизить уровень вибрации можно либо путем изменения массы и жестокости вибрирующей системы, либо установлением нового режима работы агрегата.

Следующий метод защиты от вибрации называется вибродемпфированием (вибропоглощением), под которым понимают превращение энергии механических колебаний системы в тепловую. Это достигается использованием в конструкциях вибрирующих афегатов специальных материалов (например, сплавов систем медь–никель, никель–титан, титан–кобальт), применением двухслойных материалов типа сталь-алюминий, сталь-медь. Хорошей вибродемпфирующей способностью обладают и традиционные материалы: пластмассы, дерево, резина. Значительный эффект достигается при нанесении на колеблющиеся детали вибропоглощающих покрытий. Пример таких покрытий – различные упруговязкие материалы, такие, как пластмасса или резина, а также различные мастики. Известными вибропоглощающими мастиками являются так называемые «Антивибриты» («Антивибрит–2», «Антивибрит–3»), изготавливаемые на основе эпоксидных смол.

Виброгашение, или динамическое гашение, колебаний достигается в первую очередь установкой вибрирующих машин и механизмов на прочные массивные фундаменты. Массу фундамента рассчитывают таким образом, чтобы амплитуда колебаний его подошвы была в пределах 0,1–0,2 мм, а для особо важных сооружений – 0,005 мм.

Если какой-либо агрегат колеблется с определенной частотой, то снизить его вибрацию можно установкой на агрегат динамического виброгасителя – самостоятельной колебательной системы, обладающей массой т и жесткостью q. При этом для вибрации защищаемого агрегата его частота колебаний f и частота колебаний виброгасителя f0 должны находиться в следующем соотношении:


(17.20)

Закрепленный жестко на защищаемом агрегате виброгаситель колеблется в противофазе с основной установкой, в результате чего снижается уровень вибрации. Однако он действует на определенной (фиксированной) частоте колебаний, соответствующей резонансному режиму работы. При изменении частоты колебаний основной установки резонанс между ней и виброгасителем пропадает, в результате резко снижается эффективность его работы.

Достаточно эффективным способом защиты является виброизоляция, которая заключается в уменьшении передачи колебания от вибрирующего устройства к защищаемому объекту помещением между ними упругих устройств. Эти устройства называются виброизоляторами. Эффективность виброизоляторов характеризуется коэффициентом передачи (КП), который рассчитывается по следующей формуле:


КП = , (17.21)


где – амплитуда силы, передаваемой на несущую конструкцию;


– амплитуда переменной силы, создаваемой вибрирующим агрегатом.

В качестве виброизоляторов используют пружинные опоры либо упругие прокладки из резины, пробки и т.д. Возможно использование сочетания этих устройств (комбинированные виброизоляторы).

Для уменьшения вибрации ручного инструмента его ручки выполняются с использованием упругих элементов – виброизоляторов, снижающих уровень вибрации.

Рассмотренные выше методы защиты от шума, инфра- и ультразвука, а также от вибрации относятся к коллективным методам защиты.

К средствам индивидуальной защиты от шума относятся противошумные вкладыши, наушники и шлемы. Противошумные вкладыши вставляют в слуховой канал и перекрывают его. В зависимости от частоты они обеспечивают снижение уровня шума на 5–20 дБ. Их изготавливают из специального ультратонкого волокна, а также из резины или эбонита. Это наиболее дешевые и компактные индивидуальные средства защиты слуха человека, однако они могут вызвать раздражение слухового прохода.

Акустические характеристики противошумных наушников более эффективны, чем вкладышей. В зависимости от частоты они обеспечивают снижение шума на 7–47 дБ. Наиболее эффективно наушники обеспечивают защиты на высоких частотах.

При очень высоких уровнях шума (более 120дБ) применяют шлемы.

В качестве индивидуальных средств защиты от контактного действия ультразвука можно рекомендовать применение специальных инструментов с изолированными ручками (покрытыми пористой резиной или поролоном), а также использовать резиновые перчатки.

К средствам индивидуальной зашиты от вибраций относятся специальные рукавицы, перчатки и прокладки. Для защиты ног используют виброзащитную обувь, снабженную прокладками из упругодемпфирующих материалов (пластмассы, резины или войлока). С целью профилактики вибрационной болезни персонала, работающего с вибрирующим оборудованием, необходимо строго соблюдать режимы труда и отдыха, чередуя при этом рабочие операции, связанные с воздействием вибрации, и без нее.

Для измерения уровня шума, инфра- и ультразвука, а также вибрации используют различные приборы, позволяющие определять основные характеристики виброакустических факторов. Принципиальная схема шумомера представлена на рис. 17.4.


В шумомерах используют конденсаторные или пьезоэлектрические микрофоны, преобразующие звуковые колебания в электрические, которые затем усиливаются, проходят через корректирующие фильтры и выпрямитель и поступают на прибор – регистратор.

Среди отечественных приборов для измерения шума можно указать ВШВ-003, позволяющий проводить измерения в частотном диапазоне 10–20 000 Гц (уровень измеряемого звука 25– 140 дБ), и ШВК-1 с фильтрами ФЭ-2 (уровень измеряемого звука 30–140дБ в частотном диапазоне 2–40 000 Гц.). Как следует из их частотных характеристик, эти приборы захватывают и инфразвуковой диапазон.

[17] Хорошим пособием для расчета может служить специальный справочник «Средства защиты в машиностроении»/ Под ред. С.В.Белова. – М.: Машиностроение, 1989. – 368 с.

В отдельных случаях для уменьшения колебаний фундаментов машин или снижения уровня вибраций строительных конструкций зданий переустройство фундамента целесообразно выполнять с применением специальных мероприятий, направленных на изменение параметров его колебаний. Наряду с необходимостью уменьшения амплитуды колебаний часто возникает потребность отстройки частоты собственных колебаний фундамента от рабочей частоты колебаний машины или от частоты колебаний строительных конструкций.

Наибольшее применение для указанных целей получил способ, предложенный Н.П. Павлюком и А.Д. Кондиным, заключающийся в том, что к фундаменту присоединяется бетонная или железобетонная плита, расположенная на верхнем слое грунта [103]. При этом присоединенная плита может быть очень жесткой и конечной жесткости, а сочленение ее с фундаментом жестким, шарнирно неподвижным, шарнирно подвижным и упругим.

Выполненные исследования [112, с. 35—41; 113; 114, с. 346—347] показали, что присоединение плит массой 5—10 % массы фундамента позволяет существенно снизить его колебания, в то время как увеличение массы самого фундамента на указанную величину практически не сказывается на изменении амплитуды колебаний. Эффективность применения плит для подавления вертикальных колебаний на порядок ниже эффективности их применения для снижения уровня горизонтальных и вращательных колебаний. Наибольшее гашение вибраций способом присоединения плит к фундаменту достигается при жесткой заделке и наименьшее — при шарнирно неподвижной и шарнирно подвижной. Чем выше по отношению к центру фундамента расположены плиты, тем существеннее их влияние на снижение амплитуд колебаний в зоне низких частот. Влияние гибкости в резонансных зонах существенно для вертикальных колебаний и несущественно для горизонтальных.

Исследование влияния присоединенных плит на вертикальные колебания фундамента / Швец Н.С., Аграновский Г.Г., Седин В.Л., Андрианов И.В. — Изв. вузов. Стр-во и архитектура, 1980. № 6. с. 14—17

Динамика оснований, фундаментов и подземных сооружений: Материалы 5-й Всесоюз. конф., Ташкент, 1981/Госстрой СССР, АН УзбССР, НИИОСП

Увеличение площади плит или жесткости их основания (уплотнение, замена грунта, применение свай и т.п.) способствует одновременному повышению всех резонансных частот системы фундамент—присоединенные плиты. Наибольшая отстройка резонансных частот достигается при жестком сочленении плиты с фундаментом. Изменение массы плиты для отстройки резонансов сказывается незначительно. Присоединение плит, как правило, приводит к повышению собственных частот колебаний фундамента. Вследствие увеличения высоты расположения плит относительно подошвы фундамента можно повысить собственную частоту горизонтальных колебаний системы.

Присоединение плит приводит также к появлению новых резонансов системы, однако они лежат существенно выше резонансов одиночного фундамента. При динамическом расчете системы фундамент — плиты последние можно считать жесткими и не учитывать демпфирование.

Наиболее рационально присоединенные плиты использовать для уменьшения вибраций фундаментов под машины, создающие горизонтальные низкочастотные динамические нагрузки [100]. Несмотря на высокую эффективность жесткого сочленения, практическое осуществление его затруднительно. Кроме того, жесткое сочленение можно использовать только в плотных грунтах, где разность осадок фундамента и присоединенных плит несущественна. Поэтому к применению рекомендуются шарнирные соединения. Упругую связь целесообразно использовать только в тех случаях, когда устройство шарнирного сочленения по тем или иным причинам невозможно. В обоих случаях присоединенные плиты следует располагать выше центра тяжести установки (фундамент и машина).

Киричек Ю.А., Захваткин М.П., Беркутов B.C. Изучение вибрационного состояния фундаментов дымососов рециркуляции газов энергоблоков 800 МВт. — Энергетик, 1982, №5, с.11—12

Конструктивные схемы узлов сочленения присоединенной плиты и фундамента показаны на рис. 8.14. Жесткое соединение (рис. 8.14, а) может быть выполнено путем сварки выпусков арматуры плиты и фундамента с последующим омоноличиванием стыкового участка. Для лучшего сцепления с бетоном внутреннюю поверхность плит следует изготовлять шероховатой, для чего длинной рейкой нарезают неглубокие (3—5 мм) борозды. Шарнирные (рис. 8.14, б) и шарнирно-подвижные (рис. 8.14, в) соединения осуществляются с помощью закладных деталей, к которым приваривают металлические листы, соединенные между собой стальным стержнем из высокопрочной стали. Для предохранения от коррозии эти соединения после выполнения рекомендуется заасфальтировать.

1 — фундамент; 2 — присоединенная плита; 3 — выпуски арматуры; 4 — замоноличенный участок; 5 — стержень; 6 — закладные детали; 7 — промежуточное звено; 8 — бетонное заполнение

Фундаменты машин с динамическими нагрузками являются источниками распространяющихся в грунте волн, оказывающих вредное влияние на расположенные вблизи конструкции зданий и сооружений, объекты с оборудованием и аппаратурой, чувствительной к вибрациям, а также жилые здания.

Вибрации, распространяющиеся от фундаментов машин, могут вызвать неравномерные осадки фундаментов и дополнительные напряжения в расположенных вблизи зданиях и сооружениях, что приводит к образованию в них трещин и даже к их разрушению, влияет на работу некоторых машин (например, точных станков), измерительной аппаратуры и пр.

Наибольшее влияние на колебания конструкций расположенных вблизи зданий и сооружений оказывают волны, распространяющиеся в грунте от фундаментов низкочастотных машин (с частотой 400 мин –1 и менее) и возбуждающие колебания с частотами, близкими к частотам собственных колебаний зданий. Колебания от машин со средней (более 400 мин –1 ) и высокой (более 1500 мин –1 ) частотой являются, как правило, менее опасными для соседних сооружений, что обусловлено, во-первых, отсутствием условий возникновения резонансных колебаний зданий, а во-вторых, более интенсивным затуханием высокочастотных колебаний с расстоянием при их распространении в грунте.

Колебания от машин ударного действия (кузнечных молотов, копров, формовочных машин литейного производства) могут вызвать значительные осадки грунтов, особенно водонасыщенных песчаных, и, как следствие, деформации конструкций, расположенных в непосредственной близости от них.

Вибрации, распространяющиеся от фундаментов машин, в некоторых случаях могут оказаться вредными, даже если амплитуды колебаний фундаментов не превышают допускаемых. Поэтому при составлении планов размещения оборудования машины с динамическими нагрузками следует располагать на максимально возможном расстоянии от объектов, чувствительных к вибрациям (зданий и помещений, оборудованных станками особо высокой точности или точной измерительной аппаратурой), а также от жилых и общественных зданий.

При назначении безопасных расстояний до объектов, чувствительных к вибрациям, уровень вибраций, распространяющихся в грунте от фундаментов машин, может быть приближенно оценен по формуле

Уровень вибраций, распространяющихся в грунте от фундаментов машин


(9.33)


где Av,h — амплитуда вертикальных (горизонтальных) колебаний грунта на поверхности в точке, расположенной на расстоянии r от оси фундамента-источника волн в грунте; А0,v,h — амплитуда свободных или вынужденных вертикальных (горизонтальных) колебаний фундамента-источника в уровне его подошвы; δ = r/r0 (здесь r0 — приведенный радиус подошвы фундамента-источника, м, равный , где А — площадь подошвы фундамента-источника, м 2 ).

Частоту волн, распространяющихся в грунте, следует принимать равной частоте колебаний фундамента машины.

Расчет амплитуд колебаний, распространяющихся в грунте от фундамента-источника, по формуле (9.33) производится не только в случаях, когда необходимо оценить влияние колебаний фундаментов машин с динамическими нагрузками на другие объекты, но и в тех случаях, когда требуется определить амплитуду соответствующих кинематическому возбуждению колебаний соседних фундаментов машин при групповой их установке в цехе.


Формула (9.33) получена на основе обобщения имеющихся экспериментальных данных, согласно которым амплитуды распространяющихся колебаний при δ ≤ 3 пропорциональны 1/ δ , а при δ ≥ 3 пропорциональны . Формула является ориентировочной, так как не учитывает многие факторы, в частности свойства грунта (его плотность, влажность), характер динамического воздействия и пр.

При повышенных требованиях к точности определения ожидаемых колебаний грунта и сооружений (участки с прецизионным оборудованием, расположенные близко к фундаментам машин, установка в существующих зданиях новых машин с большими динамическими нагрузками и т.д.) следует прогнозировать ожидаемые колебания грунта на основе экспериментальных исследований или по рекомендациям справочника [9].

Для уменьшения уровня распространяющихся колебаний используют различные мероприятия: выбирают наиболее рациональные размеры и конфигурации фундамента, изменяют жесткость основания, соединяют общей плитой несколько фундаментов, применяют активную и пассивную виброизоляцию, динамические гасители колебаний и присоединенные плиты, уравновешивающие противовесы, изменяют частоту вращения машин, регулируют по фазе пуск синхронных двигателей и пр.

Для уменьшения передачи вибраций фундаменты машин с динамическими нагрузками, как правило, должны отделяться от смежных фундаментов здания, сооружения и оборудования сквозным швом. Расстояние между боковыми гранями фундаментов машин и смежных фундаментов конструкций должно быть не менее 100 мм. Устройство зазора между фундаментами машин и фундаментами (надземными конструкциями) здания или фундаментами смежного оборудования особенно важно для низкочастотных машин периодического действия и машин с ударными нагрузками. Для уменьшения амплитуд колебаний фундаментов низкочастотных машин могут быть использованы также следующие мероприятия:

  • – повышение жесткости основания фундамента увеличением его подошвы в направлении действия горизонтальной нагрузки, устройством свайного фундамента (при вертикальных нагрузках), химическим закреплением грунта, устройством подушки из более жесткого грунта;
  • – устройство общего фундамента под несколько машин, соединение фундамента машины с бетонной подготовкой пола и пр.

При технико-экономическом обосновании для уменьшения вибраций фундаментов под машины, создающие горизонтальные низкочастотные (с частотой колебаний менее 6 Гц) динамические нагрузки, возможно применение железобетонных плит, соединенных с фундаментом.

Виброизоляция может быть применена для фундаментов с импульсными нагрузками — кузнечных молотов (для молотов с массой падающих частей более 10 т она является обязательной), прессов, для фундаментов высокочастотных машин периодического действия, а также некоторых средне- и низкочастотных машин, за исключением горизонтальных компрессоров, лесопильных рам и некоторых других.

Для уменьшения колебаний зданий и сооружений, расположенных вблизи фундаментов машин с динамическими нагрузками, следует стремиться к тому, чтобы основные частоты собственных колебаний зданий и их несущих конструкций отличались от частот колебаний, распространяющихся в грунте, не менее чем на 20 %. Частоты собственных колебаний зданий могут быть рассчитаны при этом в соответствии с существующими нормативными документами по расчету конструкций зданий на динамические нагрузки [4].

С целью предотвращения развития осадок и деформаций фундаментов зданий и сооружений, расположенных вблизи источников колебаний, в результате длительного действия вибраций при проектировании фундаментов зданий и сооружений рекомендуется выполнять следующее условие:


(9.34)

где р — среднее статическое давление на основание фундаментов зданий или сооружений; γc1 — коэффициент условий работы грунтов основания, принимаемый по табл. 9.1; R — расчетное сопротивление основания фундаментов здания или сооружения.

Справочник проектировщика. Динамический расчет сооружений на специальные воздействия. Под ред. В.Г. Коренева, И.М. Рабиновича

Шарнирное присоединение железобетонной плиты было применено также при реконструкции массивного фундамента под дымосос рециркуляции газов к турбоагрегату мощностью 800 тыс. кВт [100] для отстройки собственной частоты колебаний фундамента от рабочей частоты машины (рис. 8.16). Присоединению плиты предшествовало устройство по периметру фундамента на всю его высоту железобетонной обоймы толщиной 0,5 м, предназначенной для повышения жесткости деформированного фундамента.

Киричек Ю.А., Захваткин М.П., Беркутов B.C. Изучение вибрационного состояния фундаментов дымососов рециркуляции газов энергоблоков 800 МВт. — Энергетик, 1982, №5, с.11—12

1 — дымосос с электродвигателем; 2 — фундамент, усиленный обоймой; 3 — шарнирное соединение; 4 — присоединенная плита; 5 — бетонный пол

Определенная по расчету площадь плиты составила 24,6м 2 при высоте 0,5 м. Плита была устроена с одной стороны фундамента и связывалась с обоймой по схеме, показанной на рис. 14, б. Армирование плиты осуществлено двумя сварными сетками из арматуры класса A-II диаметром 14 мм с шагом 200 мм. После бетонирования бетоном марки М300 и набора им прочности закладные детали обоймы и плиты были объединены стержнем диаметром 30 мм из высокопрочной стали. Шарнирное соединение после выполнения сварки было залито раствором битума заподлицо с поверхностью плиты.

Другим эффективным способом регулирования колебаний фундаментов низкочастотных машин, работающих в дорезонансном режиме, является объединение 1 массивных заглубленных фундаментов тонкой лежащей на упругом основании плитой [114].

Динамика оснований, фундаментов и подземных сооружений: Материалы 5-й Всесоюз. конф., Ташкент, 1981/Госстрой СССР, АН УзбССР, НИИОСП

1 А.с. 881208 (СССР). Фундамент под машины/Ю.А. Киричек, ГХ. Аграновский, Н.С. Швец. — Заявл. 05.03.1980, № 2890283/29-33, опубл. в Б.П., 1981, № 42.

Вследствие конструктивного "ужесточения" системы в среднем на 30—40 % повышаются значения собственных частот и в результате увеличения степени отстройки от резонанса значительно уменьшается интенсивность колебаний фундаментов. В области высоких частот введение дополнительной связи между фундаментами может приводить как к улучшению, так и к ухудшению вибрационного состояния в зависимости от того, способствует ли связь отстройке от резонанса или наоборот.

При объединении фундаментов тонкой плитой появляется возможность путем подбора параметров связи использовать так называемое явление антирезонанса, когда в промежутке между двумя собственными частотами фундамент остается практически неподвижным. Однако этот эффект динамического гашения колебаний можно использовать, лишь применяя специальные конструктивные решения, позволяющие регулировать динамические характеристики фундаментов путем изменения жесткости связи. При этом требуется строгая настройка системы.

Динамический расчет группы связанных плитой фундаментов (рис. 8.17) сводится к решению системы алгебраических уравнений с помощью ЭВМ. Для случая одинаковых фундаментов под однотипные машины получены формулы» позволяющие определять значения собственных частот и амплитуд вынужденных колебаний [114, с. 323—325].

Динамика оснований, фундаментов и подземных сооружений: Материалы 5-й Всесоюз. конф., Ташкент, 1981/Госстрой СССР, АН УзбССР, НИИОСП

1 — фундамент; 2, 3 — основная и дополнительная плиты; 4 — шарнирная связь; 5 — элементы переменной жесткости, состоящие из пружин 8 и фиксаторов 9; 6 — пол; 7 — засыпка из сыпучего материала

Объединение группы фундаментов тонкой плитой не требует значительных материальных затрат и в то же время является довольно эффективным средством для подавления колебаний. В качестве связи наиболее целесообразно использовать бетонный пол промышленной площадки, если на нем не предусмотрено расположение виброчувствительного оборудования, или постоянное пребывание обслуживающего персонала. Единственное требование при этом заключается в обеспечении надежного контакта плиты с фундаментом. Без таких специальных конструктивных мероприятий, как увязка арматуры плиты и фундамента, применение бетона на расширяющихся цементах в узле примыкания плиты к фундаменту не обойтись, поскольку возникающие в сочленении трещины сводят к минимуму ожидаемый эффект. Для фундаментов подвального типа в качестве связи могут использоваться плиты перекрытий, опирающиеся на фундаменты, либо стержневые конструкции, опирающиеся на верхнюю грань фундаментов [103].

При реконструкции действующих предприятий объединение группы фундаментов под машины можно осуществлять как мероприятие, позволяющее вскрыть дополнительные резервы по уменьшению вибраций. При этом фундаменты машин, совершающих дорезонансные колебания, в отдельных случаях можно объединять без динамического расчета, поскольку снижение интенсивности колебаний заведомо обеспечено.

Швец В.Б., Феклин В.И., Гинзбург Л.К. Усиление и реконструкция фундаментов

Современные сооружения все чаще возводятся на строительных площадках, подвергаемых вибрационным воздействиям, в том числе на земле, примыкающей к землеотводу под метро или железную дорогу. Такие источники становятся причинами для появления колебательных движений определенных конструктивных элементов зданий, значительно превышающих определенные уровни, разрешенные для людей. Чтобы минимизировать эти проявления, применяется виброизоляция фундамента.

Виброизоляция фундамента

Источники вибраций и их основные характеристики

Основными источниками, создающими вибрацию в комнатах различного предназначения, считаются транспортные средства и промышленные агрегаты, способные создавать во время работы существенные нагрузочные воздействия динамического характера, способствующие появлению вибрирования в почвенном составе с дальнейшим переходом на элементы сооружения.

Кроме того, такие проявления зачастую становятся причиной образования так называемого «вторичного» шумового эффекта в здании. Следует заметить, что разрешенный уровень вибрирования может находиться в пределах разрешенных норм, но шум вторичной степени создает дискомфортные ощущения проживающим.

Для сооружений больше всего неблагоприятных проявлений создают следующие источники:

  • метрополитен;
  • трамвайные пути;
  • железнодорожное полотно.

Исследовательскими путями доказано, что уровень колебаний с постепенной удаленностью от источника, образующего возмущение, постепенно затухают, но скоростной режим данного процесса во многом зависим от многочисленных условий на путти распространения.

Инженерное и технологическое оборудование

К ним относятся:

  • вариант прокладки рельсов;
  • параметры толщины тоннельных стен;
  • характеристики почвенного состава;
  • заглубленность и тип фундаментной основы;
  • конструктивные особенности строящегося объекта.

В случае, если объект располагается близко от рельсовых путей, вибрация в его помещениях способна превысить нормативные значения, утвержденные нормативными документами, в десять раз, что составляет разницу в 20 дБ. Если рассматривать спектральный состав таких вибраций, то в нем преобладают октавные полоски, среднегеометрическое частотное значение которых достигает 31.5 и 63 Гц.

Источником вибрации можно считать инженерное и технологическое оборудование, устанавливаемое в зданиях. При составлении проекта приходится принимать в расчет тот факт, что такое оборудование является причиной вибрации несущих стен, вызывая сверхнормативные шумовые эффекты.

Примерами такого оснащения являются:

  • вентиляционные системы;
  • кондиционеры;
  • водопроводные и отопительные коммуникации;
  • лифты;
  • трансформаторные подстанции.

По своему происхождению вибрационные проявления бывают:

  • механическими. Создаются неуравновешенными и находящимися в движении массами, ударными явлениями, стуком в зазорных местах;
  • аэрогидродинамическими. Источником является работающая компрессорная установка, образующиеся вихри в вентиляторах и насосах.

Материалы, используемые для виброизоляции

Изолировать вибрацию возможно, как в источнике, создаваемом помехи, так и непосредственно в ее приемнике. Предпочтительней считается первый вариант, для решения которого имеется несколько способов. К сожалению, в большинстве случаев решение вопроса таким способом не представляется возможным.

Материалы, используемые для виброизоляции

В подобной ситуации проблему приходится решать на стадии проектирования объекта, предусматривая изолирование его от вибраций. Одним из самых результативных вариантов оснащения виброизоляцией объекта является возведение его на упругие полиуретановые опоры из эломастеров – Sylomer.

Пользуясь такими материалами, можно разработать массу вариантов приспособлений виброизоляции:

  • полноплоскостную;
  • ленточную;
  • точечную.

Используемый с этой целью материал представлен аналогом пружин, конструктивно соединенных с амортизаторами. Он имеет оптимальное соотношение параметров жесткости динамического и статистического характера, отличается ячеистым структурным строением и способностью поглощать в влагу в определенных количествах. Вода оказывает незначительное воздействие на оба показателя жесткости, даже если материал полностью находится в жидкости. Повреждения его исключены, грязь внутрь не попадает из-за небольшого размера пор.

Второй вариант материала (Sylodyn) представлен пружинами без амортизирующих приспособлений. Его закрытая пористая структура позволяет использовать такой виброизолятор даже при неглубоком залегании грунтовых вод.

Конструкции виброизоляций объектов

Опоры на указанных материалах бывают точечными, ленточными и полноплоскостными.

Конкретный вариант определяется с учетом требуемых собственных частот и конструктивных особенностей сооружения.

Примыкающие элементы, к которым относятся стены и потолочные перекрытия, изготавливаются из монолитного железобетона или сборных бетонных элементов.

В первом случае опорную площадь используют вместе опалубочной системы несъемного типа. На матах же устраивается и арматурный каркас. Если применяются мягкие опорные материалы, их площадь увеличивается подкладками, чтобы стальные арматурные прутья не продавливали маты. Блоки, изготовленные в заводских условиях, просто выставляются на опорный материал.

Перекрытия на опорах с элементом упругости выполняются армированными плитами. Чтобы полностью изолировать сооружение от вибрационного воздействия, следует все стены, располагающиеся над упругой опорой и соприкасающиеся с почвенным составом, отделить упругой прокладкой.

Достоинством полноплоскостной опоры считается легкость монтажа и незначительные риски появления акустических проявлений в результате ошибочных действий, допущенных во время укладки матов. Для лучшей эффективности основа делается максимально жесткой. Нагрузочные усилия, воздействующие на объект, распределяются на большую площадь за счет полноплоскостной опоры, подаются в основание. Особых конструкций, перераспределяющих нагрузки на ленточную или точечную опору, не требуется.

Легкость монтажа и незначительные риски

При устройстве такой виброизоляции фундамента под промышленное оборудование получается в большей степени избегать структурных вибрирований пола.

Использование ленточных опор рекомендовано в ситуациях, когда происходит линейная передача нагрузочного усилия. Упругий слой располагается как возле фундаментной основы, так и под защищаемым межэтажным перекрытием (1 – 2 этаж). Непосредственно в таком случае появляется возможность сэкономить на объемах используемого для виброизоляции материала. В связи с тем, что цокольная часть и подвальное помещение в подобной ситуации от вибраций не защищены, применять материал по всему периметру фундаментной основы необходимости нет.

Использование упругих разделений точечных видов обосновывается конструкциями с фундаментными основами из свайных или столбчатых опор. Прилагающаяся нагрузка окажется определяющим фактором в выборе варианта материала. Для точечной виброзащиты фундаментов под оборудование используют наиболее плотный тип материала.

Читайте также: