Электроизоляционный материал для пола

Обновлено: 11.05.2024

Самые популярные электроизоляционные материалы

Современная электрохимическая промышленность может похвастаться самыми разнообразными электроизоляционными материалами. Особого внимания заслуживают стекловолоконные материалы в состав которых входят синтетические смолы, поскольку данные материалы отличаются не только высокой электрической, но и значительной механической прочностью, а также нагрево- и влагостойкостью.

Электрическая изоляция

Природные электроизоляционные материалы, такие как слюда и асбест, искусственные собратья - электрокартон и хлопчатобумажные ленты, - делят рынок современной электроизоляции с высококачественным стекловолокном, которое входит в состав стеклолакотканей, стеклотекстолитов, стеклолент и стекломиканитов. Кроме того широко применяются синтетические пленки: мелинекс, лавсан и другие.

Самые популярные электроизоляционные материалы

Именно благодаря появлению в составе электроизоляционных материалов синтетики, мощность и долговечность современного электротехнического и электронного оборудования сильно повысились, а размеры (трансформаторов, реакторов, конденсаторов, двигателей и многих других электрических агрегатов) остались прежними. Давайте же рассмотрим самые популярные из электроизоляционных материалов современности.

Электрокартон

Электрокартон

Электрокартон марок ЭВ и ЭВТ толщиной от 0,1 до 0,3 мм предназначен для эксплуатации в воздушной среде. Для работы в масле применяется электрокартон ЭМЦ и ЭМТ толщиной от 1 до 3 мм.

Электрокартон выпускается в виде листов или рулонов. Непропитанный электрокартон уязвим для влаги, поэтому он требует сухого хранения. Тем не менее, уже при влажности в 8% картон марки ЭВ имеет диэлектрическую прочность порядка 10 кВ/мм, а для марки ЭМТ характерная диэлектрическая прочность в нормальных условиях доходит до 30 кВ/мм.

Электроизоляционная бумага

Электроизоляционная бумага

Произведенная из хвойной древесины обработанной щелочью, электроизоляционная бумага, в зависимости от толщины и состава, подразделяется на несколько типов: телефонная, кабельная и конденсаторная. Телефонная бумага марки КТ-05 имеет толщину порядка 0,05 мм. Для кабельной бумаги К-120 характерна толщина 0,12 мм, она дополнительно пропитана трансформаторным маслом, что дает высокие диэлектрические характеристики.

Конденсаторная бумага также пропитана трансформаторным маслом, однако толщина ее значительно меньше чем у двух предыдущих типов.

Фибра

Фибра

Исходным материалом для фибры является бумага, которая обрабатывается раствором хлористого цинка. И хотя механически фибра непрочна, уязвима для кислот и щелочей, тем не менее она легко поддается обработке, а диэлектрическая прочность фибры доходит до 11 кВ/мм.

Фибру производят в виде стрежней, трубок или листов толщиной от 0,6 до 12 мм. Фибра находит применение в изготовлении электротехнических прокладок и каркасов катушек. Разновидностью тонкой фибры (толщиной от 0,1 до 0,5 мм) является летероид, который можно встретить в продаже в виде листов или рулонов.

Киперная лента

Киперная лента

В качестве первого представителя семейства хлопчатобумажных лент рассмотрим киперную ленту ЛЭ. Она производится из хлопчатобумажной нити, выпускается толщиной 0,45 мм и шириной от 10 до 60 мм. Киперная лента применяется для стягивания проводов и кабелей, для обвязки обмоток трансформаторов и двигателей, также киперная лента используется при обвязке различных катушек и в других электромонтажных работах.

Тафтяная лента

Тафтяная лента

Шелковая или хлопчатобумажная нить применяются при изготовлении тафтяных лент ЛЭ. Тафтяная лента может быть шириной от 10 до 50 мм. Толщина тафтяной ленты традиционно составляет 0,25 мм, что меньше чем у киперной ленты, потому и в прочности она ей уступает. Тафтяную ленту также используют в электромонтажных работах.

Батистовая лента

Батистовая лента

Более тонкая альтернатива тафтяной ленте — батистовая лента ЛЭ, изготавливаемая из хлопчатобумажной нити полотняного плетения. Она может иметь ширину от 10 до 20 мм, а толщину — от 0,12 до 0,18 мм.

Миткалевая лента

Миткалевая лента

Менее прочная чем киперная лента, но прочнее чем тафтяная - толщина 0,22 мм — миткалевая. Выпускается шириной от 12 до 35 мм.

Асбест

Асбест

Волокнистый природный минерал Асбест отличается высокой термостойкостью и низкой теплопроводностью. Он способен демонстрировать приемлемые для некоторых применений диэлектрические свойства при температурах эксплуатации до 400°С.

Характерная диэлектрическая прочность асбеста едва доходит до 1,2 кВ/мм, поэтому к его применению прибегают именно из-за высокой нагревостойкости, используя в качестве теплоизолятора. Если и применяют асбест для электрической изоляции, то только в низковольтных электроустановках. Выпускается асбест традиционно в виде листов или веревок.

Лакоткань и стеклоткань

Стеклоткань

Шелковая, стеклянная или хлопчатобумажная нити применяются для производства гибких стеклотканей и лакотканей различных марок, выпускаемых в виде рулонов при толщине материала от 0,1 до 0,3 мм и шириной от 700 до 1000 мм. Ткань пропитывается масляным или масляно-битумным лаком либо другим подходящим электроизоляционным составом.

Шелковая лакоткань марки ЛШСС может быть очень тонкой — до 0,04 мм. Стеклоткань ЛСК отличается нагревостойкостью до 180°С, а электрическая прочность достигает 40 кВ/мм. Стеклоткань и лакоткань традиционно применяются для межслойной изоляции катушек.

Тонкие пленочные материалы

Изоляционная пленка

Фторопластовая, полиэтилентерефталатная и лавсановая пленки, а также пленкоэлектрокартон (электрокартон обклеенный тонкой пленкой) отличаются высокой электрической прочностью — до 200 кВ/мм и значительной механической прочностью — при толщине пленки 0,05мм, прочность на разрыв достигает 30 кг. Нагревостойкость данных пленок выше 120°С.

Текстолит, стеклотекстолит, гетинакс

Текстолит

Первый представитель слоистых электроизоляционных материалов — текстолит. Его производят путем прессования пропитанной резольной смолой многослойной хлопчатобумажной ткани. Прессование осуществляется в условиях температуры 150°С. Получаемый материал отличается очень высокой механической прочностью, однако он менее влагостоек чем гетинакс.

На рынке текстолит представлен в виде трубок, цилиндров и листов. В силу того что текстолит легко поддается механической обработке, из него изготавливают каркасы катушек, диэлектрические прокладки и щиты, печатные платы и даже шестерни и подшипниковые вкладыши.

Стеклотекстолит

В отличие от текстолита, при производстве стеклотекстолита используют не хлопчатобумажную ткань, а стеклоткань. Электрическая прочность стеклотекстолита достигает по этой причине 20 кВ/мм, что выше чем у гетинакса и у обычного текстолита. Влагостойкость также лучше чем у текстолита и нагревостойкость выше — доходит до 225°С. Рыночная стоимость стеклотекстолита выше чем у текстолита.

Гетинакс

Простейший представитель слоистых электроизоляционных материалов - гетинакс. По сути — пропитанная бакелитовой смолой спрессованная бумага. Выпускается гетинакс в виде листов от 0,4 до 50 мм толщиной, а также в виде стрежней различного диаметра. Его электрическая прочность достигает 25 кВ/мм. Применяется для тех же целей что и текстолит, однако с учетом факта что нагревостойкость у гетинакса ниже, и при чрезмерном нагреве он обугливается и становится проводником.

Слюда

Слюда

Кристаллический природный минерал, слюда, служит превосходным сырьем для создания изоляционных материалов высокого качества. Слои минерала склеивают при помощи смолы или лака, чтобы получить мусковит или миканит. Мусковит применяют в конденсаторах, так как он обладает лучшими характеристиками.

Миканит — применяется для производства диэлектрических прокладок и обмоток электрических машин. Нагревостойкость слюдяных материалов доходит до 180° С, диэлектрическая прочность — до 20 кВ/мм. Кроме того стоит отметить отличную влагостойкость слюды. Наклеиванием слюды на ткань получают микаленту толщиной от 0,08 до 0,17 мм и шириной от 12 до 35 мм.

Слюда нынче в дефиците, поэтому даже отходы слюды идут в дело — из отходов изготавливают слюдяную бумагу, стеклослюдиниты и т. д., которые тоже используются как электроизоляционные материалы с диэлектрическими характеристиками близкими к слюде.

Фарфор и стеатит

Электротехническая керамика

Электротехническая керамика занимает особое место среди электроизоляционных материалов. Главные ее виды — фарфор и стеатит. Электротехнический фарфор отличается диэлектрической прочностью до 28 кВ/мм и нагревостойкостью до 170° С. Его высокая прочность и влагонепроницаемость делают фарфор идеальным материалом для изготовления изоляторов. Фарфор находит широкое применение в электротехнике, электронике, автоматике и IT-сфере.

Стеатит

Стеатит превосходит фарфор по диэлектрической прочности (до 50 кВ/мм). Именно поэтому стеатит используют для изготовления особо важных электротехнических узлов, где требуется нагревостойкость и особо надежная электроизоляция. Качественные ТЭНы покрывают стеатитом именно в силу его высокой нагревостойкости.

В электрике существует определенный вид покрытий, который служит изоляционным целям. Изоляционные материалы бывают различного назначения: для трубопроводов, стен и пола, крыши, часто они используются в строительстве, электромонтажных и производственных работах.

Виды и назначение

Изоляционные защитные материалы используются для защиты жилого и производственного помещения от негативного воздействия окружающей среды. Их применение зависит от типа покрытий. Существуют следующие виды изоляции:

  1. Тепло-, ветро, звукоизоляция;
  2. Гидро- и пароизоляция;
  3. Электроизоляционные и виброизоляционные материалы.

Помимо такой классификации также существует разделение покрытий в зависимости от их формы. Бывают жидкие, плотные и порошковые варианты. Рассмотрим подробнее каждый из них.

изоляторы для трубопровода

Фото — изоляторы для трубопровода

Теплоизоляционные, ветро- и звукоизоляционные

Теплоизоляционные или термоизоляционные строительные материалы ГОСТ Р 52953-2008 используются для уменьшения теплопотерь потолка, пола и стен. Они могут применяться как для наружной, так и внутренней отделки с целью уменьшения теплопроводности здания. Такое свойство присуще им благодаря специальной конструкции, подразумевающей высокую пористость и плотность.

минвата

Фото — минвата

Существуют такие основные типы теплоизоляции:

керамоволокно

  1. Органические или минеральные. Это переработанные отходы сельхоз промышленности. Они могут быть представлены в виде переработанной древесины, торфа и даже пластика. Самыми известными являются пенопласт, ДВП, ДСП и прочие композиционные покрытия;
  2. Неорганические. Это панели, изготовленные полностью из синтетических волокон. Минеральная вата, прессованная вата, газобетон, пеностекло, керамоволокно для печей; Фото — керамоволокно
  3. Смешанные. Сюда относятся покрытия, которые изготавливаются путем соединения минеральных и неорганических волокон. Арболит, фибролит, огнеупорный кирпич. Они часто имеют большой вес, поэтому редко используются для отделки квартиры в многоэтажном доме, зато все типы смешанных панелей огнеупорные.

Несмотря на то что органические отделочные покрытия имеют множество достоинств, сейчас они редко используются для утепления фасадов, т. к. обладают низкой огнестойкостью. В основном они применяются как изоляционные материалы для трубопроводов газа, системы водоснабжения и отдельных водяных труб.

комбинированная мембранная пленка

Фото — комбинированная мембранная пленка

Ветроизоляционные пленки часто отождествляют с изолирующими тепло, но они служат несколько иной цели. Эти панели представлены пленочными мембранами, основное назначения которых останавливать воздушный поток и препятствовать его попаданию внутри помещения. Покрытия этого типа часто используются для деревянных домов (у которых высокий уровень пористости), защиты пола и крыши от продувания.

Ветроизоляционные пленки

Фото — Ветроизоляционные пленки

Ветроизоляционные материалы очень похожи на пароизоляционные, и они представлены пенополиэтиленом, мембранными, диффузионными пленками, для намотки которых необходимо применение специальных мягких дисков. К слову, утеплитель, в зависимости от материала, из которого он изготовлен, может выступать в роли ветроизолятора.

Рассмотрим, каковы цены на изоляционный материал ВПЭ Comfort 3 мм Лавсан (рулонные изделия):

Город Стоимость м 2 , у. е.
Екатеринбург 0,5
Иркутск 0,5
Москва 0,7
Санкт-Петербург (СПб) 0,7
Самара 0,5
Уфа 0,5

Помимо Лавсан, вы также можете купить изоляционные защитные материалы производства ТПК Байкал, Екатеринбургский завод (ЕЗИМ) и Глобал Термал.

Звукоизоляция

Звукоизоляционные и шумоизоляционные защищают помещение от шума, проникающего в жилое здание извне. Они являются необходимыми как при строительстве частного дома, так и при самостоятельном капитальном ремонте квартиры. Современные пленки делятся на:

Ключевым отличием между ними является их назначение. Акустические помогают улучшить слышимость внутри конкретного помещения, а прокладочные устраняют проблему шума улицы от авто и т. д. Такие свойства обеспечиваются определенной фактурой и конструкцией плит. Они могут быть представлены в виде минеральной ваты или пенопласта, где, с одной стороны, мягкая структура, а с другой – жесткий отражающий лист (например, алюминиевый или асбестоцементный). Сейчас также производятся полимерные пленки, которые имеют мембранную структуру. Они известны комбинированными свойствами за счет мягкого внутреннего слоя и пористого наружного, которые поглощают звук из помещения и отражают частоты с улицы.

Паро- и гидроизоляционные покрытия

Эти материалы необходимы для защиты конструкции от воздействия воды, конденсата или химических веществ. Наиболее часто они используются как кровельные покрытия, т. к. именно на этот участок здания больше всего воздействуют атмосферные осадки. В основном они битумные (т. е., пластичные, мягкие) и изготавливаются на основе металлической стружки, минералов, различных пластиков. Могут выпускаться в следующих формах:

жидкая гидрозащита

  1. Жидкие или проникающего действия. Это разные лаки и краски, которые обладают высокими антикоррозийными свойствами. Используются для отделки дерева, если требуется ремонт пенобетона и прочих пористых поверхностей; Фото — жидкая гидрозащита
  2. Твердые. Сюда относятся пленки, многослойные плиты, панели и т. д. Они, в свою очередь, бывают горючие и негорючие.

Помимо кровли их также часто используют для отделки пола, в особенности, если здание построено на столбовом или свайном фундаменте.

Пароизоляционная пленка

Фото — Пароизоляционная пленка

Видео: применение изоляционных материалов в электротехнике

Электроизоляционные материалы

Высокотемпературные электроизоляционные пленки и мастики предназначены для защиты токонесущих жил электрических проводов. Они необходимы для защиты от короткого замыкания или соединения жил. Характеристики нагревостойкости:

  1. Y – это материалы из горючих волокнистых веществ хлопчатобумажного покрытия, целлюлозы, бумаги и т. д. Они не окунаются в специальные защитные смазки, поэтому их максимальная температура нагрева до возгорания составляет 90 градусов;
  2. Класс А – это изоляция вида Y, но предварительно пропитанная защитными жидкостями. Они применяются для работы с трансформаторными подстанциями и т. д. Используются при нагреве до 105°;
  3. Е – это изоляторы для большинства известных проводов, приборов и т. д. В основном это пленки, смолы синтетического происхождения. Необходимы для изоляции холодильников, силовых кабелей, ЛЭП и т. д. могут нагреваться в зависимости от до 120° С.
  4. Категория В – это твердые покрытия из слюды, стекловолокна и прочих органических и комбинированных материалов. Они могут вынести нагрев до 130 градусов. Класс F – это т та же органика, но обработанная защитными составами;
  5. Класс С – это самые новые изоляционные покрытия. Их использует электрооборудование, где нагрев жил может достигать 180 градусов и выше. Представлены слюдой, керамикой, и прочими твердыми соединениями органического происхождения.

Производство кабелей с изоляцией осуществляется практически в каждом крупном городе РФ и стран СНГ.

Какую пароизоляцию выбрать для пола по лагам, как правильно её уложить

Перекрытия в доме нуждаются в утеплении, особенно те, которые контактируют с холодным и влажным воздухом чердака или подполья. Если конструкции деревянные, то укладки только теплоизоляционного материала недостаточно – нужен барьер, защищающий и саму древесину, и утеплитель от намокания, которое неизбежно при конденсации на них пара, идущего из помещений, и влаги из грунта и атмосферного воздуха. Какую пароизоляцию выбрать для пола по лагам, во многом зависит от финансовых возможностей. Но в общей стоимости строительства её цена просто теряется, в то время как от качества и надёжности пароизоляционного барьера зависит долговечность перекрытий и благоприятная «погода» в доме.

Когда нужна пароизоляция

Вода – источник жизни. Без неё не может существовать ничто живое. Но она же может стать источником многих проблем, разрушений и болезней. Если говорить о любом строении, и особенно о жилом доме с деревянными несущими конструкциями, то его надёжность, прочность и срок службы во многом зависят от того, насколько хорошо эти конструкции защищены от влаги и водяных паров. Потому что их постоянное воздействие губительно для древесины.

Все деревянные поверхности, которые беспрепятственно контактируют с воздухом, меньше подвержены гниению, так как влага в них не задерживается – высыхает, испаряется. А вот те элементы, которые плотно соприкасаются с другими материалами и не вентилируются, попадают в зону риска. И в первую очередь это касается пола первого этажа дома, особенно если под ним расположено неотапливаемое подполье.

Воздействие водяных паров негативно сказывается и на утеплителе, если это материал, способный впитывать в себя влагу. Она замещает собой воздух между волокнами, тем самым лишая утеплитель его свойств и превращая в рассадник плесени.

Поэтому так важно знать, как правильно укладывать пароизоляцию на пол в деревянном доме, и какой материал для этого использовать.

Но пар воздействует на конструкции дома не только извне – из подполья или чердачного помещения. Он образуется и внутри него: при приготовлении пищи, стирке, уборке, гигиенических процедурах и даже при дыхании людей. Он конденсируется на поверхностях, проникает внутрь конструкций и задерживается в них.

Отводить лишние водяные пары наружу – задача вентиляционных систем. А не пропускать их в толщу утеплённых стен и перекрытий должна пароизоляция. Причём это относится и к межэтажным деревянным перекрытиям, в которых минеральная вата или другой утеплитель выполняет функцию звукоизоляции. Он плотно соприкасается с лагами и балками, не давая им проветриваться и высыхать естественным способом при образовании конденсата. Несущие элементы пола начинают гнить, терять прочность, что может привести к их разрушению.

Больше других от влаги страдают полы первого этажа, смонтированные близко к грунту Источник heart.huttcity.govt.nz

Пароизоляционные материалы помогают решить эту проблему, защищая утеплитель и деревянные лаги как от грунтовой и атмосферной влаги, так и от водяных паров. Но чтобы они «сработали», необходимо знать, какой должна быть пароизоляция для пола в деревянном доме, как правильно стелить и крепить её.

Что выбрать для пароизоляции деревянного пола

Изоляционные материалы можно разделить на два основных вида – плёнки и мембраны. Плёнки непроницаемы не только для влаги, но и для воздуха, а диффузионные мембраны могут пропускать сквозь себя воздух и водяные пары. И те, и другие выпускаются разных видов и отличаются толщиной, прочностью, материалом.

Плёнки

Сырьём для производства пароизоляционных плёнок служат полиэтилен и полипропилен.

Это самый дешёвый изоляционный материал, имеющий ограниченную сферу применения. Он непроницаем для воздуха, из-за чего возникает парниковый эффект, а капли конденсата скапливаются на его поверхности. Кроме того, полиэтиленовая плёнка не отличается прочностью, легко рвётся. Прочность материала зависит от его толщины, её повышают и армированием.

Являясь непроницаемым барьером для влаги и воздушного пара, такая плёнка из-за способности скапливать конденсат, все же не рекомендуется для деревянного пола. Она больше подходит в качестве гидроизоляционного слоя при устройстве бетонной стяжки.

Однако полиэтиленовую плёнку, особенно ламинированную алюминиевой фольгой, применяют для изоляции влажных помещений – саун, бассейнов, расположенных в подвале теплиц. Она надёжно изолирует деревянный пол верхнего этажа от влажного пара и отражает тепловые инфракрасные лучи, возвращая их назад в изолируемое помещение.


Плёнки из полипропилена гораздо прочнее, но и дороже. Задумавшись о том, как правильно положить пароизоляцию на пол в деревянном доме, лучше выбрать не обычную плёнку, а имеющую специальный антиконденсационный слой. Вискоза или целлюлоза, присутствующие в этом слое, задерживают влажный пар, а оседающая на нем влага поглощается и постепенно высыхает, не проникая сквозь барьер, но и не образуя на его поверхности капель.

Пароизоляционные плёнки такого типа выпускают многие производители изоляционных материалов. Как правило, их внутренняя и внешняя поверхность отличаются друг от друга: одна гладкая, другая слегка шероховатая.

Мембраны

Самый дорогой, но вместе с тем самый прочный, качественный и долговечный материал, который удерживает в себе влажный пар и выводит его наружу. Если диффузия пара происходит в одном направлении, мембраны называют односторонними, если в обоих – двухсторонними.

Диффузионные мембраны имеют несколько слоёв, их количество влияет на объем удерживаемой влаги и гидроизоляционные свойства.

  • Однослойные паропроницаемые материалы, в отличие от плёнок, монтируют с наружной, холодной стороны перекрытий, чтобы влага, которая в небольших количествах все же проникает в утеплитель, свободно испарялась из него.
  • Двухслойные мембраны – самый подходящий материал для пароизоляции межэтажных перекрытий, когда оба этажа являются жилыми и отапливаемыми.

Для справки! Они не только выполняют свою прямую функцию, но и не позволяют микрочастицам утеплителя попадать в помещение.

Видео описание

О правилах использования плёнок и мембран рассказывается в этом видеоролике:

Инструкция по монтажу

Приступая к устройству утеплённого пола, нужно изучить, как правильно уложить пароизоляцию на пол в деревянном доме. Если не учитывать определённые требования по её монтажу, может получиться так, что от изоляции не будет никакого толка или она даже навредит, заперев влагу в пироге перекрытия.


Какой стороной класть двухсторонний материал

Если для пароизоляции применяется обычная воздухонепроницаемая полиэтиленовая или полипропиленовая плёнка, её укладывают любой стороной к утеплителю, так как обе они совершенно одинаковы.

Другое дело – двухсторонние мембраны и плёнки. У каждой из поверхностей свои свойства и функции, поэтому для эффективной и правильной работы пароизоляции её необходимо стелить с учётом этих свойств.

Если на упаковке материала нет чёткой инструкции по этому поводу, но две его стороны явно отличаются друг от друга структурой или цветом, выполнить правильный монтаж помогут следующие рекомендации.

  • Плёнка в рулоне всегда смотана так, что внешняя сторона находится внутри.
  • Если одна поверхность плёнки гладкая, а другая шероховатая или ворсистая, гладкой стороной она укладывается на утеплитель, а шершавой наружу – на ней должна задерживаться и высыхать влага из воздуха.
  • Если одна из сторон темнее другой, она кладётся наружу, а светлая обращена к утеплителю.
  • Все плёнки с односторонним фольгированным покрытием раскатываются так, чтобы металлизированная отражающая поверхность была обращена в сторону помещения.

Место пароизоляции в пироге утеплённого пола

Функция пароизоляции – это защита деревянных конструкций и утеплителя от воздействия влаги, содержащейся в водяных парах помещения. То есть, она всегда укладывается на теплоизоляционный материал со стороны тёплого внутреннего пространства дома под настил пола.

Но влага может попадать внутрь многослойных перекрытий и с другой стороны – из подвала или подполья. Неотапливаемый подвальный или цокольный этаж, как и неизолированный грунт под деревянным полом – основные источники влаги. Ситуация осложняется в разы, если дом стоит на участке с высокими грунтовыми водами или подтопляется весной в период половодья.

В таких случаях, а также при размещении в цокольных этажах бань, прачечных и других мокрых зон, необходима изоляция деревянного пола и снизу, между утеплителем и черновым настилом или потолком нижнего помещения. Но это должна быть диффузная гидрозащитная мембрана. На непроницаемой плёнке сконденсированная влага будет скапливаться, проникать в теплоизоляцию, контактировать с лагами и черновым настилом.

Видео описание

К чему приводит неправильная пароизоляция деревянного пола, продемонстрировано в этом видео:


Несколько иначе подходят к пароизоляции пола между двумя жилыми этажами. Давление пара между ними незначительное, риск намокания утеплителя и балок очень мал. Многие не понимают, для чего нужна пароизоляция пола в этом случае.

Обычно на первом этаже размещают кухню, санузел, бойлерную, в которых влажность воздуха выше, чем в сухих жилых комнатах на верхнем этаже. Поэтому следует ограничить проникновение пара в утеплённый пирог перекрытий. Но в качестве изоляционного материала, особенно с верхней стороны, нужно укладывать воздухопроницаемую мембрану. Она будет выпускать наружу попавшую внутрь влагу и защищать утеплитель от попадания в него воды при влажной уборке. А также станет барьером для микроскопических волокон материала, не позволяя им проникать в помещение.

Видео описание

Правильное обустройство утеплённого межэтажного перекрытия показано в видеоролике:

Порядок выполнения работ

Перед тем как стелить пароизоляцию на пол в деревянном доме, все деревянные поверхности обязательно пропитывают специальными антисептическими средствами. Это мощная дополнительная защита древесины от гниения, повреждения насекомыми и микроорганизмами.

При устройстве пола первого этажа последовательность работ должна быть такой:

  • на бетонные или кирпичные промежуточные опоры для лаг укладывают гидроизоляцию из рубероида;
  • на смонтированных лагах закрепляют черепные бруски, к которым пришивают доски чернового пола;
  • мембранную гидроизоляцию расстилают поверх чернового пола гладкой стороной вверх, она должна закрывать не только настил, но и лаги;
  • материал укладывают с нахлёстом, проклеивая стыки скотчем для обеспечения герметичности;
  • следующим слоем является утеплитель, плотно уложенный между лагами;
  • толщина утеплителя должна быть немного меньше высоты лаг, чтобы между ним и пароизоляцией оставался воздушный зазор;
  • пароизоляционный материал раскатывают поверх утеплителя поперёк лаг с нахлёстом на стены;
  • к стенам он крепится с помощью двухстороннего скотча, а на лагах фиксируется степлером таким образом, чтобы между ними она слегка провисала, а не была натянута;
  • все полосы укладываются с хорошим нахлёстом и соединяются скотчем;
  • после монтажа пароизоляции вдоль лаг укладывают и крепят бруски контробрешетки, необходимые для устройства вентиляционного зазора между ней и чистовым полом.

Последний этап – устройство дощатых полов или листового настила под чистовое покрытие.


Коротко о главном

Если не знать, как укладывать пароизоляцию на пол в деревянном доме правильно, можно уже через пару лет обнаружить, что он начал гнить, а утеплитель намок и перестал работать. Главное правило – не применять для пароизоляции деревянных конструкций непроницаемые плёнки, склонные к накоплению конденсата. Материал должен задерживать в себе избыточную влагу и постепенно испарять её. Такими свойствами обладают специальные плёнки и мембраны, одни из которых предназначены для использования внутри помещений, другие – снаружи. При монтаже важно учитывать, что такие материалы двухсторонние, и укладывать их правильно.

Утеплитель с фольгой: как называется и где используется

При возведении жилья используются различные материалы для утепления. В их число входит утеплитель с фольгой; как называются его разновидности, и в каких случаях они используются, рассказывается ниже. Читайте дальше, и вы познакомитесь с особенностями разных видов фольгированного утеплителя и узнаете о сферах их применения. Близкое знакомство с особенностями монтажа поможет снизить затраты на строительство.

Фольгированные материалы: строение и принцип действия

Даже далёкие от строительства люди хотя бы раз встречали утеплитель, блестящий с одной стороны; как называется та или иная его разновидность, известно хозяевам, занимающимся строительством или ремонтом. Подобные материалы нередко называют двухслойными, из-за бросающегося в глаза металлического (отражающего) слоя; существуют варианты, покрытые отражающим слоем с двух сторон.

Нижний (или внутренний) слой сделан из пористого или волокнистого материала. Он выполняет функцию теплоизоляции и служит прочной основой для фольги. Фольгированная составляющая, наклеенная поверх утеплителя, нужна для отражения инфракрасного (теплового) излучения. Она изготавливается из алюминиевой фольги или металлизированной плёнки, разных по свойствам:

  • Алюминиевая фольга. Наносится способом тепловой сварки, полируется до нужного коэффициента отражения (95%). Фольга разрушается под действием соли, содержащейся в цементном растворе.
  • Металлизированная плёнка. Наносится на одну или две стороны материала. Тепло отражает слабее, но отличается устойчивостью к щелочному воздействию.

У каждого слоя свои «обязанности». Фольга отражает тепловую энергию, и делает это эффективно: по утверждению производителей, возвращается до 90-95% теплового излучения. Остальные проценты частично поглощает утеплитель, частично тепло рассеивается в пространстве.

Внимание! Практические замеры показали, что эффективность фольгированной теплоизоляции на 30-60% выше, чем у аналогичного однослойного теплоизолирующего материала. Важно, что ценовая разница не столь существенна; в перспективе это означает экономию на обогреве.

Плюсы и минусы отражающей теплоизоляции

Широкая сфера применения делает востребованным блестящий утеплитель; как называется и где применяется та или иная разновидность, зависит от состава слоёв. Материалы на основе фольги предназначены для защиты перекрытий, полов и стен; ими утепляют трубы и своды крыш. Повсеместное использование возможно благодаря свойствам, некоторые из которых присущи только им:

  • Высокая эффективность. Блестящее покрытие пропускает только 5-10% тепловых волн, остальные отражаются обратно.
  • Гидро- и пароизоляция. Металлизированный слой непреодолим для атмосферной влаги и пара. Свойство активно применяется при строительстве бань и саун.
  • Простой монтаж. Материал крепится степлером или гвоздями; некоторые разновидности изготавливаются на самоклеющейся основе. Утеплители с фольгой отличаются пластичностью, их легко укладывать на сложные по форме поверхности.


  • Длительная эксплуатация. Достигается при правильном монтаже. Утеплитель не покроется плесенью, а металлизированный слой не разрушится.
  • Безопасность. Материалы отражающей термоизоляции нетоксичны для человека.

К недостаткам относятся следующие особенности:

  • Эффект термоса. Возникает в результате кругового использования фольгированного материала с нарушением правил монтажа, и провоцирует появление плесени. Проблема не всегда решается с помощью вентиляции.
  • Условия эксплуатации. Бетон является плохим соседом для алюминиевой фольги, содержащиеся в нем соли разъедают слой металла в течение года.
  • Теплопроводность. Теплоотражающий слой, как любой металл, нагревается, за счёт чего часть энергии теряется.

Разновидности отражающей теплоизоляции

Для хозяев, затеявших строительство или ремонт, небезразлично, как называется утеплитель, с одной стороны которого наклеена фольга, поскольку не все разновидности взаимозаменяемы. Не мене важно понимать, как правильно класть утеплитель с фольгой, чтобы максимально сократить теплопотери. На рынке предлагается несколько разновидностей теплоизоляторов с фольгой, с разным теплоизолирующим материалом в основе.

Вспененный полиэтилен (пенополиэтилен)

Материал выглядит как эластичное полотно толщиной 2-10 мм, структурно состоящее из закрытопористых ячеек. Изоляция продаётся в рулонах, некоторые производители снабжают её самоклеющейся основой; отражающим слоем служит алюминиевая фольга.

Пенополиэтилен с фольгой применим для термоизоляции пола, где его располагают под конечной отделкой (например, ламинатом). Для радиаторов отопления в качестве отражающего экрана выбирают тонкие разновидности полотна. Эластичный материал подходит для изоляции труб водопровода и канализации; он сохранит трубы от промерзания и одновременно защитит хозяев от раздражающего шума.


Минеральная вата

В строительных магазинах предлагается фольгированная минвата (она же каменная, базальтовая) в рулонах или плитах, толщиной до 100 мм. Утеплитель покрывается фольгой только с внешней стороны. Важное свойство материала – негорючесть и нетоксичность. Это делает её хорошим выбором для изоляции дымоходов и стены прислонения камина.

Каменная вата практически не даёт усадку, отражает до 95% инфракрасного излучения, глушит звуки. Её применяют для теплоизоляции пола и стен; в этом случае особенно небезразлично, как правильно класть утеплитель, чтобы сохранить тепло в помещении. Минвату выбирают для кровельных конструкций и межэтажных перекрытий, используют в качестве термозащиты парилок и других банных помещений.

Стекловата

Утеплитель, близкий по свойствам к минвате, но с важной оговоркой: материал требует крайне бережного обращения. Несмотря на экологичность и относительную дешевизну (если сравнивать с минватой) сырья, он представляет реальную угрозу для здоровья.

Волокнистая структура стекловаты является источником мелкой колючей пыли, способной проникать в лёгкие и раздражать глаза. Поэтому её монтаж проводят в защитной одежде, респираторе и перчатках. Фольгированной стекловатой изолируют перекрытия или стены с внешней стороны (под обшивку).


Фольгированный пенополистирол

Прочная и упругая разновидность пенопласта; в продажу поступает в виде плит толщиной от 20 до 50 мм. Основа под алюминиевым покрытием состоит из сплавленных гранул с высокой температурной устойчивостью.

Фольгированный пенополистирол выдерживает физическое давление и повышенную влажность, что делает его предпочтительным выбором для монтажа тёплого пола. В этом виде работ особую важность приобретает вопрос, какой стороной укладывать утеплитель с фольгой на пол. Чтобы облегчить укладку, производители снабжают лицевую сторону монтажной разметкой (50х50 или 100х100 мм), позволяющую точно определить шаг между трубами или кабелями.

Видео описание

Об утеплении вспененным полиэтиленом угловой квартиры в следующем видео:

Особенности монтажа фольгированного утеплителя

Перед покупкой проводят замеры и рассчитывают необходимое количество из расчёта того, что утеплитель будет закрепляться не внахлёст, а встык. Вопрос как правильно укладывать утеплитель, решается одинаково для обоих видов металлизированного покрытия. Во время утепления стен придерживаются следующих правил:

  • Фольгированную теплоизоляцию укладывают отражающей (блестящей) стороной внутрь помещения.
  • Двухсторонний материал предназначен для теплоизоляции каркасных строений.
  • Монтаж на стены включает организацию обрешётки, плитный изолятор фиксируются в ней между направляющими и дополнительно укрепляется дюбелями.
  • Монтаж на потолок проводиться при помощи степлера. Стыки проклеиваются металлизированным скотчем или алюминиевой клейкой лентой. Между утеплителем и конечной отделкой формируют зазор для вентиляции в 2-2,5 см.


Технология, показывающая, как класть утеплитель на пол, включает следующие этапы:

  • Пол удобнее всего утеплять материалом на клеящем слое; в противном случае для фиксации понадобится алюминиевый скотч или строительный степлер.
  • Теплоотражающая изоляция укладывается встык, затем фиксируется; стыки проклеиваются.
  • Над слоем изоляции монтируют тёплый пол (водяной или электрический); сверху укладывают паро- и гидроизоляцию.
  • Заливают бетонную стяжку, на толщину которой влияет функциональное назначение комнаты и тип обогревательных элементов.

Видео описание

О дополнительном утеплении потолка в следующем видео:


Коротко о главном

Отражающая изоляция работает по особому принципу, основанному на слоевом строении. Основной слой состоит из пористого или волокнистого материала, сверху (иногда с двух сторон) его дополняет слой из алюминиевой фольги или металлизированной плёнки.

Именно блестящая поверхность выполняет основную работу по задержке тепла в комнате. Дополнительно она служит паро- и гидро- и звукоизолятором, а при нарушении технологии укладки является причиной появления эффекта термоса.

К распространённым фольгированным материалам относится вспененный полиэтилен, базальтовая и стеклянная вата, фольгированный пенополистирол. Чтобы зафиксировать материал на поверхности, необходим степлер или дюбеля, стыки фиксируют алюминиевой клейкой лентой.

Любое электрическое оборудование, включая генераторы, силовые установки и распределительные устройства, состоит из токоведущих частей. Для надежной и безопасной эксплуатации последние должны быть защищены друг от друга и от воздействия окружающих компонентов. В этих целях используются электроизоляционные материалы.

Важно, чтобы обмотка на якоре была отделена от его сердечника, виток возбуждения – от аналогичной детали, полюсов и каркаса агрегата. Материалы, которые применяются для изоляции чего-либо от воздействия электрического тока, называются диэлектриками. Стоит отметить, что такие изделия бывают двух типов – одни абсолютно не пропускают ток, другие – хоть и делают это, но в мизерных количествах.

Изоляция обмотки якоря

При создании подобных материалов применяют органические и неорганические элементы вкупе с различными добавками, необходимыми при пропитке и склеивании. В последнее время широкую популярность набирает жидкая изоляция для проводов, часто используемая в выключателях и трансформаторах (например, трансформаторное масло). Не реже в электротехническом оборудовании применяют газообразные диэлектрики, вплоть до обычного воздуха.

Электроизоляционные материалы и сферы их применения

К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.

Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.

Диэлектрические изделия для электроприборов

Свойства диэлектриков

Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.

Важно! Несмотря на последнее высказывание, при нагревании любого диэлектрика количество ионов и электронов существенно возрастает, из-за чего повышается электрическая проводимость и возникает риск пробоя током.

Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости. С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).

Свойства изоляционных материалов

Параметры изоляции

К числу основных относятся:

  • электропрочность;
  • удельное электрическое сопротивление;
  • относительная проницаемость;
  • угол диэлектрических потерь.

Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.

Параметры изоляции для силовых кабелей

Классификация диэлектрических материалов

Выбор того или иного изоляционного материала зависит от мощности тока, протекающего по проводникам оборудования. Существует несколько критериев для классификации диэлектриков, но наиболее важными являются два – агрегатное состояние и происхождение. Для изоляции шнуров бытовых электроприборов используют твердые изоляторы, трансформаторов и прочего высокомощного оборудования – жидкие и газообразные.

Классификация по агрегатному состоянию

По агрегатному состоянию выделяют три типа диэлектрических материалов – твердые, жидкие и газообразные.

Твердые диэлектрики

Электроизоляционные материалы данного типа считаются наиболее распространенными и популярными, используются практически во всех сферах, где присутствует оборудование с токоведущими частями. Их качество зависит от некоторых химических свойств, при этом диэлектрическая проницаемость может быть совершенно разной – 10-50 000 (безразмерная величина).

Твердые изоляторы бывают полярными, неполярными и сегнетоэлектрическими. Главное отличие трех разновидностей – принцип поляризации. Основными свойствами данных материалов являются химическая стойкость, трекингостойкость и дендритостойкость. От химической стойкости зависят возможности диэлектрика противостоять воздействию агрессивной среды – кислотам, щелочам, активным жидкостям. Трекингостойкость влияет на защиту от электрической дуги, дендритостойкость – от появления дендритов.

Твердые неорганические диэлектрики

Керамические изоляторы эксплуатируют как линейные и проходные диэлектрики в составе подстанций. Для защиты бытовых электрических приборов могут применяться текстолиты, полимеры и бумажные изделия, промышленного оборудования – лаки, картон и различные компаунды.

Сочетая несколько разных материалов, производителям диэлектриков удается получить особые свойства изделия. Благодаря этому повышается устойчивость к нагреву, воздействию влаги, экстремально низких температур и даже радиации.

Наличие нагревостойкости говорит о том, что изолятор способен выдерживать высокие температуры, но в каждом отдельном случае максимальная планка будет разной (она может достигать и 200, и 700 град. Цельсия). К числу таковых относятся стеклотекстолитовые, органосиликатные и некоторые полимерные материалы. Фторопластовые диэлектрики устойчивы к воздействию влаги, могут эксплуатироваться в тропиках. Вообще фторопласт не только гидрофобен, но еще и негигроскопичен.

Если в состав электротехнического оборудования включены атомные элементы, то важно использовать изоляцию, устойчивую к радиоактивному фону. На помощь приходят неорганические пленки, часть полимеров, стеклотекстолиты и различные слюдинитовые изделия.

К морозостойким диэлектрикам относятся компоненты, сохраняющие свои удельные свойства при температуре до -90 град. Цельсия. Наконец, в электроприборах, эксплуатируемых в космосе, применяются изоляционные материалы с повышенной вакуумной плотностью (например, керамика).

Жидкие диэлектрики

Диэлектрики в подобном агрегатном состоянии зачастую эксплуатируются в промышленном электрооборудовании. Наиболее ярким примером являются трансформаторы, для безопасной работы которых требуется специальное масло. К числу жидких диэлектриков можно отнести сжиженный газ, парафиновое или вазелиновое масло, спреи, дистиллированную воду, которая была очищена от солей и других примесей.

Жидкие электроизоляционные материалы описываются следующими технико-эксплуатационными характеристиками:

  • диэлектрическая проницаемость;
  • электропрочность;
  • электропроводность.

Величина физических параметров жидких диэлектриков зависит от степени их чистоты (загрязнения). Наличие твердых примесей в воде или масле приводит к существенному повышению электрической проводимости, что связано с увеличением числа свободных электронов и ионов. Жидкости очищаются разными методами, начиная от дистилляции и заканчивая ионным обменом. После выполнения данного процесса повышается электропрочность материала и снижается его электропроводность.

Виды жидких диэлектриков

Жидкие электроизоляторы можно разделить на три основные группы:

  1. Из нефти изготавливают трансформаторное, конденсаторное и кабельное масла.
  2. Синтетические жидкости активно применяются в промышленном приборостроении. К их числу можно отнести соединения на основе фтор- и кремнийорганики. Кремнийорганические материалы способны выдерживать сильные морозы, они относятся к числу гигроскопичных, поэтому могут применяться в малых трансформаторах. С другой стороны, стоимость таких соединений намного выше, чем у нефтяных масел.
  3. Растительные жидкости крайне редко используются при изготовлении электроизоляции. Речь идет о касторовом, льняном, конопляном и других маслах. Все перечисленные вещества считаются слабополярными диэлектриками, поэтому могут применяться только для пропитки бумажных конденсаторов или для образования пленки в электроизоляционных лаках и красках.

Газообразные диэлектрики

Самыми популярными газообразными диэлектриками считаются электротехнический газ, азот, водород и воздух. Все они могут быть разделены на две категории – естественные и искусственные. К первым относится воздух, который часто эксплуатируют в качестве диэлектрика для защиты токоведущих частей линий электрической передачи и машин.

Наряду с преимуществами, есть у воздуха недостатки, из-за чего он не подходит для эксплуатации в герметичном оборудовании. Поскольку в его состав входит большое содержание кислорода, то данный газ является окислителем, поэтому в неоднородном поле существенно снижается электрическая прочность.

Азот – отличный вариант для изоляции силовых трансформаторов и высоковольтных линий электропередач. Помимо хороших изоляционных свойств, водород способен принудительно охлаждать оборудование, поэтому зачастую применяется в высокомощных электромашинах. Для герметизированных установок подойдет электротехнический газ, при использовании которого снижается взрывоопасность любых агрегатов. Электротехнический газ часто эксплуатируется в высоковольтных выключателях, что обусловлено способностью к гашению электрической дуги.

Свойства газообразных диэлектриков при нормальном давлении

Классификация по происхождению

По происхождению диэлектрики делятся на органические и неорганические.

Органические диэлектрики

Органические электроизоляционные изделия можно разделить на естественные и синтетические. Все материалы, относящиеся к первой категории, в последнее время практически не эксплуатируются, что связано с увеличением производственных мощностей синтетических диэлектриков, стоимость которых намного ниже.

Естественными диэлектриками являются растительные масла, парафин, целлюлоза и каучук. К синтетическим материалам можно отнести пластмассы и эластомеры разных типов, применяемые в бытовых приборах и другой электротехники.

Неорганические диэлектрики

Электроизоляционные материалы неорганического типа бывают естественные и искусственными. Из компонентов природного происхождения можно выделить слюду с большой устойчивостью к воздействию химически активных веществ и высоких температур. Не менее популярными являются мусковит и флогопит.

Искусственные диэлектрики – стекло в чистом или разбавленном видах, фарфор и керамика. Материалам данной категории зачастую придают особые свойства, добавляя в их состав различные компоненты. Если изолятор проходной, то нужно применять полевошпатовую керамику с большим тангенсом диэлектрических потерь.

Волокнистые электроизоляционные материалы

Волокнистые диэлектрики эксплуатируются для защиты различного оборудования. К числу таковых относятся каучук, целлюлоза, различные ткани, нейлоновые и капроновые изделия, полистирол и полиамид.

Органические волокнистые диэлектрики имеют высокую гигроскопичность, поэтому практически никогда не используются без специальной пропитки. В последние годы вместо органических изоляторов применяют синтетические волокнистые изделия с ярко выраженной нагревостойкостью.

Ткань с лаковой пропиткой

В качестве примера можно выделить стеклянные волокна и асбест: первые пропитываются лаками и смолами, улучшающими гидрофобность, вторые характеризуются минимальной прочностью, поэтому в их состав добавляют хлопчатобумажные элементы. Речь идет о материалах, которые не плавятся при нагреве.

Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:

  • Y – максимальная температура 90 град. Цельсия. К данной категории относятся различные волокнистые изделия из хлопка, натуральных тканей и целлюлоза. Они не пропитываются и не дополняются жидкими электроизоляторами.
  • A – 105 град. Цельсия. Все материалы, перечисленные выше, и синтетический шелк, пропитываемые жидкими диэлектриками (погружаемые в них).
  • E – 120 град. Цельсия. Синтетические изделия, включая волокна, пленки и компаунды.
  • B – 130 град. Цельсия. Слюдинитовые диэлектрики, асбест и стекловолокно вкупе с органическим связующим и пропиткой.
  • F – 155 град. Цельсия. Слюдинитовые материалы, в качестве связующего звена которых выступают синтетические компоненты.
  • H – 180 град. Цельсия. Слюдинитовые диэлектрики с кремнийорганическими соединениями, выступающими в качестве связующего.
  • C – более 180 град. Цельсия. Все перечисленные выше изделия, в которых не используется связующее или применяются неорганические адгезивы.

Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.

Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.

Читайте также: