Фибра в бетоне испытания

Обновлено: 26.04.2024

Ключевые слова: техногенное сырье, композиционное вяжущее, фибробетон.

Klyuyev S.V.

PhD, Belgorod State Technological, University named after Shukhov

EXPERIMENTAL RESEARCH OF DESIGN OF REINFORCED FIBER CONCRETE WITH DIFFERENT TYPES OF FIBERS

Abstract

Acute questions of steelfiber using for disperse-reinforced fine-grained concrete are considered in the article. Researchers of steelfiber concrete patterns are held.

Keywords: technogenic raw materials, composite bonding, fiber-reinforced concrete.

За последние годы в России значительно выросли темпы строительства и ввода в эксплуатацию сооружений различного назначения. Дальнейший рост объемов строительства, что особенно актуально ввиду реализации приоритетного национального проекта «Доступное и комфортное жилье – гражданам России», немыслим без значительного увеличения потребления такого важного строительного материала, как бетон. В связи с этим на рынке строительных материалов возрастает роль мелкозернистого бетона. Расширяется и номенклатура применения мелкозернистого бетона [1 – 15].

В настоящее время он используется для получения стеновых и отделочных материалов, производства малых архитектурных форм, элементов мощения, сборных конструкций, закладочных смесей и т.д.

Тормозится использование мелкозернистого бетона отсутствием сырьевой базы высококачественных природных песков. В абсолютном большинстве пески представлены мелко- и тонкозернистыми разновидностями, которые не удовлетворяют требованиям нормативных документов. Использование подобных заполнителей бетона приводит к перерасходу цемента. При этом сложно достичь проектных характеристик по прочности, морозостойкости, износостойкости и деформативным характеристикам [16 – 32].

Современное строительство неразрывно связано с задачами, имеющими отношение к повышению эффективности строительного производства, снижению стоимости и трудоемкости технологических процессов, экономному использованию материальных и энергетических ресурсов, применению новых прогрессивных материалов.

Дисперсно-армированные бетоны являются одним из перспективных конструкционных материалов. Они представляют собой одну из разновидностей обширного класса композиционных (композитных) материалов, которые в настоящее время все более широко применяются в различных отраслях промышленности. Дисперсное армирование осуществляется волокнами-фибрами, равномерно рассредоточиваемыми в объеме бетонной матрицы. Для этого используются различные виды металлических и неметаллических волокон минерального или органического происхождения. В данной работе рассмотрено применение стальной фибры для мелкозернистого бетона.

Конструкции из сталефибробетона широко используются во многих областях строительства и с успехом пользуются в таких странах как ЮАР, Германия, Япония, США и др. Однако, в нашей стране этому материалу уделяется мало внимания. До сих пор нет единой теории его прочности и деформативности.

Установлено, что применение в качестве мелкого заполнителя полифракционных отсевов дробления скальных пород, позволяет экономить до 80 кг цемента на 1 м 3 бетона. Использование же специально приготовленного техногенного песка экономически целесообразно для бетонов марок 300 и выше, так как приводит к экономии цемента до 50 кг на 1 м 3 бетона.

В отличие от природного песка, форма зерен отсевов дробления более развита: имеются многочисленные сколы поверхностей, заостренные и выщербленные места. Эта особенность способствует слипанию частиц при прессовании или виброуплотнении в прочный монолит (по принципу зацепления). И, наконец, некоторые из присутствующих, помимо кварца, минералов способны самостоятельно участвовать в гидротермальных реакциях с вяжущим, образуя соединения и внося тем самым свой вклад в формирование структуры новообразований. Шероховатость заполнителей тесно связана с водопоглощением породы: чем выше шероховатость, тем больше водопоглощение. По смачиваемости поверхности заполнителя можно судить о его активности. Чем активнее поверхность заполнителя, тем толще слой притягиваемой и удерживаемой ею воды. При низком значении Ц/В большая толщина удерживаемой воды должна уменьшать расслоение цементного теста и этим повышать адгезию в растворе или бетоне. При высоком значении Ц/В невозможно образование толстой пленки жидкой фазы на поверхности заполнителя, так как соотношение толщины пленок жидкой фазы вокруг зерен заполнителя и цемента будет определяться соотношением их гидравлической активности. При высокой вязкости цементного теста (из-за повышенного значения Ц/В) и песка с высокой водоудерживающей способностью может иметь место неполное смачивание поверхности заполнителя и, в результате, частичное прилипание цементного теста к поверхности заполнителя, что значительно снизит величину сцепления между ними. Поэтому для получения высокомарочных бетонов лучше применять мелкий заполнитель из хорошо смачиваемых пород, которые мало удерживают воды своей поверхностью.

В связи с этим проводились экспериментальные исследования в лабораториях кафедры “Строительного материаловедения, изделий и конструкций” БГТУ им. В.Г. Шухова. Проводимые исследования связаны с изучением поведения бетонных элементов, дисперсно-армированных стальными волокнами.

Для изготовления опытных образцов использовались отсев дробления кварцитопесчаника и Нижне-Ольшанский песок. Для оценки качества применяемых заполнителей и наполнителей были изучены их основные физико-механические свойства (табл. 1).

Таблица 1 – Физико-механические характеристики заполнителя

Таблица 2 – Химический состав цемента

Марка цемента Химический состав, % по массе
SiO2 Al2O3 Fe2O3 CaO MgO SO3 R2O CaO2 ппп
Цем I 42,5Н 22,49 ±0,5 4,77 ±0,3 4,40 ±0,1 67,22 ±1,0 0,43 ±0,03 2,04 ±0,01 0,20 ±0,05 0,20 ±0,05 1,5 ±0,5

Затворение бетонов производилось водой, удовлетворяющей требованиям ГОСТ 23732 – 79 «Вода для бетонов и растворов».

В качестве стальной фибры была принята фибра анкерная и в виде елочки. Анкерная фибра – это стальная фрезерованная фибра. Фибра производится из стальных заготовок (слябов) путем фрезерования по технологии немецкой фирмы Vulkan Harex. Благодаря высокой температуре процесса резки фибра имеет характерный синеватый оттенок – окисный слой, препятствующий в процессе ее хранения образованию и развитию коррозии.

Длина фибры – 32 мм, ширина – 3,8 мм. Геометрические параметры фрезы обеспечивают: получение треугольного сечения фибры, две поверхности которого шероховатые и одна – гладкая, а также образование на концах фибры зацепов длиной 2 мм. Фибра имеет скручивание по продольной оси. Перечисленные геометрические особенности фрезерованной фибры способствуют значительному увеличению «сцепляемости» фибры с бетоном, что в свою очередь весьма существенно влияет на эксплуатационные характеристики сталефибробетона. Фибра в виде «елочки» – 25 мм длинной и диометром 0,4 мм.

Фибробетонную смесь готовили в два этапа. Вначале в растворосмесителе получали бетонную смесь. Первоначально производилось смешивание сухим компонентов, затем небольшими порциями затворялась вода. Перемешивание длилось 5 – 10 минут в зависимости от консистенции смеси.

На втором этапе выполнялось армирование. Для этого экспериментальным путем определяли количество бетонной смеси, необходимое для формования одного образца. Далее в приготовленную бетонную смесь добавлялась фибра, заранее отмеренная согласно проценту армирования.

После этого смесь перемешивалась механизированным способом и в ручную укладывалась в очищенные формы тщательно смазанные маслом. Уплотнение фибробетонной смеси выполнялось на вибростоле до появления цементного молока.

Испытания образцов для определения прочности на сжатие, на растяжение при изгибе и модуля упругости проводились на универсальной машине УММ-10 по стандартной методике.

Результаты экспериментов и параметры опытных образцов приведены в табл. 3.

фибра для бетона

Базальтовая фибра для бетона - дисперсное армирование бетонов базальтовыми волокнами

Технология дисперсного армирования бетонов фиброй становится все более популярной. Её актуальность обусловлена прежде всего тем, что засчет этого можно значительно повысить физико – механические свойства бетонных конструкций. Фибра для бетона является так называемой «дисперсной арматурой», её волокна сцепляются с бетоном и армируют его по всему объему, благодаря чему повышаются прочностные характеристики конструкции. Получившийся композиционный материал называется – фибробетон.

Доставка базальтового фиброволокна от 100 кг в любой регион напрямую с завода без наценок

Основные и наиболее распространенные виды фибры для бетона:

  1. Базальтовая фибра
  2. Металлическая фибра(стальная,стальная анкерная, волновая и т.д.)
  3. Полипропиленовая фибра
  4. Полиамидная фибра
  5. Углеродная фибра

Влияние базальтовой фибры, на характеристики бетона

волокна базальтовой фибры в бетоне

Базальтовая фибра для бетона производится из горных вулканических пород, посредством их расплава при высокой температуре, таким образом становится ясно, что этот материал, изготавливается из высокопрочного природного материала, который не боится воздействия воды, не подвержен коррозии, имеет высокую огнестойкость, и стойкость к щелочам и химикатам.

Базальт имеет схожую структуру с цементным камнем и обладает природной естественной шероховатостью, что способствует высокому сцеплению волокон с бетонной матрицей.

Базальтовые волокна превосходят по прочности стальные и полипропиленовые, а засчет низкой плотности, по сравнению со стальными, их количество в бетоне будет значительно больше, также волокна базальта имеют меньший коэффициент удлинения чем полипропиленовые, что гораздо лучше препятствует образованию трещин в бетоне, во время усадки, и при воздействии высоких нагрузок.

Испытания по определению воздействия базальтовой фибры на структуру бетона

В ходе испытаний бетонов армированных базальтовой фиброй было установлено:

  1. На границе цементного камня и волокон базальта, проходит хемосорбционное взаимодействие с появлением вновьобразовывающихся новообразований, относящихся к низкоосновным гидросиликатам кальция.
  2. Базальтовая фибра состоит из еще более тонких волокон. На их поверхности в местах дефектов образующихся от механических воздействий происходит процесс кристаллизации, появляется сеть тонких гексагональных пластин и игольчатых кристаллов, которые срастаются со сферическими зернами цементной системы, дополнительно усиливая действие волокна как дисперсной арматуры. Волокно имеет полую структуру в торцевую часть которой проникают продукты гидратации с образованием кристаллических сростков. Благодаря этому происходит увеличение прочности цементного камня.

фибра в бетоне под микроскопом

Фибра в бетоне вступает в такую реакцию с камнем цемента, что становится с ним единым целым, придавая ему тем самым дополнительные прочностные характеристики.

Структура базальтофибробетона схожа с бетоном, армированным металлической сеткой, но базальтофибробетон намного прочнее, так как базальтовая фибра в бетоне обладает более высокой степенью дисперсности в армируемом камне, бетон, который армирован базальтовой фиброй, может выдерживать большие деформационные напряжения, засчет того, что волокно не подвержено пластическим деформациям при напряжении, а его модуль упругости выше чем у стали.

Повышение прочности цементного камня также происходит благодаря влиянию волокон базальта на места концентрации напряжений которые ослаблены из-за структурных дефектов, либо вследствие повышенной пористости.

Результаты испытаний по воздействию базальтовых волокон на прочностные характеристики бетонных конструкций

Влиянием фибры на бетон, его прочностные характеристики и физико – механические свойства, занимаются ученые во многих строительных и научно-исследовательских институтах мира. Так во время проведения работ в НИИЖБ, по изучению влияния базальтовой фибры на мелкозернистый бетон, были сделаны следующе выводы:

  1. Базальтофибробетон при изгибе выдерживает более высокие нагрузки, чем не армированный бетон. При этом разрушение носит упруго-пластичный характер, в то время как неармированный бетон разрушается хрупко.
  2. Доказано экспериментальным путем, что базальтовое волокно снижает усадочные деформации при твердении, особенно на ранних сроках, что способствует повышению сопротивления к восприятию деструктивных напряжений внутри тела бетона при переменном замораживании и оттаивании, а, следовательно,получению бетонов повышенной морозостойкости:
  3. Фибра в бетоне снижает его проницаемость. Марка по водонепроницаемости может достигать значений W16, в зависимости от пропорции и марки бетона. Коэффициент диффузионной проницаемости для хлоридов равен 1х10"9 см2/сек, что соответствует особо плотному бетону:
  4. Срок эксплуатации бетонных изделий и конструкций, армированных базальтовой фиброй увеличивается в два раза, это достигается засчет улучшения физико-технических свойств базальтофибробетона, и увеличенного срока службы.

Заключение о влиянии базальтовой фибры на свойства бетона

Исходя из этого, можно сделать вывод, что базальтовая фибра в бетоне, значительно повышает все его характеристики, и позволяет получить более прочные и надежные конструкции, с увеличенным сроком эксплуатации, благодаря чему достигается значительный экономический эффект, бетонная конструкция армированная базальтовым фиброволокном способна выдерживать более мощные динамические и ударные нагрузки, обладает повышенной коррозионной стойкостью.

Базальтофибробетон характеризуется увеличенной водонепроницаемостью и морозостойкостью, способен дольше выдерживать воздействие высоких температур и открытого огня.

Поверхность бетона армированного базальтовой фиброй имеет повышенный коэффициент истираемости – на 60%.

Добавление базальтового фиброволокна в бетон, повышает его прочность в критический момент на стадии высыхания в первые 2 – 6 часов после усадки и борется с трещинообразованием, вероятность появления усадочных трещин меньше на 95%.

Купить базальтовую фибру в Краснодаре Вы сможете в компании «Энрост». Мы реализуем фибру оптом и в розницу, осуществляем доставку продукции на объект, работаем наличным и безналичным расчетом с НДС. Дополнительную консультацию Вы можете получить, позвонив по нашим телефонам.

Широкая распространенность бетона как строительного материала обусловлена, прежде всего, его высокой прочностью на сжатие, а также долговечностью и удобством в обработке, благодаря которому бетонную смесь можно залить в опалубку и получить изделие любой формы. Смеси на основе цемента также используются для ремонта, отделочных работ, кирпичной кладки.

Состав бетона известен со времен Древнего Рима. В него входят цемент, крупные (щебень, гравий, гранитный отсев и другие материалы) и мелкие заполнители (песок), а также вода. Современная промышленность не стоит на месте. Выпускаются добавки, призванные сделать бетон по-настоящему безупречным строительным материалом.

Современные добавки призваны решать самые разные проблемы. Одни из них позволяют повысить удобоукладываемость, другие обеспечивают возможность работать при низких температурах, увеличивать скорость застывания бетона или повышать его водоотталкивающие характеристики.

Также существуют добавки, назначение которых — нивелировать те недостатки, которые присущи бетону естественным образом.

Выбор конкретных добавок и их сочетаний производится, исходя из назначения бетонного раствора, условий, при которых выполняются бетонные работы, условий эксплуатации готовой конструкции.

Важно!

Большинство современных добавок Cemmix позволяют экономить до 15% цемента в растворе без потери прочности.

Для объемного армирования бетона применяется фибра. О ней пойдет речь в статье.

Для чего нужно армирование

Бетон обладает высокой прочностью на сжатие; на основе этой характеристики разработана классификация бетонов на классы по прочности.

Классификация бетонов на классы по прочности

Однако бетон имеет невысокую прочность при нагрузках на растяжение, изгиб и раскалывание.

Для повышения несущей способности бетонных сооружений используется армирование бетона стальной арматуой, стальными или пластиковыми сетками, каркасами и другими изделиями.

Бетон имеет невысокую прочность при нагрузках на растяжение, изгиб и раскалывание

Применяются готовые сетки и каркасы, либо они монтируются из стержней посредством вязки или сварки. В любом случае, это трудоемкий процесс. Он требует определенной квалификации рабочих. Также стальная арматура увеличивает вес бетонного изделия.

К другим недостаткам бетона относят:

  1. усадку;
  2. образование трещин;
  3. пористую структуру.

Как известно, бетонная смесь приготавливается с добавлением воды. Ее количество в идеале должно составлять примерно 0,3 от количества цемента. Именно такое количество воды необходимо для протекания реакций гидратации, продуктом которых и является бетон. На практике воды обычно добавляют больше. В процессе набора прочности, бетон сначала увеличивается в объеме, затем уменьшается, а также застывает неравномерно. В результате неизбежно появляются трещины. Армирование бетона также позволяет предотвратить этот процесс.

Что касается пористой структуры бетона, обычное армирование ее не меняет. Более плотным делают бетон специальные добавки, прежде всего, те, которые обладают пластифицирующими свойствами, а также объемное армирование. С увеличением плотности бетона повышаются его прочность, водонепроницаемость, долговечность, снижается истираемость.

Что такое объемное армирование

Объемное или дисперсное армирование — это внесение в бетонную смесь коротких отрезков волокна (фибры). Разные виды фибры отличаются друг от друга материалом, формой, длиной, толщиной, конфигурацией сечения, фактурой поверхности.

Армированный фиброй бетон называют фибробетоном.

Армированный фиброй бетон называют фибробетоном

В отличие от традиционной арматуры, фибра распределяется в бетоне равномерно по всему объему, образуя трехмерную структуру, поэтому она фиксирует все трещины на ранних этапах образования. Фибра повышает прочность, плотность, ударную вязкость бетона, прочность на изгиб и разрыв. Фибробетон также не подвержен усадке, он более морозостойкий, водостойкий, жаропрочный, чем бетон без добавок.

В штукатурных растворах применяется фибра длиной от 3 мм, а в тяжелых бетонах — фибра с более длинными волокнами.

Виды фибры

Фибру изготавливают из таких материалов, как сталь, полипропилен, полимеры, базальт, стекловолокно.

Все виды фибры совместимы с добавками для бетона.

Стальная фибра

Нарезается из стальной проволоки. Ее диаметр составляет 0,7–1,2 мм, а длина обычно 25–60 мм. Поверхность шероховатая, чтобы улучшить сцепление с бетоном.

Стальная фибра

Стальная фибра может иметь круглое или треугольное сечение; по форме она бывает волнистой, дугообразной или в виде скобки:

  1. Стальная фибра волнистой формы называется волновой. Она значительно повышает несущую способность конструкций из бетона. Применяется в дорожном строительстве, изготовлении промышленных полов, свай, плит перекрытий.
  2. Фибра в виде скобок называется анкерной. Она имеет отогнутые концы (анкерные отгибы). Длина такой фибры обычно составляет 30–60 мм, толщина — от 0,3 до 1,1 мм. Применяется на объектах повышенной ответственности, например, при строительстве дорог, аэродромов, банковских хранилищ, бассейнов, резервуаров, при укреплении откосов и горных склонов.

Стальную фибру добавляют в бетон при изготовлении объектов гражданского строительства при заливке фундаментов и стяжек.

Дозировка выбирается, исходя из конкретных условий. При невысоких нагрузках применяют 15–30 кг, при средних — до 40 кг, а при высоких — от 75 до 150 кг фибры на куб бетонной смеси.

Фибра добавляется во время замешивания. Продолжительность замеса при этом увеличивается на 15%. Также рекомендуется вводить в бетонную смесь пластификатор.

Стальная фибра обеспечивает следующие качества фибробетона:

  1. увеличение прочности на растяжение при изгибе в 2 раза;
  2. повышение устойчивости к ударным нагрузкам;
  3. повышение предельной деформации в 20 раз;
  4. повышение водонепроницаемости и морозостойкости.

К недостатками стальной фибры относятся:

  1. большой вес;
  2. менее прочное, чем у других видов фибры, сцепление с бетоном;
  3. возможность коррозии;
  4. при коррозии возможность обнажения фибры.

Стальная фибра совместима с различными видами добавок для бетона, но ее нельзя совмещать с применением хлористых солей в качестве противоморозных добавок. При бетонировании в условиях низких температур следует применять современные противоморозные добавки.

Каталог продукции CEMMIX

Противоморозная добавка HotIce

HotIce

Комплексная противоморозная добавка для проведения работ при отрицательных температурах

Сделаем и испытаем бетон с пластификатором и фиброй


На строительном рынке предлагается большое разнообразие пластификаторов, которые позволяют сделать раствор более пластичным при меньшем включении воды. По идеи их использование должно способствовать меньшей усадке и увеличению прочности, но так ли это на самом деле? Также возникает вопрос о том – способно ли армирование фиброй поменять характеристики бетона, так как против обычной стальной арматуры или сетки она не внушает доверие.

Материалы:

Испытание обычного бетона, улучшенного пластификатором, а также с фиброй и пластификатором

Сделаем и испытаем бетон с пластификатором и фиброй

Сделаем и испытаем бетон с пластификатором и фиброй


С бетономешалки отбирается образец в пластиковое ведро. Этот раствор за счет густоты плохо разглаживается.

Сделаем и испытаем бетон с пластификатором и фиброй

Сделаем и испытаем бетон с пластификатором и фиброй


Чтобы получить второй образец, к обычному бетону в мешалке добавляется пластификатор по инструкции. Раствор сразу же становится пластичным. Образец отбирается во второе ведро. Этот бетон легко растекается.

Сделаем и испытаем бетон с пластификатором и фиброй


Для третьего образца в бетономешалку добавляется фиброволокно. После вымешивания бетон также отбирается в пустое ведро.

Сделаем и испытаем бетон с пластификатором и фиброй

Сделаем и испытаем бетон с пластификатором и фиброй

Сделаем и испытаем бетон с пластификатором и фиброй

Сделаем и испытаем бетон с пластификатором и фиброй


Обычный бетон имеет видимые поры, является достаточно шероховатым. При броске на металлический лист с высоты 2 м он разбивается после пары падений. При ударе молотка образец легко крошится.

Сделаем и испытаем бетон с пластификатором и фиброй

Сделаем и испытаем бетон с пластификатором и фиброй


Бетон с пластификатором выглядит глянцевым, пор на нем меньше, но на образце появилась тонкая трещина.

Сделаем и испытаем бетон с пластификатором и фиброй


По прочности он хуже обычного бетона. Образец разбивается при броске с высоты 2 м с первого раза. Он также легко крошится кувалдой.

Сделаем и испытаем бетон с пластификатором и фиброй

Сделаем и испытаем бетон с пластификатором и фиброй

Сделаем и испытаем бетон с пластификатором и фиброй

Сделаем и испытаем бетон с пластификатором и фиброй

Сделаем и испытаем бетон с пластификатором и фиброй

Сделаем и испытаем бетон с пластификатором и фиброй


С этого можно сделать вывод, что пластификатор снижает прочность, но облегчает работу с бетоном, делает его поверхность гладкой и глянцевой. Действительно полезным является только добавление фибры. С ней бетон делается почти неубиваемым. Лучше всего использовать только ее без пластификатора.

Смотрите видео


Рассмотрено влияние различных типов неметаллической фибры (полипропиленовая микрофибра, полимерная макрофибра, стеклопластиковая композитная фибра) на трещиностойкость бетонов. В результате проведённых испытаний установлено, что наибольшую эффективность имеет композитная стеклопластиковая фибра. Её применение при оптимальных дозировках позволяет получать фибробетоны с фактическим классом по остаточной прочности в пределах 50 % от фактического класса по прочности на растяжение при изгибе по сравнению с полипропиленовой микрофиброй и полимерной макрофиброй, чьи показатели составляют 30 %.

Ключевые слова: трещиностойкость, фибробетон, неметаллическая фибра, деформативность.

Soloviev V.G. 1 , Shuvalova E.A. 2

1 PhD in Engineering, Associate Professor, National Research Moscow State University of Civil Engineering, 2 Postgraduate Student, National Research Moscow State University of Civil Engineering

EFFICIENCY OF VARIOUS FIBER TYPES APPLICATION IN CONCRETE

Abstract

The article considers the influence of various types of non-metallic fiber (polypropylene microfiber, polymer macro-fiber, fiberglass composite fiber) on the crack resistance of concrete. As a result of the tests, it was found that composite fiberglass fiber is the most efficient. Its application at the most effective dosages enables obtaining fiber concrete with an actual class of residual strength within 50% of the actual class of tensile strength in bending compared to a polypropylene microfiber and a polymeric macro-fiber, the values of which comprise 30%.

Keywords: crack resistance, fiber-reinforced concrete, non-metallic fiber, deformability.

Рассматривая особенности применения стальной фибры в бетонах, можно отметить, что одним из основных эффектов, обеспечивающих преимущество сталефибробетона по сравнению с другими материалами, является его повышенная трещиностойкость, которая обеспечивает высокую эксплуатационную надежность зданий и сооружений [1], [2], [3].

Изменение предела трещиностойкости сталефибробетона характеризуется уравнением потенциальной энергии деформации, аналогичным уравнению, составленному Гриффитсом, с добавлением слагаемого, учитывающего энергию, накапливаемую в процессе деформации отдельных фибр, пересекающих трещину [4]. По мере увеличения количества фибры на единицу площади расчетного сечения (за счет повышения ее объемного содержания или уменьшении диаметра фибры) в момент возникновения трещины в бетоне их податливость существенно снижается, но при этом приводит к повышению уровня трещиностойкости, который зависит также от размера критических трещин [5]. Чем более однородна бетонная матрица и чем выше уровень дисперсности армирования, тем выше, при прочих равных условиях, предел трещиностойкости сталефибробетона, который до двадцати раз может превышать трещиностойкость бетона и железобетона [6], [7]. Данные положения справедливы для стальной фибры различных геометрических размеров, модуль упругости которой значительно превышает модуль упругости бетонной матрицы. Для неметаллической фибры, указанные зависимости, в большинстве случаев, не соответствуют действительности в связи с ее низким модулем упругости (по сравнению с бетонной матрицей) и низкой адгезией к бетону [8]. При этом, неметаллической фибре часто приписывают свойства, характерные для металлической, несмотря на ключевые отличия между ними, как по свойствам, так и по эффективности работы в бетонных матрицах [9], [10].

Целью проведенного исследования являлось определение влияния различных типов неметаллической фибры на трещиностойкость бетонов.

В настоящее время в Российской Федерации действует ГОСТ 29167-91 «Бетоны. Методы определения характеристик трещиностойкости (вязкости разрушения) при статическом нагружении», в котором определен порядок проведения испытаний и формулы по расчету основных характеристик трещиностойкости. Однако, характеристики трещиностойкости, полученные при проведении данных испытаний, сложны для восприятия и не позволяют быстро и объективно оценить полученные результаты. В качестве альтернативы ГОСТ 29167-91 в последние годы получает все большее распространение методика определения деформативности по EN 14651, которая указана в качестве основной для определения характеристик фибробетонов в СТО НОСТРОЙ 2.27.125-2013 «Освоение подземного пространства. Конструкции транспортных тоннелей из фибробетона. Правила проектирования и производства работ», подготовленного к опубликованию и утверждению свода правил «Конструкции фибробетонные с неметаллической фиброй. Правила проектирования» и разрабатываемого свода правил «Конструкции бетонные с неметаллической фиброй и полимерной арматурой. Правила проектирования». Отличительной особенностью данной методики является определение ширины раскрытия внутренних граней предварительно пропиленной трещины в образце (СМОD по EN 14651), в процессе нагружения которого по трехточечной схеме фиксируется остаточная прочность. Данная методика была выбрана для проведения исследования, так как она в наибольшей степени подходит для определения трещиностойкости фибробетонов, в связи с ожидаемой низкой эффективностью отдельных видов неметаллической фибры.

Для проведения испытаний было выбрано три основных типа неметаллической фибры, используемой при производстве бетонных конструкций и широко представленной на рынке:

  1. Полипропиленовая микрофибра длиной 6 мм, диаметром 40 мкм с геометрическим фактором 150, плотностью 0,9 г/см 3 , модулем упругости порядка 1,2…1,6 ГПа.
  2. Полимерная макрофибра длиной 50 мм, диаметром 0,5 мм с геометрическим фактором 100, плотностью 0,9 г/см 3 , модулем упругости более 10 ГПа.
  3. Стеклопластиковая композитная фибра длиной 40…45 мм, диаметром 0,7…0,9 мм с геометрическим фактором 45…60, плотностью 1,54 г/см 3 , модулем упругости порядка 50 ГПа.

Для изготовления образцов применялся бетон класса по прочности при сжатии В25, состав которого, включая общие характеристики сырьевых материалов, приведен в таблице 1.

Таблица 1 – Состав бетона

Для проведения испытаний были изготовлены три серии образцов фибробетона размером 150×150×600 мм, по 6 образцов в каждой серии. Содержание неметаллической фибры, принималось на основании рекомендаций производителя и результатов уже проведенных испытаний, при которых обеспечивались оптимальные прочностные характеристики фибробетонов, и составило:

– полипропиленовая микрофибра 1 кг на 1 м 3 бетона;

– полимерная макрофибра 4 кг на 1 м 3 бетона;

– стеклопластиковая композитная фибра 35 кг на 1 м 3 бетона.

Испытания выполнялись на универсальной электромеханической машине Instron 3382, обеспечивающей максимальную испытательную нагрузку 100 кН с погрешностью измерения ±0,5% (рис. 1). Контроль раскрытия граней пропила осуществлялся навесным распорным датчиком точностью 0,005 мм.

Результаты испытаний по определению деформативности фибробетонов с неметаллической фиброй (усредненные значения по результатам испытаний трех серий из шести образцов) приведены в таблице 2 и на рисунке 2.

Читайте также: