Дверь рычаг какого вида

Обновлено: 19.04.2024

Мы называем рычагом любое твердое тело, которое может вращаться вокруг неподвижной опоры. Рычаги позволяют меньшей силой уравновесить большую силу, что дает выигрыш в силе или в пути.

Эти простые механизмы имеют огромное значение в нашей жизни. Правило рычага говорит о том, что рычаг будет находиться в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил: ($\frac = \frac$).

Данное правило лежит в основе инструментов и устройств, которые мы применяем в быту, они часто используются в технике и встречаются в природе.

Рычаги в быту

Рассмотрим простой и привычный для нас инструмент — ножницы (рисунок 1).

Ножницы — это рычаг, ось вращения которого проходит через винт, соединяющий обе половины ножниц.

Сила $F_1$ — это сила, с которой мы действуем на ножницы, когда что-то разрезаем (мускульная сила руки). Противодействующая сила $F_2$ — это сила сопротивления разрезаемого материала.
На рисунке 1 изображены канцелярские ножницы для резки бумаги. Они имеют длинные лезвия и большие ручки. Резать бумагу достаточно легко, а длинным лезвием удобно разрезать бумагу по прямой линии.

Но ножницы применяются для резки и других материалов, не только бумаги. Например, на рисунке 2 изображены ножницы для резки листового металла.

У таких ножниц ручки намного длиннее лезвий. Резать металл сложнее, чем бумагу — он имеет большую силу сопротивления. Поэтому, чтобы уравновесить эту силу, увеличили плечо действующей силы (силы, с которой мы нажимаем на ножницы). Плечо действующей силы здесь — это длина ручек.

Для перекусывания проволоки используют кусачки (рисунок 3, 4).

Принцип устройства такой же как у ножниц, но здесь еще больше разница между длиной ручек и расстоянием режущей части от оси вращения. Кусачками также можно разрезать провода, некоторые металлы, пластмассу.

Используя лопату, мы используем принцип рычага (рисунок 5). Воткнув лопату в землю, удобно надавить ближе к концу черенка — так проще поднять ком земли. Таким образом мы максимально увеличим плечо рычага и приложим меньше усилий. В данном случае силы приложены по одну сторону от точки опоры О.

Рычаги в технике

Действие рычажных весов основано на принципе рычага. Учебные рычажные весы (рисунок 5) действуют как равноплечий рычаг. Это значит, что, когда весы находятся в равновесии, равные силы действую на равные плечи рычага. В таком случае нет выигрыша в силе. Вес гирь на одном чаше будет равен весу гирь на другой.

Различные рычаги имеются у многих машин. Например, педали велосипеда, клавиши пианино, педали различных автомобилей. На рисунке 7 изображена автомобильная педаль. К педали приложены две силы: $F_1$ — сила, с которой человек давит ногой на педаль, и $F_2$ — сила упругости натянутого троса, прикрепленного к педали.

Ось вращения этого рычага проходит через точку O. Если мы продолжим вектор $\vec F_1$ линией и опустим на эту линию перпендикуляр из точки O, то получим плечо силы $F_1$ (отрезок OA). Опустим перпендикуляр из точки O на линию действия силы $F_2$. Получился отрезок OB — плечо силы $F_2$.

Рычаги в природе

Большое количество рычагов присутствует в разных частях тела животных и человека.

Например, у человека кости рук и ног, нижняя челюсть, череп, фаланги пальцев — рычаги (рисунок 8).

Рисунок 8. Рычаги в частях тела человека

Когда мы поднимаем рукой какой-то груз, наши мышцы сокращаются, и рука сгибается в локте. Действующая сила — сила наших мышц, а противодействующая сила — вес поднимаемого предмета.

Устройство задних ног многих животных использует принцип рычага. Благодаря такому строению животные могут эффективно использовать силу своих мышц. У представителей кошачьих рычагами являются почти все подвижные кости (рисунок 9). Даже обычная домашняя кошка может легко совершать прыжки на большую высоту.

Рисунок 9. Строение скелета кошки

Створки раковины у двустворчатых моллюсков являются рычагом (рисунок 10).

Также примерами рычагов в природе являются клешни у крабов и других членистоногих, подвижные когти у кошек, ствол дерева и его корень.


Равновесие в физике представляет собой состояние системы, при котором она находится в относительном покое к окружающим объектам. Изучением условий равновесия занимается статика. Одним из механизмов, знание условий равновесия для работы которого имеет принципиальное значение, является рычаг. Рассмотрим в статье, какие виды рычагов бывают.

Что это в физике?

Прежде чем говорить о видах рычагов (в физике 7 класса проходят данную тему), дадим определение этому устройству. Рычаг - это простой механизм, который позволяет преобразовывать силу в расстояние и наоборот. Рычаг имеет простое устройство, он состоит из балки (доски, стержня), которая имеет определенную длину, и из одной опоры. Положение опоры не является фиксированным, поэтому она может располагаться как на середине балки, так и на ее конце. Сразу отметим, что положение опоры в общем определяет вид рычага.

Последний используется человеком с незапамятных времен. Так, известно, что в древней Месопотамии или в Египте с помощью него поднимали из рек воду или перемещали огромные камни при строительстве различных сооружений. Активно использовали рычаг в Античной Греции. Единственное письменное свидетельство, которое сохранилось об использовании этого простого механизма - это "Параллельные жизни" Плутарха, где философ приводит пример использования системы блоков и рычагов Архимедом.

Рычаг в Древнем Египте

Понятие о вращающем моменте

Понимание принципа работы разного вида рычагов в физике возможно, если изучить вопрос равновесия рассматриваемого механизма, которое тесным образом связано с понятием момента силы.

Момент силы - это величина, которая получается, если умножить силу на расстояние от точки ее приложения до оси вращения. Это расстояние принято называть "плечом силы". Обозначим F и d - силу и ее плечо соответственно, тогда получаем:

Момент силы обеспечивает возможность совершить поворот вокруг данной оси всей системы. Яркими примерами, в которых можно наблюдать момент силы в действии, являются откручивание гаечным ключом гайки или открывание двери за ручку, находящуюся далеко от дверных петель.

Вращающий момент является векторной величиной. В решении задач часто приходится учитывать его знак. Следует запомнить, что всякая сила, вызывающая вращение системы тел против часовой стрелки, создает момент силы со знаком +.

Равновесие рычага

Рычаг и действующие силы

На рисунке выше показан типичный рычаг и отмечены силы, которые на него действуют. Далее в статье будет сказано, что это - рычаг первого рода. Здесь буквами F и R отмечены внешняя сила и некоторый вес груза соответственно. Также видно, что опора смещена относительно центра, поэтому длины плеч dF и dR не равны друг другу.

В статике показано, чтобы рычаг не двигался как целый механизм, должна нулю равняться сумма всех сил, которые на него действуют. Мы отметили только две из них. На самом деле существует еще и третья, которая этим двум противоположна и равна их сумме - это реакция опоры.

Чтобы рычаг не совершал вращательные движения, необходимо, чтобы сумма всех моментов сил была равна нулю. Плечо силы реакции опоры равно нулю, поэтому момента она не создает. Остается записать моменты сил F и R:

Записанное условие равновесия рычага в виде формулы, также приводится:

Это равенство означает, что для того, чтобы рычаг не совершал вращение, внешняя сила должна быть во столько раз больше (меньше) веса поднимаемого груза, во сколько раз плечо этой силы меньше (больше) плеча, на которое действует вес груза.

Приведенная формулировка означает, что во сколько раз мы выигрываем в пути с помощью рассматриваемого механизма, во столько же раз проигрываем в силе.

Рычаг первого рода

Он был показан в предыдущем пункте. Здесь лишь скажем, что для рычага данного вида опора расположена между действующими силами F и R. В зависимости от соотношения длин плеч такой рычаг может применяться как для подъема тяжестей, так и для придания телу ускорения.

Примерами рычагов первого рода являются механические весы, ножницы, гвоздодер, катапульта.

В случае весов мы имеет два плеча одинаковой длины, поэтому равновесие рычага достигается только в том случае, когда силы F и R равны друг другу. Этот факт используется для взвешивания тел неизвестной массы путем сравнения ее с эталонным значением.

Ножницы и гвоздодер - это яркие примеры выигрыша в силе, но проигрыша в пути. Каждый знает, что чем ближе к оси ножниц заложен лист бумаги, тем легче ее отрезать. Наоборот, если попытаться отрезать кончиками ножниц бумагу, то высока вероятность, что они начнут ее "жевать". Чем длиннее ручка ножниц или гвоздодер, тем легче выполнить с помощью них соответствующие операции.

Что касается катапульты, то это яркий пример выигрыша с помощью рычага в пути, а значит, и в ускорении, которое его плечо сообщает снаряду.

Рычаг второго рода

Рычаг второго рода

Во всех рычагах второго рода опора находится вблизи одного из концов балки. Это ее расположение приводит к наличию всего одного плеча у рычага. При этом вес груза расположен всегда между опорой и внешней силой F. Расположение сил в рычаге второго рода приводит к единственному полезному результату: выигрышу в силе.

Примерами этого вида рычага являются тачка ручная, которая служит для перевозки тяжелых грузов, а также орехокол. В обоих случаях проигрыш в пути не имеет никакого отрицательного значения. Так, в случае ручной тачки важно лишь удерживать груз на весу во время его перемещения. При этом прилагаемая сила оказывается в несколько раз меньше веса груза.

рычаги 2 рода

Рычаг третьего рода

Конструкция рычага этого вида во многом подобна предыдущему. Опора в этом случае также расположена на одном из концов балки, и рычаг обладает единственным плечом. Однако расположение действующих сил в нем совершенно иное, чем в рычаге второго рода. Точка приложения силы F находится между весом груза и опорой.

Удочка - рычаг третьего рода

Яркими примерами этого вида рычага являются лопата, шлагбаум, удочка и пинцет. Во всех этих случаях мы в пути выигрываем, однако происходит существенный проигрыш в силе. Например, чтобы удержать тяжелый груз с помощью пинцета, необходимо приложить большую силу F, поэтому использование этого инструмента не подразумевает удержание с помощью него тяжелых предметов.

В заключение отметим, что все виды рычагов работают по одному и тому же принципу. Они не дают выигрыша в работе по перемещению грузов, а лишь позволяют перераспределить эту работу в сторону более удобного ее выполнения.


Рычаг представляет собой один из простых механизмов, который служил и продолжает служить людям для облегчения их физического труда. В статье рассмотрим, что такое рычаг, какие виды его бывают и где они применяются, а также поясним, в чем заключается правило рычага.

Рычаг в физике

Несмотря на то что речь идет о простом механизме, он все же имеет свои составные части. Во-первых, это балка или доска, которая предназначена для воздействия на нее двух противоположных сил. Во-вторых, это опора, которая, с геометрической точки зрения, представляет собой ось вращения, вокруг которой может двигаться балка. В зависимости от расположения опоры под балкой различают три типа рычага, которые будут рассмотрены ниже.

Еще одним важным понятием для любого рычага является "плечо". Под ним понимают часть балки, которая находится между ее концом и опорой при условии, что воздействующие силы приложены к концам балки. Длина плеча играет важную роль при определении условий равновесия рычага.

Рычаг предназначен для преобразования силы в перемещение или, наоборот, перемещения в силу. Другими словами, рассматриваемый простой механизм, используется для перераспределения работы, которую следует выполнить, в пользу приложенной силы или в пользу осуществляемого перемещения. Рисунок ниже показывает пример рычага первого рода.

Рычаг первого рода

Когда человечество начало использовать рычаг?

Ответить уверенно на этот вопрос нельзя. Известно, что рычаги с древнейших времен использовались в Месопотамии и Древнем Египте для подъема тар с водой из колодцев и рек.

Рычаг в Древнем Египте

Единственным письменным свидетельством, которое сохранилось до наших дней, свидетельствующим об использовании рассматриваемого механизма, является всем известный рычаг Архимеда. В работе Плутарха "Параллельные жизни" (100 год до н. э.) говорится, что Архимед в одиночку смог поднять корабль с грузом и пассажирами над поверхностью воды. При этом философ использовал систему блоков и рычагов.

Если подойти к поставленному в названии пункта вопросу более строго, то можно сказать, что человек пользуется рычагом с момента собственного появления в этом мире, ведь наши предплечья и плечи работают по принципу этого простого механизма.

Понятие о моменте силы

Прежде чем переходить к формулировке правила равновесия рычага, рассмотрим понятие крутящего момента или момента силы. В физике под ним понимают величину, равную произведению плеча силы на саму силу. Математически это записывается так:

Где, F - воздействующая сила, d - плечо силы, которое соответствует расстоянию от точки приложения F до оси вращения. Последний элемент системы, то есть ось вращения, играет принципиальную роль при определении момента M. Без наличия оси вращения нет никакого смысла говорить о действующем моменте силы.

Что такое момент силы?

Физический смысл величины M заключается в отражении способности силы F совершить поворот системы вокруг оси. На практике эту способность можно ощутить, если попытаться открутить гайку не гаечным ключом, а руками, или же если постараться открыть дверь не за ручку, а толкая ее вблизи навесных петель.

Во время решения задач момент силы M может приводить как к вращению системы по часовой стрелке, так и против ее хода. В первой случае момент считают отрицательным, во втором - положительным.

Моменты сил и правило рычага

Рассмотрим классический рычаг с двумя плечами, когда опора находится вдали от концов балки. Пример такого механизма изображен ниже.

Рычаг и действующие силы

Мы видим, что когда этот рычаг применяют для совершения физической работы, то на него действует две силы:

  • внешняя сила F, которую прикладывают для выполнения полезной работы;
  • сила R, которая оказывает сопротивление силе F (она выполняет отрицательную работу).

В большинстве случаев сила F создается усилием человека, а сила R представляет собой вес некоторого груза.

Рассматриваемый рычаг будет находиться в равновесии, и перестанет испытывать вращение только тогда, когда сумма действующих на него моментов будет равна нулю. Используя обозначения рисунка выше, и применяя формулу для M, запишем правило равновесия рычага:

Заметим, что момент силы F записан со знаком минус, поскольку он стремится повернуть плечо рычага по часовой стрелке. Остается перенести второй член в правую часть равенства, чтобы записать правило рычага:

Таким образом, равенство моментов силы действия F и силы противодействия R является достаточным условием равновесия рассматриваемого простого механизма.

Кто установил правило равновесия рычага? Этот вопрос отчасти пересекается с рассмотренным выше историческим. Поскольку сохранились только письменные свидетельства научной деятельности Архимеда, связанной с этим механизмом, то именно он в настоящее время считается тем философом, кто установил правило рычага.

Равновесие рассматриваемой системы обеспечивается не только равенством нулю суммы моментов, но также равенством нулю всех действующих сил. Выше были названы лишь две силы (F и R). На самом же деле существует еще сила реакции опоры, направленная против сил F и R. Реакцию опоры момента силы не создает ввиду нулевой длины ее плеча.

Выигрыш и проигрыш в использовании рычага

Следует четко понимать, что при использовании рычага сохраняется полная энергия системы. Чтобы поднять груз на некоторую высоту, необходимо совершить определенную работу. Поскольку в формуле правила рычага стоит произведение силы на длину плеча, то отмеченную работу можно выполнить как с помощью большей силы, так и с помощью меньшей. Однако в первом случае необходимо будет переместить плечо рычага в вертикальном направлении на малую величину, во втором же случае - на большую величину. Это и есть выигрыш и проигрыш в использовании рычага.

Заметим, что в формуле правила рычага стоят значения моментов. Никакого отношения к работе они не имеют. Момент силы выполняет работу только тогда, когда система за счет его действия поворачивается вокруг оси на некоторый угол.

Виды рычагов

Выше уже упоминалось, что все рычаги относятся к одному из трех типов. В основе классификации лежит относительное расположение сил R, F и опоры. Охарактеризуем все три типа:

  1. Рычаг 1-го типа, или рода, был показан выше. Опора расположена в нем между силами R и F. В зависимости от длины плеч dR и dF его можно использовать как для выигрыша в пути, так и для выигрыша в силе. Примером этого типа рычага являются ножницы, весы, гвоздодер.
  2. Рычаг 2-го рода предполагает, что сила R приложена между опорой и силой F. В таком случае получается выигрыш только в силе. Примерами таких рычагов в быту являются орехокол или ручная тачка.
  3. Рычаг 3-го рода предполагает, что сила F расположена между опорой и грузом R. В этом случае выигрыш возможен только в пути. Использование лопаты, циркуля или удочки для рыбалки - это яркие примеры рычага 3-го рода в работе.

Примеры рычага второго рода

Простой механизм блок

Рассматривая правила рычага, полезно сказать несколько слов о еще одном простом механизме - блоке. Представляет он собой обычный цилиндр с осью вращения, который имеет углубление по периметру своей боковой поверхности. Пример использования неподвижного блока показан ниже.

Неподвижный блок

Как видно, выигрыша в силе и пути не происходит, однако неподвижный блок позволяет изменить направление воздействующей силы F.

Применение правила равновесия рычага к блоку производят, когда требуется рассчитать выигрыш в силе при использовании подвижных блоков. Один такой блок позволяет выиграть в 2 раза в силе и во столько же раз проиграть в пути.

Решение задачи

Ручная тачка сделана таким образом, что центр массы груза в ней находится на расстоянии 1/3*l от колеса, где l - длина тачки. Какой массы груз может переместить с помощью тачки человек, если известно, что он может приложить максимальную вертикальную силу F = 200 Н.

Воспользуемся правилом рычага, получим:

Отметим, что сила F = 200 Н равна весу тела массой всего 20,4 кг. Таким образом, данная ручная тачка позволяет выиграть в 3 раза в силе.


Каждый современный человек, который слышит слово "механизм", представляет себе набор шурупов, гаек, металлических прутьев, пружин, поршней, дисков и валов. В действительности же под этим словом обычно понимали более простые вещи, например, деревянный клин или обычную наклонную плоскость. Упомянутые механизмы называются простыми. Одним из них является рычаг. Рассмотрим в статье, что это - рычаг.

Физическое понятие о рычаге

Рычаг двуплечий

На рисунке выше показан рассмотренный простой механизм, который является рычагом первого рода (см. ниже).

Историческая справка

Каждый школьник слышал уже в 7 классе о знаменитом рычаге Архимеда. Греческий философ утверждал, что при определенных размерах этого простого механизма он мог бы перевернуть нашу Землю, будь вторая такая планета, которую можно было бы использовать в качестве опоры. Архимеду действительно принадлежит большая заслуга в развитии статики, поскольку он смог экспериментально получить математическое равенство, которое в настоящее время носит название "Условия равновесия рычага".

Однако сам принцип рычага использовался задолго до нашей эры. Так, известно, что для забора воды из рек применялся этот простой механизм. Существуют исторические свидетельства, что при строительстве пирамид египтяне также применяли систему рычагов.

Рычаг Архимеда

Принцип работы рычага

Познакомившись с вопросом, что такое рычаг в физике (это наипростейший механизм), перейдем к рассмотрению принципа, согласно которому с помощью рычага получается выигрыш в силе или в пути перемещения. Для этого вспомним, что в физике существует величина, которая называется моментом силы. Последний равен произведению плеча силы на модуль силы, то есть:

Где плечо силы d - это дистанция от опоры рычага до точки действия силы F.

Если вспомнить статику, то второе условие равновесия системы твердых тел в ней гласит, что система не будет совершать вращательного движения, если сумма всех n моментов сил в ней равна нулевому значению. То есть:

Прежде чем переходить к формулировке условия равновесия рычага, отметим, что момент силы, который стремится повернуть систему против часовой стрелки, является положительным. Противоположный ему момент будет отрицательным.

Действующие на рычаг силы

Выше показан рычаг, на который оказывают действие внешняя сила F и сила нагрузки R. Учитывая значение плеч сил и направления моментов, можно записать следующее равенство:

Откуда получаем условие равновесия рычага, полученное еще Архимедом:

Это условие говорит о том, что чем длиннее плечо dF, тем меньшую силу F следует приложить, чтобы поднять вес R. При этом высота подъема этого веса будет меньше, чем высота, на которую опустится плечо dF. Таким образом, при dF>dR получается выигрыш в силе, но проигрыш в пути. При обратном соотношении плеч получится выигрыш уже в пути, но силу F придется приложить большей величины, чем вес R.

Виды рычагов и примеры

В зависимости от положения опоры и порядка расположения действующих на балку сил рычаги бывают трех родов. Расскажем кратко об особенностях каждого из них.

Рычаг - это устройство, которое может быть нескольких видов. Первого рода рычаги являются двуплечими. В соответствии с соотношением длин плеч он может давать выигрыш в силе или в пути. Примерами применения таких рычагов являются ножницы, детские качели, гвоздодер.

Рычаги в природе и быту

Рычаг - это механизм не только двуплечий. Он также может иметь одно плечо, когда опора располагается вблизи края балки. В этом случае возможно два варианта в расположении точек приложения сил F и R, которые были рассмотрены ранее. Если F лежит дальше от опоры, чем R, то мы получаем рычаг второго рода, если же F ближе к опоре, чем R, то получаем рычаг третьего рода. Рычагами второго рода являются ручная тачка для перемещения грузов или орехокол.

В качестве рычагов третьего рода можно привести в пример рыбацкую удочку, пинцет или столовую вилку.

Нетрудно понять, что рычаги второго рода дают выигрыш в силе, а третьего рода - в пути.

Что такое простые механизмы? А не задумывались вообще, в чем их «простота»? Вот вам небольшой спойлер: всевозможные виды простых механизмов окружают нас повсюду — от кухни до подъезда. А еще каждый из нас тем или иным образом пользовался связанным с механизмами важным принципом под кодовым названием «механический выигрыш». Что же, все это занимательно и требует скорейшего пояснения.

Простейшие механизмы: экскурс в доисторическое

Представьте себе трехтысячный год до нашей эры. Действие разворачивается на территории современного графства Уилтшир в Англии. На живописных равнинах, разумеется.

Шумная ватага людей решительно тащит громадный тридцатитонный кремнистый песчаник, в то время как рядом кипит основная работа. Туда-сюда то и дело снуют крепкие ребята с бревнами. Они оперативно перекатывают и подкладывают спереди округлые деревяшки, выкатившиеся из-под камня сзади.


Одна из древнейших стройплощадок человечества — неолитический Стоунхендж.

Короче говоря, транспортировочная суета. Вот так, в нескольких словах можно описать процесс самой загадочной стройки и мистической человечества — процесс сооружения мегалитического Стоунхенджа. И никому доподлинно неизвестно, кто возвел это чудо света.

Были ли это кельтские жрецы или древние бритты, свидетели Мерлиновой бороды… Может, инопланетяне? Неизвестно даже и то, какую цель преследовали возводившие.

Археологи, историки и ученые всего мира до сих пор бьются над разгадками тайн постройки этого сооружения каменного века. Однако одно все же известно. Наши предки, еще задолго до изобретения колеса, кое-что понимали в физике. Иначе как бы им удавалось в двадцать рук перемещать на огромные расстояния объекты массой более $30~т$?

Тридцать тонн — невероятная масса. К примеру, профессиональные пауэрлифтеры способны поднимать штанги порядка массой 300-400 килограммов за подход.

Что такое простой механизм?

История стара как мир: при меньшем получить больше .

Таков закон нашего существования в природе. Ресурсы человека ограничены, условия жизни — быстротечны и непредсказуемы, потребности — велики. А чтобы процветать и выживать необходимо умение не только подстраиваться, но и использовать с умом то, что дано. В конце концов, умение облегчить себе труд — это то, что выделяет нас на фоне других животных.

Именно поэтому технологические решения всегда развивались параллельно с человеком. Мы всегда были, есть и будем в поиске. В поиске того, что могло бы помочь нам выгадывать больше, вкладываясь меньше. И практически все, что мы придумывали во имя этой цели на протяжении тысячелетий, можно отнести к понятию «простой механизм».

Механизм — это устройство, повышающее производительность труда и облегчающее его выполнение.

Задача его проста — преобразовывать энергию и передавать движение. К механизму прикладывается сила, которую он в свою очередь «перерабатывает» и передает телу, совершая работу. Обычно наименьший неделимый элемент механизма называется простым или простейшим.

Ему можно дать следующее краткое определение:

Простой механизм — устройство, служащее для преобразования силы.

Механизмы помогают нам везде. Начать с того, что в скелете человека все кости, имеющие свободный ход, являются «простыми механизмами» — рычагами. Продолжить можно чем угодно. Например, хоть содержимым кухонного шкафчика: ножи, топорики для рубки мяса, открывашки, штопоры, ножницы и прочее.

Еще примеры простейших механизмов!

Даже гитарные колки. Двери, окна, тележки в супермаркетах, качели, пандусы. Пинцеты, ручки смесителя в ванной, колодца, велосипеды, внутренности ремонтного ящика, от гвоздодера до кусачек. Простые механизмы — основа нашей жизни.

Основы простых механизмов

Для того чтобы понять, за счет чего простой механизм облегчает работу, вспомним формулу с прошлых уроков и проанализируем входящие в ее состав величины:

Механическая работа всегда связана с двумя переменными: силой $F$ и перемещением $s$.

По математике формулы очевидно следующее: с увеличением расстояния перемещения, сила, необходимая для совершения того же объема работы, уменьшается. К тому же, так как сила — вектор, с помощью механизма мы можем изменять не только ее величину, но и направление.

Механизм и изменение расстояние применения силы

Вам в руки дают перевязанную стопку книг и просят поднять ее на второй этаж. Варианта два. Первый, для любителей погорячее: попробовать стопку закинуть.

Второй, вменяемый: поднять ее постепенно по лестнице. Лестница увеличивает расстояние применения силы $s$, поскольку длина траектории гипотенузы больше, чем у любого из катетов. Однако сил при этом прикладывать придется меньше. Иными словами, идти дольше, но проще.

Упрощенный расчет длин траекторий лестницы на примере прямоугольного треугольника. Принцип: пройти два лишних метра, затратив при этом меньше мышечных сил.

Простой механизм и прикладываемая сила

Вернемся к разговорам о содержимом кухонного ящика и подумаем о лежащей там открывашке. Прикладывая небольшую силу к концу ручки открывашки, вы легко откупорите любую бутылку. Ведь на крышку будет действовать бóльшая сила на другом конце.

Попробуйте отпилить от открывашки половину ручки, но проделать наряду с этим те же действия. Теперь вы сразу почувствуете, что открывать бутылку стало в разы сложнее. Почему? Потому что изменилась величина значения силы $F$. Не в нашу пользу.

Простой механизм и направление вектора силы

Флаг тридцать тонн не весит, но с помощью механизма мы задали силе противоположное направление и немного выиграли. Теперь лезть забираться не придется.

Механический выигрыш

«Немного выиграли» — вся суть механизмов. Благодаря простым механическим устройствам мы меняем направление силы, расстояние ее применения, непосредственно значение силы и все ради того, чтобы получить выигрыш в силе.

Определить механический выигрыш с точки зрения физики можно так:

Механический выигрыш — величина увеличения силы, получаемая в результате работы простого механизма.

Когда говорят «выигрыш в силе в пять раз», имеется в виду, что для совершения такой же работы $A$, вместо силы $F$ достаточно приложить силу $\frac,$ то есть в пять раз меньше.

Величина работы никогда не меняется. Меняется либо сила, либо расстояние. Выигрыш рассчитывается отношением двух сил:
$$\frac,$$
где $F_1$ — сила, с которой механизм действует на тело, $F_2$ — сила, с которой механизм приводится в действие.

Виды простых механизмов

Простые механизмы по тому, какой выигрыш в силе предоставляют, делятся на два типа: рычаг и наклонная плоскость. У рычага встречается две разновидности: блок и ворот. Наклонная плоскость так же встречается с двумя разновидностями: винтом и клином.

Чисто технически вы будете правы, если скажете, что мир устроен и построен на шести простых механизмах.

Рычаг

Рычаг представляет собой перекладину, которая вращается вокруг неподвижной точки опоры. Этот простой механизм помогает поднимать тяжелые предметы, уравновешивать их. Пример простого рычага — качели-балансиры.

Блок — еще один представитель класса «виды простых механизмов», хоть не выглядит он на первый взгляд просто. В житейском понимании можно сказать, что блок представляет собой веревку, намотанную на колесо.

Механический выигрыш задает тем, что меняет направление силы. К тому же, тянут веревку обычно вниз, поднимая тем самым груз наверх. А это значит что? Правильно: нам еще и помогает сила тяжести.

Ворот

Ворот — тоже разновидность рычага, дающий отличный выигрыш в силе. Простой механизм принципа «ось-колесо». Ось — цилиндр, который фиксирует колесо на месте, а колесо на этой оси вращается.

Наклонная плоскость

Наклонная плоскость изображена на рисунке ниже. Ранее упомянутый нами в примере лестничный проем — яркий пример того, как выглядит механизм по типу наклонной плоскости.

Это поверхность, у которой один край расположен выше другого. Кстати, именно в наклонных плоскостях кроется секрет постройки древних пирамид Египта. А как подобное можно было соорудить, не имея выигрыш в силе?

Если взять наклонную плоскость, обернуть ее вокруг цилиндра, то мы получим винт — простой механизм, который используется для того, чтобы что-то опускать, поднимать или обычно дабы удерживать два тела вместе.

Типичная крышка от банки или бутылки — показательный пример винта. А вот вкрутить даже маленький винтик — задача посложнее, поскольку винтовые механизмы значительно увеличивают расстояние применения силы. Чтобы сравнить, можно взять два винта и кусок поролона. Один винт в него вдавить, другой вкрутить. А теперь попробуйте вдавить винт в стену… Вот вам и выигрыш в силе.

Если представить две наклонные плоскости, сходящиеся в одной точке, выйдет то, что называется клином.

Он помогает удерживать предметы на месте, а также раскалывать тела или отделять от них части. Ножи, мечи, топоры и прочие режущие предметы по механике действия классифицируются как клинья. Кстати, на корпусе самолета они тоже есть: самолетные клинья помогают рассекать при движении воздух подобно тому, как кухонный нож прорезает свежий огурчик.

Это интересно: почему говорят «клин клином вышибают»?

Ни клин не достать обратно, ни дров не нарубить. Поэтому рядом с забитым клином вбивали рядом другой — так, чтобы второй заходил глубже и вышибал первый. И так до тех пор, пока деревянный брусок не расколется напополам.

Вот и выходит, что клин клином вышибают в прямом смысле. Один клин вышибают вторым. И откуда только взялась распространенная речевая ошибка «клин клином вышибает»?

Итоги

Так что же, простые механизмы насколько эффективны, что знаменитая архимедова «угроза» про переворот Земли — правда?

А давайте забежим немного вперед и посчитаем. Допустим, среднестатистический человек способен поднять предмет весом около $60~кг$. Масса нашей планеты составляет примерно $6\cdot>~кг$. Какое же расстояние Архимеду пришлось бы преодолеть, чтобы поднять Землю?


Немного математической магии рычагов, о которой вы узнаете совсем скоро, и… выходит один миллион триллионов километров, он же квинтиллион.

Миллион триллионов выглядит неутешительно: 1 000 000 000 000 000 000. Даже из расчета скорости движения $1\frac$ не то что жизни не хватит — не хватит и миллиарда жизней. Можете посчитать самостоятельно.

Подсказка: возраст Земли — четыре с половиной миллиарда лет. Так вот, пока Архимед будет двигать свой рычаг, Земля успеет пережить более 6000 циклов идущих друг за другом Больших взрывов и апокалипсисов. Да и дали бы мы Архимеду точку опоры, пусть так. Вопрос в другом: как сконструировать рычаг такой неимоверной длины в земных условиях?

Читайте также: